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Abstract—Combinatorial coverage measures have been defined
and applied to a wide range of problems. These methods have
been developed using measures that depend on the inclusion
or absence of t-tuples of values in inputs and test cases. We
extend these coverage measures to include the frequency of
occurrence of combinations, in an approach that we refer to
as combination frequency differencing (CFD). This method is
particularly suited to artificial intelligence and machine learning
(AI/ML) applications, where training data sets used in learning
systems are dependent on the prevalence of various attributes
of elements of class and non-class sets. We illustrate the use
of this method by applying it to analyzing the susceptibility of
physical unclonable functions (PUFs) to machine learning attacks.
Preliminary results suggest that the method may be useful for
identifying bit combinations that have a disproportionately strong
influence on PUF response bit values.

Index Terms—combinatorial frequency, combinatorial testing,
Physical(ly) Unclonable Functions, PUF

I. INTRODUCTION

Methods and tools for measuring combinatorial coverage
were initially developed for analyzing the degree to which
test sets included t-way combinations of test values (for some
specified level of t) [1]–[4]. Combinatorial coverage measures
have been defined and applied to a wide range of problems,
specifically for fault localization, and for evaluating the ade-
quacy of test inputs and input space models. These measures
can also be applied in artificial intelligence and machine
learning (AI/ML) systems, including recent applications to
explainability in machine learning (ML) [5], [6], improving
ML results [7], analyzing aspects of transfer learning [8], and
improving robustness of ML models [9].

For many aspects of AI/ML assurance, combinatorial cov-
erage measures are valuable, and possibly essential, as the
behavior of AI systems is primarily determined through train-
ing inputs, instead of the model code. Conventional structural
code coverage measures are not applicable to such black-
box behavior [10]. Consequently, it is essential to evaluate

the degree to which possible combinations of input attribute
values have been included in training and test sets for AI and
autonomy. We note that attributes in a machine learning setting
correspond to parameters in a test design for regular software;
both are the inputs to the system. If the system has not been
shown to function correctly for an input combination that may
be encountered in use, then assurance is inadequate. However,
for machine learning, we are often interested in the frequency
(or rate) of occurrence of t-tuples of values in input, and
how two different sets may compare or differ in combinatorial
coverage [11]. In general, machine learning for classification
problems attempts to identify differences among two or more
classes of objects based on their attributes. The frequency of
occurrence of these attributes, or combinations of attributes,
however, may be significantly different among classes, and
current assurance practices do not consider these differences.

In this paper, we apply combinatorial coverage measures
[11], [12] that include the frequency of occurrence of combi-
nations, in an approach referred to as combination frequency
differencing (CFD). CFD may be contrasted with previous
combination coverage metrics, referenced above, that are
based on the presence or absence of value combinations. CFD
is particularly suited to AI/ML applications, where accuracy
may be dependent on the prevalence of various attributes of
elements of a specified class and non-class sets. We illustrate
this method by applying it to analyzing physical unclonable
functions (PUFs) for potential weaknesses in design that may
make the PUFs susceptible to machine learning attacks.

II. COMBINATORIAL COVERAGE FOR CLASSIFICATION

Many applications related to software engineering require
separating elements into two classes. For example, distinguish-
ing or differentiating the set of input values that cause a soft-
ware to fail vs. the set of values that result in proper execution
without failure. We will use the terms Class and Non-class to



identify elements or objects that can be distinguished based
on some attributes or properties such as the set of failed test
cases (class) vs. the set of passed test cases (non-class) in a test
suite. Furthering this idea, one can distinguish two groups by
analyzing the presence of certain t-way (t = 2, 3, 4, etc.) input
or attribute combinations in the Class set and absence of those
combinations in Non-class set. Analyzing the set differences
for t-way coverage has been successfully used to identify
causes of failures in a software [13]. The method utilizes set
differencing to identify input combinations that occur in the
class set, and do not occur, or are rare, in the non-class set. If
this difference is computed on t-tuples of values in failed tests
vs. passed tests, then the difference contains t-tuples of values
that have triggered the failure (in a deterministic system).

