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1  |  INTRODUC TION

Due to recent encounters with zoonotic viruses like Ebola virus 
and SARS- CoV- 2, efforts to forecast the zoonotic risk of wild-
life viruses -  and, more broadly, to understand the biological con-
straints on cross- species transmission -  are increasingly appealing 
(Albery et al., 2021). To date, most of these efforts rely on easily- 
observed traits of hosts, like morphology, diet, or phylogeny (Albery 
et al., 2020; Han et al., 2016). Despite their distance from the 
molecular determinants of transmission, these traits can be used 
to build models that have surprising predictive accuracy (Becker 
et al., 2022).

Many microbiologists have expressed a healthy scepticism of 
these approaches, which often entirely lack predictors that con-
sider the molecular biology of hosts or any viral traits, and there-
fore, only coarsely infer the cellular processes of infection through 
other proxies that are correlated across evolutionary space. As a 
rare exception, genomic approaches are increasingly being used to 
close this gap (Babayan et al., 2018; Mollentze et al., 2021), and can 
help identify salient mechanisms of host- virus interactions (e.g., CpG 
dinucleotide depletion in vertebrate viruses appears to help them 
evade innate immune responses like the zinc finger antiviral pro-
tein [Takata et al., 2017]). However, as predictive features, genomic 
traits are often confounded by evolutionary signals (Di Giallonardo 
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Abstract
The sugars that coat the outsides of viruses and host cells are key to successful dis-
ease transmission, but they remain understudied compared to other molecular fea-
tures. Understanding the comparative zoology of glycosylation -  and harnessing it for 
predictive science -  could help close the molecular gap in zoonotic risk assessment.

K E Y W O R D S
glycosylation, Microbial Biology, Modelling, Molecular Evolution, Viral Ecology, Viral Evolution

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.16731 by N
ational Institute O

f Standard, W
iley O

nline L
ibrary on [24/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

www.wileyonlinelibrary.com/journal/mec
mailto:
https://orcid.org/0000-0002-6080-7047
https://orcid.org/0000-0002-4823-7758
https://orcid.org/0000-0001-6120-7695
mailto:
https://orcid.org/0000-0001-6960-8434
http://creativecommons.org/licenses/by/4.0/
mailto:cassandra.pegg@uqconnect.edu.au
mailto:colin.carlson@georgetown.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmec.16731&domain=pdf&date_stamp=2022-10-21


2  |    PEGG et al.

et al., 2017; Shackelton et al., 2006), and genomic data only offer 
limited insights into the actual three- dimensional structural compat-
ibility of viral and host cell surfaces, a “lock- and- key” type process. 
This lock- and- key interaction not only allows efficient infection of 
susceptible hosts, but also limits cross- species viral transmission. 
Structural modelling approaches have been used to examine the 
binding of viral proteins and host cell receptors, most recently in 
the context of research on SARS- CoV- 2, but many of these simula-
tions neglect key information: the glycosylation of these structures. 
Indeed, the handful that do address this aspect have revealed un-
expected and important roles for glycosylation in these processes 
including those for SARS- CoV- 2 (Casalino et al., 2020; Ghorbani 
et al., 2021; Sztain et al., 2021; Zhao et al., 2020), HIV (Berndsen 
et al., 2020; Ferreira et al., 2018; Lemmin et al., 2017; Stewart- 
Jones et al., 2016; Wood et al., 2013; Yang et al., 2017), and influ-
enza viruses (Kasson & Pande, 2008; Newhouse et al., 2009; Seitz 
et al., 2020; Xu et al., 2009).

