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Abstract

The application of machine learning to the materials domain has traditionally strug-

gled with two major challenges: a lack of large, curated datasets and the need to un-

derstand the physics behind the machine learning prediction. The former problem is

particularly acute in the polymers domain. Here we aim to simultaneously tackle these

challenges through the incorporation of scientific knowledge, thus, providing improved

predictions for smaller datasets—both under interpolation and extrapolation—and a

degree of explainability. We focus on imperfect theories, as they are often readily avail-

able and easier to interpret. Using a system of a polymer in different solvent qualities,

we explore numerous methods for incorporating theory into machine learning using

different machine learning models including Gaussian process regression. Ultimately,

we find that encoding the functional form of the theory performs best followed by an

encoding of the numeric values of the theory.

Machine learning (ML) continues to make astonishing strides in the polymer domain

such as determination of new polymers for gas-separation polymer membranes,1 the abil-

ity to generate new polymer structures,2 transformation of polymer names to structures,3
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prediction of polymer size based on sequence,4 near instantaneous property prediction,5–7

and many others.8–19 However, these advances often rely on large, high-quality, datasets

normally manually curated from sources such as PoLyInfo20 or generated computationally.

Furthermore, they rarely provide physical insight and often fail to extrapolate—representing

significant barriers to further ML advances within the polymers domain.21–26

The lack of large datasets is currently being tackled by several efforts to compile data8,13,20,27,28

including through natural language processing29–33 and the generation of large computational

datasets.5–7 It is also being tackled by transfer learning, a growing technique in ML where

knowledge is transferred between tasks (e.g., prediction of properties), domains (e.g., sci-

entific literature or English literature) or both as detailed in an excellent review.34 Most

commonly knowledge is transferred from a task or domain where data is plentiful to a task

or domain where data is limited. For example, Li et al. transferred knowledge between

domains by using a deep convolutional neural net that was pre-trained on a non-scientific

corpus to perform microstructure reconstruction and structure-property predictions for poly-

mer nanocomposites and other materials.11 Yamada et al. demonstrated exceptional success

at transferring knowledge between tasks by predicting polymer properties with datasets sizes

of order 10 after testing a large number of models trained on other properties as their source

task.12

A powerful method for tackling data scarcity and potentially offering interpretability

that is gaining momentum in the materials domain is the idea of utilizing domain knowledge

(e.g., physical laws).35–38 Depending on the details, this approach can improve predictions

via methods such as physically inspired feature selection39 or the utilization of constraints

such as translational invariance.17 In some cases, it can provide interpretability. For example,

Menon et al. introduced a hierarchical ML approach which first models a collection of basic

physical properties using simple physical models. These then serve as inputs to a linear model

for a complex target property.40 The physics are directly included, and the final expressions

are simple and easy to interpret. They also applied this approach to other problems.41–43
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Here we build on these ideas by incorporating an imperfect theory into ML and apply

it to a problem in the polymers domain. We often have simple physical models, such as

scaling theories,44 that provide physical insight but rarely quantitative predictions. Such

theories also might have limited domains of applicability. The question that we aim to

answer is can we use an imperfect theory to improve ML prediction while providing insight

for small datasets. Choice of a simple theory is important, as it is trivial to evaluate and is

interpretable.

To answer this question, we consider a canonical polymer physics problem, namely, the

polymer size as measured by the radius of gyration, Rg, of a single polymer chain in different

solvent qualities for different chain lengths, N . We know that once the chain length becomes

long enough, Rg ∼ N ν where ν is a scaling exponent and is equal to 1/3 for a bad solvent,

1/2 for a theta solvent and 0.588 for a good solvent.45 As detailed in Methods, we build a

dataset by simulating coarse-grained polymers of different lengths and in different solvent

qualities, represented by the parameter α. α = 1 for a bad solvent, α ≈ 0.35 for a theta

solvent and α = 0 for a good solvent. We then compute Rg and its uncertainty. Supporting

Information (SI) contains a visualization of the data.