This idea of distinguishing two sets based on the coverage
of some t-way input or attribute combinations is applicable in
the context of machine learning applications as well. The goal
of many machine learning models is to learn to distinguish
members of one class from another using attributes that
identify them, such as dogs distinguished from cats using
attributes such as size, ear shape, hair texture, etc. In machine
learning, the difference represents properties or attributes that
occur in the class (e.g., a particular animal species) that do not
occur, or are rare, in the non-class examples (other species).
This is a generalized version of the fault localization problem
in software testing, where the class whose distinguishing
features are to be identified is the set of failing tests, and
the features to be found are the combinations that lead to
a test resulting in a failure. Similarly, the combinatorial set
differencing idea has been used for identifying the potential
of a machine learning model trained in one environment to be
successful in a different environment [8]. This method has also
been used in explaining the classification decision of machine
learning models [6].

A. Frequency Differences of t-way Tuples

The combinatorial coverage measures as applied in fault
localization, transfer learning, and model explainability are
based on the presence or absence of t-tuples of values in
input files for testing or training machine learning algorithms.
The concept of ’combination coverage’ comes into play here.
A combination of values or attributes is counted as covered
if it occurs once or multiple times in the input file. For
applications such as software testing related coverage criteria
it is generally important to determine if a t-tuple of values
has been included in the test suite, but the number of times
it occurs is less important. Here multiple occurrences of a
combination mean some duplication of effort, but do not affect
the requirement for ensuring that all t-way combinations have
been covered [13]. In transfer learning evaluation, the same
type of requirement holds – we want to ensure that states and
environments, as represented by t-tuples of values of the input
model, are handled correctly [8]. If it can be shown that the
ML model produces the right prediction or classification for a
t-tuple of values, multiple occurrences of the combination are

not needed. We should note, we are not considering the effect
of input sequences here.

In this paper, instead of focusing only on the coverage of
t-way values in class and non-class set, we introduce a new
metric: the number or frequency of occurrence of t-way t-
tuples of values. The idea here is to determine the degree to
which an attribute is associated with a particular class. If a
combination of attribute values is seen in a high proportion of
class members, but not in non-class members, then it may be
a reasonable indicator for differentiating instances or at least
for narrowing the range of possibilities for class identification.
For example, many dog breeds may have a long tail, and many
may have a curled tail, but a much smaller number of breeds
have both attributes. Considering the frequency of both long
and curled tail could be a useful differentiating factor. Thus it
is important to have a measure that considers the frequency of
instances of t-tuples of values in class and non-class instances.

Let us identify sets of class and non-class t-tuples as Ct

and Nt respectively. We will abbreviate Ct and Nt as C
and N , where interaction level t is clear or is not needed
for discussion. In the following discussion, we refer to a t-
way combination ct (notice the small c) as a differentiating
combination for the class C if it is present in a class instance
of class set C, and absent in non-class instances N , or if it is
more common in C than N as determined by a threshold value.
The key point here is to identify combinations of attribute
values that are strongly associated with one class but not with
others, based on the frequency or rate of occurrence in one
class as compared with others.

B. Measures of Combination Frequency Difference

Below we give a definition of combinatorial frequency
difference metric, CFD, followed by a discussion of how it
may be used to distinguish class instances [11].

The frequency (or rate) of occurrence refers to the number
of times a t-tuple of values is present per number of rows in
the file or array [11]. Here each row represents an instance of
an object. Thus the combination frequency difference, for a
t-tuple of values x in two arrays of instances of two different
classes can be defined as the difference between the fraction
of occurrences in one array vs. the second:

CFD = FCx − FNx

Here,
• FCx = MCx/RC = fraction of occurrences of a t-tuple

of values in C
• FNx = MNx/RN = fraction of occurrences of a t-tuple

of values in N
• MCx = number of occurrence of a particular t-tuple of

values x in C
• MNx = number of occurrence of a particular t-tuple of

values x in N
• RC = number of rows in the class instance file
• RN = number of rows in the non-class instance file

For the following discussion, let us also define:



• r = number of rows of input file
• k = number of columns or attributes, excluding class or

response variable
• v = number of values for attributes
• t = the interaction level such as 2, 3, 4 ... etc.
• vt = number of t-way combinations of v values

Fig. 1. Example of frequency difference for two classes of 6 binary variables

The frequency difference values can be graphed, where the
height on the Y axis shows the difference FCx − FNx for
every t-tuple of values x. The X axis is indexed by vt

(
n
t

)
points for t-way combinations, as there are vt possible values
or settings of the t attributes or variables in the combination,
for each of the

(
n
t

)
t-way combinations. X axis indices reflect

the lexicographic ordering of these points. So for example, 2-
way t-tuples of values are displayed in Fig. 1 in the order
given by: i, j for i in 0 ≤ i < k − 1 for j in i+ 1 ≤ j < k.