The sugars, or glycans, that decorate host cell surface macromol-
ecules are often critical ligands that viruses associate with to enter 
cells (Jones et al., 2021). Viral proteins from different virus families 
exhibit substantial variation in binding affinity towards host glycan 
receptors, and the compatibility between different viral proteins and 
host glycosylation varies between host and virus species, across tis-
sues and organ systems, and even over time or between individuals 
(Jones et al., 2021; Maginnis, 2018; Thompson et al., 2019). Some 
viral surface proteins become glycosylated by host cell machinery 
during infection, and in the process can mimic host cell surfaces or 
shield proteins from antibody recognition, helping viruses evade 
the host's immune system (Bagdonaite et al., 2018; Bagdonaite & 
Wandall, 2018; Watanabe et al., 2019; Zhao et al., 2021). The glycans 
on viral surfaces are also recognized by host glycan- binding proteins 
on immune cells that capture viruses, either preventing or promoting 
infection (Crocker et al., 2007; Erikson et al., 2015). These aspects of 
host- virus compatibility can create or unlock barriers to transmission, 
but are poorly characterized as an underlying structural determinant 
of host- virus networks because glycan structures are subject to rapid 
regulation and are sometimes perceived as being analytically chal-
lenging. We suggest an undertaking to describe the comparative zo-
ology of glycoproteins, and their role in structuring the global virome.

2  |  WHAT SUGARS DO, AND HOW

Glycans are a key feature of the cell surface and extracellular matrix 
of eukarya, archaea, and bacteria (West et al., 2021). Glycans can 
be found on proteins or lipids, and technological advances (Everest- 
Dass et al., 2018) in the 21st century have greatly increased our 
ability to identify, characterize, and manipulate glycosylation, which 
has in turn supported deeper insights into the multitude of diverse 
roles it plays (Moremen et al., 2012). Glycans can constitute a sub-
stantial proportion of the molecular mass of a protein (Varki, 2017), 
contributing to their biophysical properties and influencing protein 
targeting, folding, structure and secretion (Ohtsubo & Marth, 2006; 

Varki, 2017). Moreover, glycans are mostly located on secreted pro-
teins and at the cell surface, and are therefore key determinants in 
molecular recognition events (Schjoldager et al., 2020).

Glycans exhibit tremendous structural diversity (Spiro, 2002). 
Unlike proteins, whose sequences can be predicted from gene se-
quences, the biosynthesis of glycans is not directly template- driven; 
glycans are built, modified and trimmed by an extensive network of 
co- expressed enzymes that are differentially expressed in cells and 
tissues, and can be affected by factors intrinsic and extrinsic to the 
cell. Glycan structures are therefore specific to various organisms, 
tissues, and cells, and the resulting structures can be highly hetero-
geneous, imparting additional complexity to the structural and func-
tional properties of proteins (Schjoldager et al., 2020).

Glycans act as receptors, coreceptors or attachment factors for 
numerous viruses (Thompson et al., 2019) including HIV, dengue 
(Raman et al., 2016), MERS- CoV (Park et al., 2019), influenza (Shinya 
et al., 2006), and SARS- CoV- 2 (Yang et al., 2020). For example, both 
avian and human- adapted influenza viruses bind to glycans that 
terminate with sialic acid, but avian influenza preferentially binds 
to sialic acid with α2- 3- linkages, while human- adapted influenza 
prefers α2- 6- linkages, which are expressed in the human upper re-
spiratory tract (Kuchipudi et al., 2009; Shinya et al., 2006). When 
avian- origin influenza lineages jump directly into humans, infections 
mostly become established in the lower lungs where cells express 
α2- 3- linkages, leading to rare infections that are generally more se-
vere but less transmissible (Stevens et al., 2006). Animal bridge hosts 
that can be infected by different influenza subtypes (including avian 
species) or express both types of sialic acid -  for example, swine -  
provide an environment where viral lineages may directly undergo 
mutation to adapt to α2- 6- binding (Thompson & Paulson, 2021), 
or where human and avian lineages cocirculate and undergo reas-
sortment (Figure 1a). These hosts therefore provide an evolutionary 
stepping stone for avian lineages to switch to α2- 6- binding, open-
ing a transmission route for harmful zoonoses and producing more 
transmissible strains that pose epidemic or pandemic threats in hu-
mans (Chothe et al., 2017).

