
Proceedings of the 2022 IISE Annual Conference 

K. Ellis, W. Ferrell, J. Knapp, eds. 

 

Statistical and Spatio-temporal Data Features in Melt Pool 

Monitoring of Additive Manufacturing 

 
Brandon Lane, Ho Yeung, Zhuo Yang 

National Institute of Standards and Technology, Gaithersburg, MD, USA 
 

Abstract 
 

Co-axial melt pool monitoring is an in-situ method applied in laser-powder bed fusion additive manufacturing 

processes, which uses a high-speed camera optically aligned with the laser to continuously observe the melt pool.  

This results in a large volume of image data, which needs to be processed into data features that aim to be statistically 

correlated to processing or part quality metrics.  One such processing method uses the laser position information to 

superimpose melt pool images onto the part coordinates, creating a stitched image or mosaic resembling part geometry.  

While superposition reduces the data volume and provides registration of melt pool image data to 3D part geometry, 

initial algorithms have so far demonstrated only a handful of static image features (e.g., maximum). This paper 

demonstrates an updated, generalized algorithm using dynamic arrays to efficiently store and process the image data.  

Using this generalized algorithm, multiple physics-based data features are demonstrated.  Each feature is then 

discussed in terms of their physical relevance to fabrication quality, and potential for predictive process control.  
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1. Introduction 
 

Co-axial melt pool monitoring (MPM) is one of the more widely deployed in-situ monitoring methods for laser powder 

bed fusion (LPBF) additive manufacturing (AM) processes.  In contrast to staring or off-axis imaging, co-axial MPM 

can enable much greater spatial resolution across the part surface by utilizing the laser-galvo system to ‘scan’ the 

camera field of view (fov) across the build plane in synchronization with the laser [1].  While data is acquired as an 

image stream, it is advantageous to register, visualize, and analyze MPM data within AM part coordinates. However, 

multiple algorithmic methods for this registration and visualization exist.  Researchers at the National Institute of 

Standards and Technology (NIST) have recently focused on a method of co-axial MPM image ‘superposition’ [2].  

Generally, this method takes sequential co-axial MPM images, registers to the corresponding laser spot position, and 

algorithmically combines overlapping images, thus converting a video stream into a high-resolution 2D static image, 

or mosaic, representative of each layer’s part geometry.  Then, like the AM process, the layer-by-layer MPM-based 

mosaic images can be stacked into a virtual volume, or digital twin, of the printed part based on melt pool images.  

 

Other researchers and commercial vendors have implemented the melt pool superposition concept. More often, MPM 

image superposition is demonstrated using staring-configuration imagers [3], [4], with a similar concept provided as 

a commercial monitoring product called ‘optical tomography’ (OT) [5]. However, this concept is more rarely tested 

on research-based co-axial MPM systems, but for a few examples [2], [6], and it is unknown yet by the authors if 

image superposition is used on similar commercial co-axial MPM imaging products [7].   

 

The value of co-axial MPM and image superposition to construct 3D digital twins is clear.  However, there is still 

great potential to explore 1) various types of superposition algorithms that may provide efficient or robust computation 

or storage of MPM superposition mosaic images, and 2) definition of additional, physics-informed MPM image 

features that target specific LPBF phenomena.  This paper aims to explore and demonstrate both ideas, and build upon 

previous work at NIST [2].  
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2. Generalized Algorithm 
 

The original algorithm for constructing the superimposed images is detailed in [2], and briefly reviewed. A machine 

coordinate system {A}, which coincides with the laser/galvo scan position on the build plane, is defined in units [mm].  

The co-axial MPM image coordinates {M} are defined in units [pixel], or converted to units [mm] when multiplied 

by the instantaneous field of view (ifov, units [mm/pixel]). The MPM image {M} and machine {A} coordinate frame 

are co-oriented, while the {M} coordinate frame translates within {A} based on the laser scan positions in {A}. More 

details on these coordinate system definitions are defined in [8].    

 

In the algorithm described in [2], each pair of successive MPM images, Mp(x,y), is shifted in space with respect to the 

machine coordinates {A} by (𝑥⃑𝑖 − 𝑥⃑0)/𝑖𝑓𝑜𝑣, where 𝑥⃑𝑖 is the A(x,y) position of the laser spot for the ith MPM image in 

units [mm].  The maximum value between any pixels from the two images spaced within {A} is stored in the ‘mosaic 

image’, AP(x,y), also defined in {A}.  In the next iteration, the next MPM image frame is aligned and compared to the 

mosaic image, and once again the maximum pixel values retained.  A schematic of the process shown in Figure 1 left.  