Let us consider the scenario depicted in Fig. 1 as an
example. Suppose we have a data set with six binary at-
tributes (variables), i.e., N=6 numbered as 0, 1, 2, 3, 4,
5. For t=2, the 2-way combinations will be indexed as
(0, 1, 00), (0, 1, 01), . . . , (4, 5, 11), where the first two ele-
ments of each tuple represents the attribute number and the
third element represents their binary value combination. There
will be a total of 22

(
6
2

)
, = 60 X-axis points, numbered

0, ..., 59. For each of these, the Y -axis shows the difference
in frequency of occurrence between C and N , normalized for
the size of sets C and N . For example, if the value 01 for
attribute combination i = 1, j = 4 occurs 60 times in a C
file of 100 rows, and occurs 40 times in an N file of 120
rows, then the Y axis value for i, j = 1, 4 for value 01 is
(60/100)–(40/120) = 0.3 (bit 33 in Fig. 1).

In other words, the graph of Fig. 1 displays for each 2-way
combination the fraction of occurrences of each set of v2 t-
tuples of values on the X axis in the order described above.
For each of these 2-way combinations x, FCx−FNx for four
t-tuples of values are displayed for the four possible value
settings 00, 01, 10, 11. Thus the difference in coverage for C
and N for i = 1, j = 4 will be found on the horizontal axis
at x = 32, ..., 35.

A threshold value T can be used to determine if a t-tuple of
values ct is common in set Ct and rare in set Nt, based on the
CFD measures. We say a combination xt is differentiating
for a class C ⇐⇒ FCx > T ×FNx. Specifically, the threshold
value T identifies t-tuples x for which we can say “x is T
times more common in C than it is in N”, an intuitive way
to identify t-tuples of values that are associated closely with

the class C. Note that the phrase “T times more common”
suggests that T will normally be 1 or greater.

Note that we have used t = 2 in this paper, but other values
of t may be appropriate in other cases. A value of t = 1
could detect some differences but would miss interactions. A
larger value of t ≥ 3 can also be used in the tools we have
developed, but results are not shown in this paper due to space
limitations. Please see [11] for examples.

III. PHYSICAL UNCLONABLE FUNCTIONS

We have applied our idea of Combinatorial Frequency
Differencing or CFD to identify potential weakness in physical
unclonable functions or PUFs [14]–[17]. A PUF may be
regarded as a physical implementation of a black box function
that produces a response r for a given challenge string of
bits c, that is, r=f(c). The unit (single bit) response is
binary, i.e., can be represented as 0 or 1. A series of PUFs
can be put together to produce a larger response sequence.
As the name suggests, PUFs are designed using physical
hardware devices. These functions utilize unique properties
of the physical elements within the hardware such as the
small variation in propagation delays between identical circuit
gates or small threshold mismatches in transistor feedback
loop due to manufacturing process variation. These physical
characteristics are very difficult to reproduce in the hardware,
which is what makes them physically unclonable. Using such
physical characteristics PUFs can be utilized to authenticate
hardware devices, and thus combat insecure storage, hardware
counterfeiting, and other security problems [14], [15], [18].
(Following most of the literature, we do not distinguish
between the terms ”physical unclonable” and ”physically
unclonable”, although some authors have proposed different
definitions for these terms.)

An ideal PUF should be stable over time, unique in its
existence, easy to evaluate, and very difficult or impossible to
predict. Thus, it should not be possible to generate a function
that has the same behavior or produces the same output as
the PUF for challenge inputs. In this sense, the PUF function
is “unclonable”. It should also be infeasible to determine
components of the physical hardware or input values that
influence the PUF output, such that a 0 or 1 value in some
positions of the input string makes a 0 or 1 output more likely
for the output r.