In cases like these, glycosylation is a key driver of host range and 
zoonotic risk, but one that is often neglected or folded into the “black 
box” of host- virus interactions and evolutionary dynamics in sys-
tems that are less well- characterized than influenza. However, the 
general importance of glycosylation in host- pathogen interactions 
is well established (Suenaga & Arase, 2015; Watanabe et al., 2019). 
Given that potential differences in glycosylation presence and struc-
ture can have profound effects on molecular interactions, we sug-
gest there is a clear need to measure the glycomes of potential hosts 
as part of broader efforts to describe viral ecology and emergence.

3  |  CHAR AC TERIZING GLYC ANS AT 
DIFFERENT SC ALES

The inherent structural complexity and heterogeneity of glycans 
across species, individuals, organ systems, tissues, and even time and 
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space make them an analytically challenging subject. Additionally, 
and in contrast to other biomolecules, they can have extraordinar-
ily high structural complexity due the variety of monosaccharide 
building blocks and the multiple ways they can attach to each other, 
both in bond configuration (α and β) and in the positions of the in-
tersaccharide linkages within the molecules (Cummings, 2009). 
Nevertheless, a number of techniques can be used individually or in 
combination to characterize protein glycosylation, with mass spec-
trometry being a powerful and widely used tool that can be incorpo-
rated at various levels (Figure 1b). Generally, the overarching aim of 
glycosylation analyses is to deduce one or more of the following: the 
monosaccharide composition of the glycans, the order and branch-
ing of monosaccharides in a glycan, the types of glycosidic linkages 
and monosaccharide anomericity, or the location of the glycosyla-
tion sites on a protein. The functional roles of glycans can also be 
assessed by measuring noncovalent interactions between specific 
proteins and glycans. A global view can be obtained from antibody or 
lectin binding to selectively identify glycan epitopes or motifs in tis-
sues, cells and proteins. Lectins can be used in array- based platforms 
(Gao et al., 2019) enabling high- throughput analyses with the caveat 
that they do not provide comprehensive structural information. The 

most effective way to obtain structural details of glycans is to use 
a glycomic workflow whereby the glycans are chemically or enzy-
matically released from glycoproteins. The released glycans are typi-
cally chemically labelled with fluorescent tags and analysed by liquid 
chromatography or capillary electrophoresis with a mass spectrom-
eter used for enhanced detection (Everest- Dass et al., 2018). These 
methods for studying the glycome can provide monosaccharide 
composition and sequence information, and at times, linkage posi-
tion. Coupling these analytical techniques with enzymes that cleave 
specific monosaccharide linkages provides additional precise struc-
tural information.

A limitation of glycomic approaches is that protein-  and site- 
specificity is lost with glycan release. Nevertheless, these tech-
niques are the most powerful for providing the basic information 
about glycan structure that will probably form the basis of future 
predictive models (see below). This is because the same glycan 
structures or epitopes can often be found on many different sites 
and proteins from the same cell, because they share the same gly-
can biosynthetic pathways. In addition, a key benefit of glycomics, 
compared to proteomics or glycoproteomics (the study of proteins 
and glycosylated proteins, respectively), is that analysis of released 

F I G U R E  1  Glycosylation underlies the evolutionary shift towards zoonotic emergence of influenza. (a) When avian influenza makes 
the jump directly to humans, preferential binding to α2- 3- linked sialic acid expressed in the lower lung leads to rarer infections that can be 
more severe but less transmissible. In intermediate hosts that express both α2- 3- linked and α2- 6- linked sialic acid, viruses can undergo an 
evolutionary shift that facilitates emergence in humans, who express α2- 6- linked sialic acid in the upper respiratory tract. (b) An array of 
different tools can be used to study the glycosylation profiles of tissues, cells or proteins from a global level down to the glycan level. Figure 
created with BioRender (biore nder.com)
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glycans does not typically require prior knowledge of the genome. 
Although glycan biosynthesis is nontemplate driven and millions of 
possible glycan structures can be predicted (Cummings, 2009), there 
are comparatively few glycan structures actually observed on glyco-
proteins (Werz et al., 2007), and these can be predicted or de novo 
structurally determined without knowledge of the genome (Kellman 
& Lewis, 2021). If the annotated genome is available, genomic and 
phylogenetic profiling of glycan metabolism enzymes can greatly 
assist or validate glycomic approaches (McVeigh et al., 2018), espe-
cially where the glycan profiles from species contain structures that 
have not yet been defined (West et al., 2021). Furthermore, mass 
spectrometry glycoproteomics can also be used to identify and mea-
sure peptides with attached glycans. In this case, fine structural de-
tail of the glycan structure is lost but the site of attachment and the 
level of site occupancy is retained.

