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Abstract 

This paper presents the development of an attention based bi-directional gated recurrent unit 
model, P-Flashv2, for the prediction of potential occurrence of flashover in a traditional 111 m2 

single story ranch-style family home. Synthetic temperature data for more than 110 000 fire cases 
with a wide range of fire and vent opening conditions are collected. Temperature limit to heat 

detectors is applied to mimic the loss of temperature data in real fire scenarios. P-Flashv2 is shown 
to be able to make predictions with a maximum lead time of 60 s and its performance is 
benchmarked against eight different model architectures. Results show that P-Flashv2 has an 

overall accuracy of ~ 87.7 % and ~ 89.5% for flashover predictions with a lead time setting of 30 
s and 60 s, respectively. Additional model testing is conducted to assess P-Flashv2 prediction 

capability in real fire scenarios. Evaluating the model again with full-scale experimental data, P-
Flashv2 has an overall prediction accuracy of ~ 82.7 % and ~ 85.6 % for cases with the lead time 
of setting 30 s and 60 s, respectively. Results from this study show that the proposed machine 

learning based model, P-Flashv2, can be used to facilitate data-driven fire fighting and reduce fire 
fighter deaths and injuries. 

 
Keywords: Flashover occurrence, machine learning, real-time prediction, realistic fire and 
opening conditions, benchmark models. 

 

1. Introduction 

Over the past 40 years, many important advances have been made both in understanding the effect 
of various factors influencing the onset of flashover [1-5] and the development of scientific 
approaches to forecast the potential occurrence of flashover within residential building structures 

based on image data [6-9] and time-series data [10-18]. In [6], Yun and his co-workers applied 
generative adversarial networks to enhance the IR images from the videos to make prediction of 
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flashover based on the dynamic changes of the fire and smoke patterns. Wang et al. [7] developed 
a convolutional neural network based prediction model with smoke images generated from a fire 

simulation program. The model could determine the transient heat release rate in the building fire 
and make used of the estimated heat release rate to further classify flashover conditions. Mozaffari 

et al. [8] utilized RGB images obtained from typical video cameras to develop an optimized 
convolutional neural network model to detect flashover occurrence in compartment fires. Li et 
al. [9] proposed a new hybrid model to predict flashover occurrence for as early as 51 s before it 

happens. Indeed, the computer vision based approaches from [6-9] are quite promising in terms of 
prediction capability. However, there are limitations for these models. Firstly, they require the use 

of cameras that are located either near the floor surface in the fire of origin or being placed outside 
of the fire room. Secondly, in order to effectively learn the indicative patterns from images to 
flashover conditions, the size of these models is generally very big. For that, these approaches 

likely require a lot of computing resources which make the use of these approaches difficult in real 
world applications. Practically efficient methods [10-14], such as the use of empirical correlations 

developed based on full-scale experiments, are available to estimate the onset of flashover in single 
compartment structures with a door-like opening for a wide range of combustible fuels. The effect 
of multi-compartment structures is also included in many studies [15-18]. However, few of these 

research advances have been utilized in any significant degree by the fire protection community, 
particularly in the area of smart fire fighting, where reliable real-time forecast of the potential 

flashover occurrence is known to be not only important, but life-saving for line-of-duty fire fighters 
to avoid extreme fire events (i.e., flashover) on the fire ground [19].  
 

Limitations exist in currently available flashover prediction models. Experimental studies [10-14] 
provided empirical correlations for various aspects, including burning characteristics for different 

combustibles, the effect of fire locations within a compartment, ventilation, ceiling height, and 
compartment surface materials, to flashover potential. Although this kind of analytical approach 
can readily be used in practical fire applications, one primary drawback is that accurate knowledge 

about the fire and vent opening conditions is needed. Research efforts from [20,21] help to 
eliminate the dependence of prior knowledge about the fire and vent opening conditions for 

flashover predictions. In these studies, temperature data were continuously being collected from 
thermocouple trees when a fire event was detected. Utilizing the sensor data as inputs, hybrid 
models, which were developed based on the combined use of a fire simulation program [22] and 

inverse modeling techniques, recover the heat release rate (HRR) and the fire location. Based on 
this information, the determination of potential flashover occurrence can be made. Yet, these 

models are limited for use in single compartment structures with either no vent openings or only 
one single vent opening. Davis et al. [15], Price [16], Koo et al. [17], and Jahn [18] adopt similar 
approaches from [20,21] and expand the modeling capabilities such that information about the 

location, HRR, and the spread rate of fire can be retrieved in multi-compartment building 
structures. In [18], predictions with lead times were also demonstrated to be achievable. These 

research outcomes are encouraging, but these models require high performance computing (HPC). 
As mentioned in [18], even using HPC, a single calculation would take approximately 5 minutes 
to complete. In general, the availability of HPC is rare and/or cannot be precisely allocated during 