Although a ‘max’ operation was used in [2], any incremental operation (e.g., min, sum, count, etc.) acting between 

each subsequent MPM image and the accumulated mosaic image may be used. While algorithms exist for incremental 

mean, variance, etc., many statistical operations require access to the entirety of a sample set, and cannot be performed 

incrementally on new values.  For this reason, and to enable more generalized computation among all superimposed 

pixels prior to formation of the MPM mosaic AP(x,y), overlapping pixels are retained in a grid of dynamic vectors, or 

‘cell array’, as shown in Figure 1 right.  Each cell or pixel in the array can vary in length.  Since many of the pixel 

values in the MPM images are 0 or low, pixel values below a defined threshold are not stored in order to save memory.  

Once fully constructed, various kinds of operations may be applied to all retained values within each cell or pixel in 

the cell array.     

 
Figure 1:  Example of original (left) and updated (right) algorithms for constructing superimposed MPM images.  

The original method calculated the maximum value of overlapping pixels.  The updated algorithm accumulates pixel 

values within a cell array, then performs a functional operation on the entire population within each array.   

In addition to accumulating pixel values, corresponding MPM image frame timing information (e.g., timepoint when 

each frame was acquired) may be simultaneously stored in a parallel and same-sized cell array.  This enables further 

flexibility to compute temporal-based features.  This generalized algorithm thus enables flexible calculation of myriad 

MPM superposition mosaic types based on statistical or physics-based concepts.   

 

 

3. Example Dataset 
 

For examples in this paper, we use the “OverhangPartX4” dataset acquired on the Additive Manufacturing Metrology 

Testbed (AMMT) at NIST [8].  This 3D build consists of four nominally identical parts fabricated from nickel alloy 

625.  Each part, as designed, is approximately 5 mm × 9 mm in footprint, and 5 mm tall with a 4 mm diameter 

Spatially 
overlapped 

MPM image 
frames

Superposition based on ‘Max’

Cell array 
containing 
all nonzero 
values

Superposition via any function

Spatially 
overlapped 
MPM image 
frames



Lane, Yeung, and Zhang 

cylindrical cutout, and 45° overhang, shown in Figure 2. The laser scan parameters used a nominally 195 W laser 

power and 800 mm/s scan speed, and a scan sequence that rotated 0° and 90° between even and odd layers, 

respectively.   

 

 
Figure 2: (left) Part locations and numbering, (center) design geometry of Part 1 including intermediate layers 

225and 226 at the closure of the cylindrical feature, (right) laser scan sequence for two example layers. “Begin” 

(green) and “End” (red) mark the scan sequence. 

The AMMT is controlled via ‘XYPT command’ files, as described in [2], [8].  These files consist of four columns of 

data, where each row is a 10 μs timestep (i.e., 100 kHz digital rate).  The columns include X and Y scan positions in 

[mm], laser power P in [W], and MPM camera trigger column T.  When the XYPT commands are executed on the 

AMMT, a nonzero value  in the T column triggers the MPM camera to acquire an image, which can then be registered 

with the laser X and Y position in the corresponding columns.  Co-axial MPM images were acquired on the AMMT 

at every 10 timesteps, with 20 μs integration time, (120 × 120) pixel image size, and 8-bit grayscale depth.   

 

4. Statistical and Multi-variate Features 
 

Figure 3 demonstrates superimposed MPM mosaics for three layers, where common statistical values are calculated 

for all overlapping pixel values.  The standard error of the mean (SE) is also provided, which utilizes two combined 

metrics of standard deviation (σ) and number of nonzero pixels in each cell (n). 