To test our methods, we focus on Gaussian process regression (GPR)46 as it intrinsically

includes uncertainty estimates, which are often important in science. GPR starts with the

specification of the prior, or equivalently, the prediction before explicit use of the training

data. The prediction is then updated using training data and Bayes theorem. The prior is

assumed to be a multidimensional Gaussian with a mean of m(x) and a covariance of k(x,x′),

also known as the kernel. In our case, x is the vector of inputs and is equal to [α, lnN ].

Note that we have already made use of lnR2
g ∼ 2ν lnN by selecting lnN as input and lnR2

g

as output. For simplicity, a Gaussian Process can be written as GP(m(x), k(x,x′)). Unless

stated otherwise, we take m(x) to be a constant determined through model optimization and

k(x,x′) to be the squared exponential kernel; this choice enforces smoothness and ensures

that predictions for points that are close in x are similar. Since we predict lnR2
g in the
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thermodynamic limit, we expect a single value for a given set of input parameters. If one

were to consider an output that was a distribution rather than an single value, modifications

such as the addition of a white kernel would be necessary.

GPR models typically use homoscedastic noise, or equivalently, a constant variance in

the model errors; this variance is then determined through model optimization. However,

Gaussian processes with heteroscedastic noise47 can model data with known variances by

propagating uncertainties of both the model and the underlying process to the final proba-

bilistic predictions. We take this more realistic approach.

To incorporate theory, we use several methods as detailed in Fig. 1a. There are two

benchmarks: the direct method, which has no knowledge of the theory and the theory

method, which has no knowledge of the data. For the theory method, we utilize that of

a theta solvent (Rg = (N/6)1/2) as we require numeric values. This particular choice has

limited applicability, providing an excellent case study for exploring the utility of combining

simple physical models with ML. The direct method improves with dataset size as seen in

Fig. 1b as expected whereas the imperfect theory performs worse for all but the very smallest

dataset sizes as it incorrectly assumes ν = 1/2. The goal of the remaining methods is to

perform at least as well as the direct method for all dataset sizes or, equivalently, to avoid a

negative transfer34 of knowledge.

The next three methods utilize the numerical values of the theory for the theta point.

Two of which are adopted from Hutchinson et al. where they compared techniques for

transfer learning to overcome data scarcity.48 Specifically, we consider the difference method

where the difference between source output (lnR2
g,theory ≡ lnN + ln 1/6) and target output

(lnR2
g,dataset) is learned, and latent variable where source output is used to augment the

target input ([lnN,α]). A key distinction between their work and ours is that we use theory

for our source output, which eliminates the need for a surrogate ML model for the source

task and provides physical insight. Inspired by the difference method, we consider a quotient

method that uses the ratio in place of the difference.
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Direct: 𝒙 𝑦

Theory: 𝑦 = 𝑡 𝒙

Latent 𝒙
variable: 𝑡 𝒙 𝑦

Difference: 𝒙 𝑦 − 𝑡 𝒙
𝑡 𝒙

Quotient: 𝒙 𝑦/𝑡 𝒙
𝑡 𝒙

Linear prior: 𝑦 = 𝒢𝒫 𝜅 + 2𝜈 ln𝑁 , 𝑘 𝒙, 𝒙!

Parameterization: 𝑦 = 2𝜈 𝛼 ln𝑁 + 𝜅 𝛼, ln𝑁
𝜈 𝛼 = 𝒢𝒫(1/2, 𝑘(𝛼, 𝛼!))
𝜅 𝛼, ln𝑁 = 𝒢𝒫(ln 1/6 , 𝑘(𝒙, 𝒙!))

GPR

GPR

GPR sum 𝑦

GPR prod. 𝑦

(a) Definitions and Methods
Input:       𝒙 = [𝛼, ln𝑁]
Output:    𝑦 = ln𝑅"#
Theory:    𝑡 𝒙 = ln𝑁 + ln 1/6