4  |  BUILDING GLYCOSYL ATION INTO 
PREDIC TIVE SCIENCE

Understanding the landscape of host glycosylation might help scien-
tists build better predictive tools to understand the broader rules of 
viral cross- species transmission or even the special case of zoonotic 
risk. This could be accomplished in a number of ways, most of which 
are untested. Glycosylation could be represented as data in several 
ways, ranging from simple (e.g., the presence or absence of a spe-
cific set of glycan structures) to complex (generating quantitative 
features using graph representations of the glycan structure [Alonso 
et al., 2018]). These data can then be used several ways. For exam-
ple, recent attention on SARS- CoV- 2's use of the ACE2 receptor has 
sparked the development of models that predict host susceptibility 
based on receptor sequences (Fischhoff et al., 2021), but glycosyla-
tion is a missing element; incorporating glycan structures as receptor 
or coreceptor “metadata” might help researchers better understand 
viral attachment (Figure 2a). For instance, sialic acid and heparan 
sulphate are key cell surface glycans that are coreceptors for SARS- 
CoV- 2 (Clausen et al., 2020; Nguyen et al., 2021). Conversely, from 
the host perspective, specific glycans may promote viral entry as is 
the case for SARS- CoV- 2, where site- specific glycans of ACE2 have 
been implicated in receptor- viral binding (Zhao et al., 2020). Thus 
similar glycosylation might help explain pathogen sharing between 
different animals (Figure 2b), and (according to some preliminary evi-
dence [Burkholz et al., 2021]) might even help unpack some of the 
microbiology inside the black box “phylogenetic distance effect” that 
broadly structures the viral sharing network (Albery et al., 2020). If 
viral glycosylation helps evade host immune system detection, these 
dimensions of similarity may help explain how particular bridge host 
“stepping stones” are possible, including in cases of zoonotic emer-
gence (during early characterization, glycan motifs or structures can 
even be proactively searched to identify homology in human and an-
imal hosts, and linked to viruses where glycan- binding preferences 
have been established). Similarly, understanding the role of viral 
mutations that alter the viral surface glycoproteins (Figure 2c) may 

lead to more targeted insights about how glycosylation relates to zo-
onotic risk (as in the example of influenza and sialic acid; Figure 1a).

Most of these examples are still hypothetical, but in limited 
cases, these types of model- based exploration have shown tremen-
dous promise. For example, a recent study used graph representa-
tions of glycans and multiple kinds of advanced machine learning 
(graph convolutional neural networks and natural language models) 
to predict host identity and glycan immunogenicity, and was able 
to predict influenza and rotavirus binding affinity for host receptors 
from different species (Burkholz et al., 2021). Studies like these are 
exciting proofs- of- concept and point to the idea that feature repre-
sentations of glycans may eventually be useful as part of a broader 
palette of cell-  and virus- level trait predictors used to make even 
more advanced (and crucially, microbiology- driven) machine learning 
or network models.