A. Machine Learning Attacks on PUFs

The primary use of PUFs is related to authentication. In a
simple use case, during manufacturing, the physical system
is subjected to one or more challenges, and the responses to
these challenges are recorded and stored in a secure location.
When the PUF is deployed in the field, a set of the recorded
challenges are transmitted and if the expected response is
received, then the device is authenticated.

Depending on the strength of their implementation and
consequent scalability, PUFs are categorized into two levels
– weak and strong. Weak PUFs have a limited number of
challenge-response pairs (CRPs) that can be generated from a



TABLE I
ML PREDICTION RESULTS FOR FOUR PUF DESIGNS

Ada Bayes Decision J48/ JRip Logistic Naive Random Stoch. Grad. ZeroR Average combined
Boost Net Table C45 Bayes Forest Descent (baseline) Accuracy diff 2-way

DB1 77.1 96.2 75.6 72.1 77.2 99.7 96.2 87.2 99.3 55.0 86.7 0.489
DB2 54.8 54.9 76.7 68.1 75.2 54.9 54.9 71.9 52.4 55.6 62.6 0.309
DB3 50.7 50.1 71.0 63.9 67.2 50.3 50.1 62.6 50.2 50.1 57.3 0.248
DB4 57.5 56.5 58.8 54.6 60.7 56.4 56.5 55.3 54.6 50.6 56.8 0.216

single device, while strong PUFs can generate a much larger
set of CRPs. One of the key requirements for a strong PUF
design is that it should not be possible to infer information
about the internal structure by observing inputs and outputs
[17]. Many authors have shown that machine learning (ML)
models can be constructed to predict the output of PUFs for
a given input string, i.e., “breaking” the PUF by defeating
its authentication function [18]–[21]. This vulnerability of
failing in the face of a machine learning attack can vary
significantly based on the PUF design. One of the challenges
in developing PUFs is thus to identify potential weaknesses
before constructing the PUF.

Fig. 2. A simple arbiter PUF

Table I shows the accuracy of ML prediction results for
the four PUF designs discussed in this paper, for 10 ML
algorithms available through the Weka machine learning tool
package [22]. Note that “Zero R” is a baseline, where pre-
dictions are simply the proportion of 0 or 1 results for
the challenge/response pairs in the training set. The other
algorithms were selected to provide a representative sample
of popular ML algorithms of different types. AdaBoost is
an adaptive ensemble algorithm that uses a phased sequence
of basic decision tree algorithms, improving on prediction
results with each phase. Bayes Net and Naı̈ve Bayes are
based on Bayesian statistical concepts. Decision Table is a
majority classifier based on a nearest-neighbor algorithm. J48
and Random Forest are based on decision trees (note, J48
is a variant of the widely used C4.5 algorithm). Stochastic
gradient descent minimizes a loss function that is a weighted
linear combination of the attributes, and logistic regression
uses weighted attributes in a regression function. JRip is a
propositional logic-based rule learning algorithm. Although
there is a wide range of results for different algorithms, it
is clear that DB1, the arbiter design, is much more vulnerable
to ML attacks, where two algorithms are able to predict the
response to challenges with near perfect accuracy. Even the
best two PUF implementations (DB3 and DB4) are not fully
resistant to revealing some bias in their response. Note that
their averages are all considerably above the baseline ZeroR,
which simply guesses in proportion to 0 or 1 responses in
challenge-response pairs.

B. Analysis with Combination Frequency Differences

In this section, we show how combination frequency differ-
ences can be used to gather empirical information about the
design and internal structure of a PUF. This is achieved by
measuring the difference between the occurrence-frequency of
t-way combinations associated with a 0 response as compared
with a 1 response. Ideally, there should be little difference,
except for random variances. As shown below, however, these
differences vary considerably and align with the difference in
predictability using machine learning, i.e., the effectiveness of
ML attacks increases with the level of frequency differences.
Although this is a small set of PUFs, and this work is only
preliminary, we believe this information may be useful in
identifying design deficiencies and make PUFs more resistant
to ML attacks.