 

 
Figure 3: Example standard statistical features.  Statistical operations are calculated for each overlapping pixel 

along the frame/time dimension. 
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5. Physics-based Features 

 

To determine temperature-related metrics, the MPM camera was thermally-calibrated using a light-emitting-diode 

(LED) and integrating-sphere-based calibration source in-situ within the AMMT [9].  Calibration consisted of 13 

measured temperature points, and the mean pixel values from the MPM images are compared to the reference 

temperatures of the calibration source, shown in Figure 4 left.  A regression model was fit to the calibration points, 

resulting in parameters a = 906.2, b = 0.1546, and r2 = 0.9998 for the power-law model Trad = aSb. Trad  is the radiance 

(e.g., blackbody-equivalent) temperature and S is mean pixel value in digital levels [DL]. Additionally, the effect of 

applying a hypothetical emissivity correction was tested by dividing S by ϵ = 0.5.  The temperature regression model 

was applied to MPM pixel-value cell arrays, then the mean cell temperatures calculated similar to Figure 3, resulting 

in the mean radiance and emissivity-corrected temperature mosaics in Figure 4 right.  As can be expected, emissivity-

corrected mean temperature values were generally higher than for radiance temperature.  However, the mean 

temperature near the closure of the cylindrical feature appears lower, despite the expectation of greater accumulated 

heat due to reduced underlying solid structure to conduct heat from the melt pool [10].  Generally, MPM images in 

those regions show low temperatures for longer durations (i.e., more image frames), which influences the calculated 

mean value.  Higher temperatures may exist for shorter durations but 1) these may diffuse relatively quickly and 2) 

are limited by camera saturation at equivalent Trad ≈ 2000 °C. 

 

 
Figure 4: (Left) Example thermal calibration curve, and corresponding curve assuming emissivity ϵ = 0.5. (right) 

Example mean radiance and emissivity-corrected temperature mosaics for Layer 226. 

As mentioned in Sec. 2, frame numbering values are stored in a parallel cell array to the MPM pixel values, to be 

accessed for temporal calculations.  Another feature called ‘time above temperature’ or ‘time above threshold’ has 

been demonstrated for staring camera systems [4], [11], [12], though it is unknown by the authors if it is yet 

demonstrated for co-axial MPM systems.  The general algorithm requires signal or temperature data as a function of 

time for each pixel location, then counts the amount of time (i.e., number of image frames divided by frame rate) the 

temperature or signal is above a specified threshold level.  Figure 5 demonstrates ‘time above temperature’ for layer 

226 at threshold values of 1800 °C and 1300 °C.  Temperature vs. time data for three example pixels are also shown. 

Layer 226 – Mean Trad [°C] Layer 226 – Mean T, e = 0.5 [°C]
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Figure 5: ‘Time above temperature’ mosaic for layer 226 for 1800 °C (top left) and 1300 °C threshold values 

(bottom left).  Corresponding temperature vs. time results are shown (right) for corresponding pixels A, B, and C 

shown in the left images. 

Interestingly, the ‘time above temperature’ metric shows relatively lower values at the closure of the cylindrical feature 

(point B), compared to the rest of the part when utilizing a threshold temperature of 1800 °C.  The opposite trend is 

shown when utilizing a temperature threshold of 1300 °C.  This coincides with the prior observation and hypothesis 

for mean temperature: that lower temperatures are retained for longer time durations at the overhang.  

 

6. Discussion 
 

Several aspects still pose challenges to the co-axial MPM superposition concept.  A frame rate that is too low or a 

scan speed too high  may result in ‘gaps’ between superimposed melt pools, which is partially evident in the figures 

above.  Due to the wide range of melt pool temperatures, MPM images are nearly all dark/zero in most pixels, and 

saturated near the melt pool center.  Saturated pixel values are not directly related to melt pool radiant emission, and 

ought not to be utilized or considered in some calculations. Some melt pool phenomena such as spatter or plume may 

be visible in MPM image frames.  These phenomena are normal, but may elicit some noise or perturbation to key 

metrics of interest such as melt pool size.  Thus, some filtering or preprocessing of MPM images may be necessary, 

depending on the final mosaic type to be processed.  

 

Ultimately, the co-axial MPM mosaic images demonstrated in this paper may be ‘stacked’ to form 3D volumes or 

digital twins of the AM parts, constructed solely of in-situ process monitoring data.  Further work is necessary to 

create generalized algorithms for accumulating multiple layer data into a volume, and potentially enabling flexible 

operations applied between two or more adjacent layers.  The generalized methods for single layers shown in this 

paper, however, are extendible to a multitude of different co-axial MPM image superposition functions.  
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