Figure 1: (a) A list of methods considered and definitions used therein. (b-c) Mean squared
error (MSE) as a function of training set size. (b) is tested on the remaining dataset, while
(c) is tested on the outlier dataset consisting of N = 1024. Error bars represent standard
error computed from at least 10 different test sets. MSE is always larger than the largest
uncertainty in the datasets. Full details on how model performance was determined can be
found in Methods.
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Of these three methods, the difference consistently performs either the best or no worse

than both direct and theory whereas the quotient method performs the best for very small

dataset sizes but worse than the difference method for larger dataset sizes. The difference

model is mathematically equivalent to using the numerical values of the theory as the prior

mean (m(x) = lnN + ln 1/6) instead of a constant. The GPR takes the prior as an initial

guess and updates its prediction based on nearby data; see Fig. 2. When the GPR extrapo-

lates (no training data nearby, relative to the squared exponential kernel length scale), the

predictions tend toward the priors (thin lines). Since the prior for the difference method

encodes the lnN dependence, it is a better initial guess. Thus, it is not surprising that this

simple encoding of theory would improve predictions. The quotient method reweights the

data and does not have the same interpretation as the difference method. Since it exhibits

negative transfer, the difference method is preferred.

We also consider two methods utilizing the form of the theory rather than numerical

values. The first method is the linear prior, where the prior mean, the prediction before any

data is used, is set equal to a linear combination of the inputs, i.e., 2ν lnN +λα+κ where ν,

λ, and κ are learned constants. This is an extension of the difference method where ν = 0.5

and λ = 0. This performs equal to or better than the benchmarks for all training set sizes but

worse than the difference method for small training set sizes, which is likely due to overfitting.

The second method is the parameterization method, which more fully utilizes the form of the

theory in the prior. Instead of representing lnR2
g as GP(lnN+m, k(x,x′)) as in the difference

method, one can write lnR2
g as 2ν[α](lnN) + κ[α, lnN ] where ν[α] = GP(1/2, k(α, α′)) and

κ[α, lnN ] = GP(ln 1/6 + mκ, k(x,x′)). m and mκ are constants determined during model

optimization. This method performs the best of all of the methods. This improved prior

better represents the underlying data; see Fig. 2.

In the SI, we consider two other ML models: GPR with homoscedastic noise and random

forest (RF). We find that the results for the GPR with heteroscedastic noise and homoscedas-

tic noise are qualitatively similar. Overall, the GPR with homoscedastic noise performs bet-
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ter but this is due to overfitting, does not provide accurate uncertainty estimates and does

not respect that the uncertainty inherently depends on both N and α. RF performs worse

than GPR showing that model choice is important. Unlike for GPR, the quotient method

performs best for RF for our particular problem due to the structure of the ML model.

Most ML techniques are intrinsically interpolative rather than extrapolative. One of the

exciting benefits of incorporating theory is improved performance under extrapolation. To

test this, we consider an outlier dataset composed of N = 1024 (the largest N for the main

dataset was 512) and the full range of α; see Fig. 1c. The performance degrades compared

to the original training set, but the best performing methods outperform the direct method.

Improved interpolation and extrapolation can be explicitly demonstrated by considering

the dataset size required to achieve a desired MSE. For interpolation, we find that dataset

sizes of 99, 74, and 51 are required to achieve a MSE of 10−2 for the direct, difference and

parameter methods, respectively. For extrapolation, dataset sizes of 109, 47, and 20 are

required for achieve a MSE of 0.2. Thus, about a quarter (half) less data is required for

the difference method and about half (a fifth) less data is required for the parameterization

method compared to the direct method for interpolation (extrapolation).

2 3 4 5 6 7
ln N

0
1
2
3
4
5

ln
Rg

2

Extrapolation

Figure 2: Predictions for different methods for incorporating theory: direct (blue), differ-
ence (green), parameterization (purple). Thick lines represent predicted means, and shaded
regions indicate 95 % confidence intervals. Thin lines are learned priors. Circles are training
data and stars are test data. Predictions are plotted for α = 1 (bad solvent). Training data
has 30 randomly selected points of which only point is for α = 1.
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We have shown that incorporating theory can improve ML performance for small dataset

sizes (O(10 − 100)). However, a benefit to using theory is that there is the possibility to

extract knowledge. For the difference method, we use a dataset with 30 training points;

see Fig. 3. Deviations increase away from α ≈ 0.4 demonstrating that the theta solvent

expression is not accurate across the full range of α. We also see that the theory performs

worse for larger values of N . Although we expected these results a priori, if we were using

a theory where the limits were unknown, this analysis would help elucidate that.
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Figure 3: The learned difference heteroscedastic GPR for a dataset size of 30. Line represents
predicted mean and shaded regions indicate 95 % confidence intervals. Circles denote points
training data and stars denote test data.