We measure the combinatorial frequency differences (CFD)
for four sets of PUF data, namely DB1, DB2, DB3, and DB4.
The results of the CFD measures are graphed in figures Fig.3
to Fig.7. Values labeled min, max, and diff are shown, along
with variance, and a density value based on the sum of absolute
differences over the number of value combinations (density is
not used in this analysis but is included for completeness as
it is being considered in future work). Note that differences
are given as difference FCx − FNx, so negative values are
cases where non-class t-tuples of values exceed class t-tuples
of values. For example, in Fig. 1, min = −0.25, at index 47,
and max = 0.3, at index 33, so diff = max−min = 0.55, or
visually the sum of lengths of longest line above and longest
line below the center line.

Comparing the accuracy of ML predictions in Table I with
these graphs, it becomes immediately apparent that there is
a relationship between the “noisiness” of the graphs and the
success of ML algorithms in predicting the response of the
PUF. In case of the arbiter PUF, DB1 (Fig. 3), the CFD
produces a very noisy graph with differences for nearly every
2-way combination of bits ranging from about 0.10 to 0.25.
For this PUF, ML algorithms predict the response with up to
99.7% accuracy. For the PUF most resistant to ML predictions,
DB4 (Fig. 7), the graph shows small frequency differences,
with nearly all under 0.05, up to a few around 0.10.

The other two data sets fall within the range between
DB1 and DB4, for both frequency differences and prediction
accuracy, which is a metric for the potential of breaking
the PUF. See the last column of Table I, which shows that
the difference (above and below the center line) for 2-way
combination frequency shows the same ordering as the average



Fig. 3. 2-way frequency differences for a 64 bit arbiter PUF (DB1)

ML prediction accuracy and the highest prediction accuracy
for DB1 through DB4.

C. Analyzing different PUF types with CFD

There are two major types of hardware implementation of
PUFs: memory based and delay based. A typical memory
based PUF is the SRAM PUF. Delay based PUFs include
arbiter PUFs, pseudo-linear feedback shift register PUF, and
ring oscillator (RO) PUF. In the following sections we analyze
four different PUFs. The dataset related to these PUFs are
available at [23].

Fig. 4. N-rounds Shift Register Arbiter PUF (DB2)

1) Arbiter PUF (DB1): The main idea of an arbiter PUF
is to create a digital race for signals through two paths within
a chip, and to have an arbiter circuit that decides which
signal has won the race [17] [16]. The two paths are designed
identically, but controlled by the challenge inputs. However,
the manufacturing process usually introduces a very slight
longer delay in one of the paths as compared with the other.
Given a particular challenge, the arbiter PUF therefore will
produce an output dictated by the physical characteristics of
that unique hardware implementation. During an arbiter PUF
design, one has to make sure that the delays between the two
paths are not too close to each other. Otherwise, the output
will be dictated by noise in the signal rather than the delay
uniquely introduced through the manufacturing variation.

As Fig. 2 shows, each gate or switch-block introduces a
delay for one of the outputs, which accumulates over the
blocks. This gives rise to the opportunity of building what
is known typically as cloning attacks, also known as model
building attacks or model learning attacks. The idea is that
one can build a mathematical model of the PUF which, after
observing several CRP queries, will be able to predict the

response for a given challenge with a high level of accuracy.
With the proliferation of machine learning algorithms, this
type of model building, or model learning has become easier
to implement. To make model building attacks more difficult
on basic arbiter PUFs, non-linearity can be introduced into
the delay lines of the designed circuit. For example, in case
of feed-forward arbiter PUFs, some challenge bits are not set
by the user. Rather, they are connected to the outputs of the
intermediate arbiters evaluating the race at some intermediate
point of the circuit. This technique, however, increases the
noise in the output of the arbiter PUF. Although initial results
with feed-forward arbiter PUFs were shown to be resistant to
model-building or model-learning attacks, more sophisticated
learning models have been able to break them [24].

In the following we discuss in more detail the alignment
between CFD measures and predictability using machine
learning, i.e., vulnerability to model-building attacks.

Fig. 3 shows 2-way frequency differences for a 64-bit PUF,
DB1, an early arbiter design with delays placed randomly
in the hardware. With 64 bits, there are 22

(
64
2

)
= 8064 2-

way differences indexed. Differences range from a low of
−0.23881 to a high of 0.25108, for a range of 0.48990. These
values are noted as min, max, and diff respectively at the
bottom of Fig. 3.