In order to power these kinds of approaches, more data is needed 
about the “global glycome.” While the human glycome is well stud-
ied (Jia et al., 2020), the glycomes of animal reservoirs are severely 
understudied -  a major problem when, for example, host range is 
extensive (e.g., influenza A virus can infect captive and wild animals 
including birds, dogs, cats, pigs, horses, bats, seals and even some 
reptiles [Short et al., 2015]). Where existing glycomic data sets are 
unavailable, transcriptomics coupled with experimentally- defined 
and predicted glycan biosynthetic pathways could help fill the gaps 
(Dworkin et al., 2022; Kellman & Lewis, 2021) while existing glycomic 
data sets can be used to train models. When expanding existing data 
sets, wild reservoir populations should be a priority for experimen-
tal glycosylation analyses, particularly those that are endemically 
infected, at the human- animal interface and those likely to act as an 
intermediate “mixing vessel” for cross- species transmission. Tissues, 
cells and fluids that are the routes of entry for infectious agents or 
are predicted to be involved in tropism and systemic spread should 
be a focal point of analysis. These may include the mucosal epithelial 
tissue of the gastrointestinal, urogenital and respiratory tracts and 
cells of the skin, lymphatic system and blood vessels. The types of 
data to be incorporated from these sample types could range from 
global glycome analyses to precise glycan structure and site occu-
pancy information. Ultimately, the types of experiments conducted 
will be determined by the capabilities of the laboratory. In depth 
protocols are available for global structural (Jensen et al., 2012; 
Li et al., 2020) and protein-  and site- specific (Hart & Wells, 2021; 
Kolarich et al., 2012; Oliveira et al., 2021; Remoroza et al., 2021; 
Riley et al., 2020) characterization of glycans. Given the versatility 
of liquid chromatography mass spectrometry to study glycosyla-
tion, this approach seems most accessible with costs predicted to 
be in the low to medium range depending on the level of structural 
characterization achieved. With unlimited sample availability and 
technical resources, multiple tissues from multiple species could be 
characterized and this data used for modelling. Tissue types may be 
limited due to the requirements for lethal or nonlethal sampling, the 
ability to dissect out specific tissues, or even the capacity to sam-
ple all species, though many field researchers have suitable samples 
already collected and in storage. As with most fieldwork, sample 
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availability will be dictated by each situation, but a balance should be 
struck between accessible biofluids (such as blood) and relevant tis-
sues (such as lung tissue for respiratory viruses). On the other hand, 
given the ever- growing frequency of glycomic and glycoproteomic 
techniques (lectin- arrays or mass spectrometry- based), it is possi-
ble that the analytical work could be accomplished collaboratively at 
low to medium cost as part of broader comparative zoology and viral 
ecology. Critically, depositing the data sets generated by this work 
into existing public repositories like GlycoPOST and GlyTouCan, 
which is becoming standard practice in the glycobiology field (Rojas- 
Macias et al., 2019), will allow their value to grow exponentially for 
comparative and predictive research.

Recent viral epidemics and pandemics have highlighted a need 
for increased surveillance at the animal- human interface and for-
ward planning of biochemical countermeasures (Rabozzi, 2020; Lurie 
et al., 2020; Munir et al., 2020). Characterizing the global glycome 
will help microbiologists and ecologists understand the broader dy-
namics of viral ecology, and these data could also easily be applied 
to understanding other pathogens. Moreover, as work during the 
COVID- 19 pandemic has highlighted, understanding glycosylation 
as a viral phenotype is a key part of understanding pathogenesis and 
developing effective countermeasures (Shiliaev et al., 2021; Uraki & 
Kawaoka, 2021), and we suggest that building more glycomics into 
viral surveillance is a feasible, cost- effective, and impactful way to 

F I G U R E  2  Adding glycosylation to microbiology- smart modelling. (a) Different animals have different combinations of glycans, which 
may help unpack how specific glycans contribute to susceptibility to a given pathogen. In this example, species 2's lack of glycans iv and v 
could explain its lack of susceptibility to the pathogen. (b) When the mechanism is understood in better detail, the glycosylation of a single 
structure (e.g., the ACE2 receptor) might help predict cross- species transmission potential for a specific virus (e.g., SARS- CoV- 2) -  if the 
structural similarity of a given glycan can be converted into machine- readable features. (c) Understanding mechanisms in greater detail may 
improve other kinds of predictions about cross- species transmission: for example, mutations in the haemagglutinin structure of influenza 
viruses limit their binding efficiency to the glycosylation of human sialic acid receptors, allowing prediction of the zoonotic potential of 
specific influenza A strains based on a few point mutations. Figure created with BioRender (biore nder.com)
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expand the body of basic science that forms the basis for epidemic 
preparedness.
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