We consider the parameterization method, which includes the functional form of the

theory. Thus, the latent functions directly relate to known physics. The prediction for ν

directly includes the known values for both good solvent (0.588) and bad solvent (1/3) with

a crossover region in between as seen in Fig. 4a. We also know that for large N the scaling

prefactor should be independent of N . As seen in Fig. 4b, the prefactor deviates from theory

and plateaus before reverting to a learned constant. Compared to simply fitting scaling

theory for large N at different α values, the GPR can account for deviations at small N and

use information at other α values highlighting the power of parameterization.

In this letter, we have explored a variety of methods for combining theory and ML. In

particular, the difference method, which uses theoretical values and the parameterization
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Figure 4: The learned parameterization heteroscedastic GPR for a dataset size of 30. (a)
The radius of gyration scaling exponent, ν, for various solvent qualities. Stars represent
known theoretical limits. (b) κ parameter for α = 0 (good solvent; blue) and α = 1 (bad
solvent; red) and various chain lengths. The black line represents the theoretical expectation
for a theta solvent. In both cases, colored lines represent predicted mean and shaded regions
indicate 95 % confidence intervals.

method, which encodes knowledge of the functional form, when used in conjunction with

GPR perform particularly well while providing physical insight. This can be thought of

as careful, informed model selection. In our example, we worked with simple, relatively

easy to generate simulated data that was uniformly sampled across parameter space. The

ideas discussed in this letter are even more interesting when considering experimental data,

slightly more complicated theory and biased datasets. To make these concepts easy to apply,

we have provided Jupyter Notebooks49 (see SI for details).

Methods

To generate our dataset, we simulate a single coarse-grained polymer in an implicit

solvent. Bonds are modeled with a finite extensible nonlinear elastic (FENE) potential50

with K = 30 and R0 = 1.5. The non-bonded potential is

U(r) = (1− α)UWCA(r) + αULJ(r) (1)

where ULJ is the Lennard-Jones potential with a cutoff of 2.5 and UWCA is the Weeks-

Chandler-Andersen potential.51 Reduced units are used throughout. α ranges from 0 to 1 in
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increments of 0.05 and N ranges from 8 to 1024 in powers of 2 with the data at N = 1024

used as an outlier test set. This results in a dataset size of 147, with 21 additional data

points in the outlier test set.

The initial configuration is generated using a random walk. Subsequently, molecu-

lar dynamics simulations using Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS)52 are run in the canonical ensemble using a Langevin thermostat with a tem-

perature of 1, a damping parameter of 1, and a timestep of 0.005. Simulations are run for

a total of 2 · 109 timesteps with the first 2 · 106 timesteps discarded for equilibration. R2
g

is then computed every 1000 timesteps. From this, the average and standard error of R2
g is

computed and, ultimately, 〈lnR2
g〉 and uncertainty. For N = 1024 and α < 0.4, we found

the uncertainty was too high, so we reran the simulations starting from a different initial

configuration and combined the production data.

Gaussian process regression with heteroscedastic noise is implemented using the GPFlow

python package53,54 along with a new class derived from the gpflow.models.GPR to handle

the additional input of a vector of variances for each output. The squared exponential

kernel is used with a length scale for each input. Model hyperparameters are determined by

maximizing the log likelihood of the training data with the Adam optimizer as implemented

in tensorflow.55 MSE is evaluated through a modified k-fold cross-validation procedure (see

SI for details) where each data point is used at least once for testing.

Supporting Information Available

The Supporting Information (SI) is available free of charge at .

• SI: Dataset visualization, additional machine learning method details, details on imple-

menting and interpreting the parameterization method, and a comparison of machine

learning models

• https://doi.org/10.18434/mds2-2637: input data, MSE data and a link to both the
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code used to generate the MSE data and Jupyter Notebooks to reproduce all figures

• https://github.com/usnistgov/TaML: code including Jupyter notebooks
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