2) 8-rounds Shift Register Arbiter PUF (DB2): The next
PUF we consider is a modified version the Arbiter PUF
(DB1), as illustrated in Fig.4. A shift register is integrated
to modify the challenge in each round by incorporating the
response generated by PUF in the previous round. Since the
attacker only observes the final response and cannot access the
intermediate responses, this process increases the complexity
for the machine learning attacks compared to DB1 approach.
We detail the steps for Shift Register PUF implementation
below:

1) Challenge is input to both the shift register and the PUF
2) For each challenge applied to the PUF:

• Generate a response using the input challenge
• Challenge is shifted 1-bit to the right.
• First challenge position receives PUF response.

3) Repeat the above procedure N-times.
4) Choose the last response as the PUF output.
Let us now consider the utility of the metrics included in

this study, with respect to PUF vulnerability to ML attacks.



Fig. 5. 2-way frequency differences for DB2

Fig. 6. 2-way frequency differences for DB3

Fig. 7. 2-way frequency differences for DB4

TABLE II
VARIANCE AND STD. DEV. FOR 2-WAY AND 3-WAY COMB., DB1 TO DB4

Average Combined
PUF Variance Std. Dev. Accuracy diff 2-way
DB1 .00521 .07218 .867 .489
DB2 .00017 .01304 .626 .309
DB3 .00012 .01095 .573 .248
DB4 .00031 .01761 .568 .216

Fig. 5 (2-way) shows the frequency differences for 8-rounds
shift register PUF. Note that the variance is much smaller,
0.00017 as compared with 0.0521 for 2-way combinations of
DB1 inputs, as shown in Table II.

There is much more uniformity in the response of DB2 to 2-
way combinations of input bits, and as expected, this makes it
much more difficult for ML to derive a model for the PUF that
can successfully reproduce its response to inputs. As can be
seen in Table II , the accuracy of prediction, which corresponds

to vulnerability to ML attacks, matches the level of difference
shown in the last column, although the number of spikes is
clearly higher for DB4. (See also Sect. III-B.) Based on the
analysis we present in this paper, it appears that difference is
the most useful metric. We plan to pursue additional future
work to further evaluate this conclusion.

Note however that Fig. 5 also shows a small number of
spikes in the combination frequency chart. Combinations pro-
ducing these spikes are shown in Table III, which shows 2-
way bit combinations where the frequency difference exceeds
a threshold value of T=3 std. dev. (σ). Note that combinations
of almost all bits with bit 56 result in a spike that exceeds the
3σ threshold (others have spikes that are slightly below this
value, but still clearly different from the other combinations).
It should be noted that the appearance of spikes compresses
towards the right end of the graph because combinations are
indexed in a loop computation: i, j, b: for i ∈0 ≤ i < 63
for j = i + 1 ≤ j < 64 for b ∈ {00, 01, 10, 11}, for 2-way



TABLE III
2-WAY COMBINATIONS WITH GREATEST FREQUENCY DIFFERENCES, DB2

combination indexes.
A potential explanation can be developed for the pattern of

spikes in combinations that include bit 56 by noting that 8 is
an even divisor of 56. PUFs accumulate differences as steps
progress, so bit 56 occurs at the final stage before the last 8-
rounds shift register. In a design situation, the next step would
be to analyze the hardware components to determine why this
irregularity was occurring.

3) 32-rounds Shift Register VTC-PUF (DB3): In the previ-
ous sections, CFD analysis was performed on Arbiter PUFs.
As they are based on linear delay models, ML attacks have
been successful in these implementations. To make PUF more
resistant to ML attacks, some PUF´s implementations have
been developed using non-linear functions like VTC-PUF
(voltage transfer characteristics) [25].

This section shows the results of our analysis performed
on a shift register VTC-PUF. As the name suggests, in a 32-
rounds shift register VTC-PUF (DB3), Arbiter PUF is replaced
by a VTC-PUF and the number of rounds is 4 times longer
than the DB2 design. The increased number of rounds of shift
register and the non-linearity of the VTC-PUF increases the
complexity of the PUF and therefore makes the design less
susceptible to model building attacks. The results of applying
our analyses are shown in Fig. 6.

As can be seen in Fig. 6, the 32-bit position is present in
CFD combinations with the greatest frequency difference. That
is, a spike in the graph occurs for each bit paired with bit 32,
of approximately equal size for bits 0 to 24. At bit 25, there is
a significant increase in the size of spikes for bits paired with
bit 32, indicating less variability in response associated with
these bits. As the N-rounds of Shift Register is equal to 32, it is
reasonable to infer that the variable N-rounds is directly related
to spikes position. Therefore, without knowing anything about
the internal construction of the PUF, the significance of bit 32
could be inferred. The same conclusion was obtained for DB2
implementation. We believe this type of pattern is related to the
number of rounds, but additional study is needed to determine
the nature of this relationship.

4) Uniform distribution PUF (DB4): Results are shown in
Fig. 7 for a PUF with the most uniform distribution of entropy.

This PUF has the greatest resistance to machine learning
attacks, which are able to predict responses only somewhat
better than chance (see Table I). In this case, the variations
used in producing PUF response accumulate uniformly, with
slight frequency differences for t-tuples of bits that include
either bit 61 or 62. (Compression of the spikes towards the
right side of the graph occurs because of the loop computation,
as explained in section III-C2)

IV. RELATED WORK

Security weaknesses in PUFs can be identified directly
using ML attacks, as described in section III-A, and many
approaches have shown success [19]. Arbiter PUFs, among the
most popular designs, have been shown susceptible to support
vector machine (SVM) methods [19], [26], [27], and deep
learning models can also be used [28]. Genetic programming
techniques have also shown success [29].

PUF strength has also been studied using entropy analysis
[30], [31]. Entropy and related properties are measured on
the bit strings generated by PUFs in responses. Poor entropy
scores have been associated with weak PUF properties [32],
[33] and increasing entropy of response strings improves PUF
resistance to machine learning attacks [34]. Note that these en-
tropy analysis approaches apply to response strings, and recall
that the structure for PUF usage is challenge → response. In
contrast with entropy analysis methods, our approach measures
properties of the challenge string associated with individual
response bits. Measuring entropy of response strings has an
intuitive association with strong PUF properties, since PUFs
are intended to produce random, difficult to duplicate, strings
- increasing randomness increases the difficulty of duplicating.
Our approach, in contrast, reveals certain properties of the re-
sponse generation function, rather than its response produced.

Combinatorial coverage has been used to identify areas
of the test input space that have not been well covered,
and thus not tested adequately [1]–[3]. Combinatorial cov-
erage has also been applied in machine learning contexts,
to identify areas of the machine learning model that are
weak and determine improvements [7]. Another application
of combinatorial coverage in machine learning is for analysis
of transfer learning [8], evaluating the potential for a model
trained in one environment, or set of inputs, to perform in a
new or changed environment. A related task applies coverage
analysis to improve the robustness of models [9].

V. DISCUSSION AND CONCLUSIONS

We have presented a method for measuring and visualizing
differences in the frequency or rate of occurrence of t-
way combinations in different data sets [23]. This measure,
combination frequency differencing (CFD), has potential use
in a variety of applications. Initially applied to challenge-
response pairs for physical unclonable functions (PUFs), CFD
was shown to provide the ability to identify combinations of
bits in the challenge that are more or less strongly associated
with particular output values of 0 or 1. In general, the
combinations that became apparent in analyzing differences



represented a single bit of interest, paired with other bits.
See Table III, for example. Differences in the frequency of
occurrence of particular value combinations were strongly
associated with the success of machine learning attacks on
PUFs. Thus the level of difference appears to be a useful
metric for vulnerability of PUFs to machine learning attacks.

In future research we hope to develop ways to trace these
strongly non-uniform bit combination associations to the hard-
ware components that produce them. This ability might be
useful in the design and development of PUFs, to identify
design weaknesses, and correct them before deployment. It
may be useful to find bits with outsize influence in determining
the output of the PUF. If a bit-position is found to be
‘compromised’, the design could be changed with respect to
that bit position to rectify the weakness. Additional metrics
are also being considered for this analysis, such as density of
differences between class and non-class instances.

We are also investigating using frequency differences di-
rectly for identifying combinations that predict class member-
ship [12]. A longer term prospect could be to apply the CFD
analysis to adversarial imaging, using CFD to determine which
pixels or bits have the most significant influence on neural net
output for such image recognition problems.
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