an emergency. Due to time constraints and limited computational resources, these models are 
unlikely to be suitable for actual fire fighting applications. For that, the development of a more 

robust model for real-time flashover prediction is vital.  
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Given a multi-compartment structure, the effectiveness of a prediction model is not only 
determined based on its numerical efficiency, but also its modeling accuracy. To the best of the 

authors’ knowledge, none of the previous studies [10-21] has attempted to account for realistic 
conditions that would likely exist in real fire scenarios. In a fire scene, compartment gas 

temperatures increase significantly. Since typical fire protection sensors, such as heat detectors, 
are not designed to operate in extreme temperature environments as compared to the measurement 
devices, such as thermocouples, heat detectors will fail at elevated temperatures. According to 

NFPA 72 [23], the maximum operational temperature limit for the highest grade heat detectors is 
approximately 300 °C. When temperature data are lost/unavailable (i.e., gas temperature above 

300 °C), the model performance from [15-18] is expected to decrease dramatically. This is because 
these models require continuous input data. In addition to the sensor limit, the conditions around 
the vent openings and fire are generally more complicated than those included in [15-18]. It should 

be noted that these studies assumed vent openings between compartments are always opened and 
the fire is always located within one compartment of the multi-compartment structure. If the 

conditions of the vent openings and the fire are different, these models will become highly 
inaccurate due to the fact that these models were developed based on simplified conditions. When 
several vents (doors or windows) can be arbitrarily opened or closed, the temperature information 

between different compartments to the flashover condition becomes more complex. Based on the 
modeling techniques provided in [15-18], it will be rather impossible for any of these models to 

provide predictions of potential flashover occurrence in the multi-compartment structures 
accurately and efficiently. Therefore, the objective of this work is to demonstrate the use of a 
machine learning paradigm to develop a robust flashover prediction model that can be used in real-

time within a multi-compartment residential structure while accounting for realistic conditions, 
including a heat detector maximum operational temperature limit, and arbitrary vent opening and 

fire conditions. 
 
In this paper, the development of a recurrent neural network (RNN) based flashover prediction 

model (P-Flashv21) is presented. In Section 2, the use of the learning-by-synthesis approach is 
demonstrated for data generation. In this same section, a model validation is provided to ensure 

synthetic data quality. The details for the model structure of P-Flashv2, as well as the underlying 
principle for the model formulation are presented in Section 3. In Section 4, results are presented. 
They include comparison of model performance and testing against full-scale experimental data. 

Finally, concluding remarks and future work are provided in Section 5.  
 

The contributions of this work are two-fold. This present work aims 1) to provide a comprehensive 
synthetic data set for the development of a machine learning based flashover prediction model in 
a multi-compartment structure with a wide range of fire and vent opening conditions, and 2) to 

establish benchmark model comparison and model testing. It is believed that the output from this 
work will provide a step forward to reduce fire fighter deaths and injuries2.  

 

2. Multi-Compartment Fire Data 

 
1 P-Flash is a machine learning model developed based on recurrent neural network achitectures. 
2 Over the past ten years, nearly 750 fire fighters were killed and approximately 250  000 fire fighters were injured on 

the fireground [20,21]. Rapid fire progression, such as flashover, has been identified as one of the leading causes for 

both fire fighter fatalities and injuries. 
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To develop a robust machine learning (ML) based flashover prediction model, the training dataset 
must contain a large number of fire experiments covering a wide range of fire conditions with 

various geometric settings. Due to the fact that flashover is an extreme fire event, the collection of 
data becomes a challenging task. Unlike the classification tasks [26,27] and/or the regression 

tasks [28,29] being well established in the AI/ML community, the study of the prediction of 
potential flashover occurrence in full-scale building structures has not been adequately addressed. 
For this reason, flashover related data in buildings is not available in any public data repositories 

such as [30]. In principle, fire data can be obtained by physically conducting the required full-scale 
experiments. However, a recent study [31] reveals that approximately 1000 cases are needed to 

achieve model convergence in an idealized three-compartment building structure with simplified  
vent opening conditions. It can easily be understood that if a more complex building structure (i.e., 
more compartments) and the realistic conditions (i.e., different fire and vent opening conditions) 

have to be accounted for, the required number of physical experiments increases dramatically. 
When factors, such as cost and time, are of concern, physically conducting all full-scale 

experiments is not feasible. Therefore, in order to facilitate the development of a ML based 
flashover prediction model, the learning-by-synthesis approach is utilized. 
 

2.1. Data Collection  

The learning-by-synthesis (LBS) approach [32] provides an alternative means for data collection. 

To relate this concept to fire research, the approach promotes the use of computer simulation 
programs to carry out the desired full-scale experiments numerically. Since the cost and time 
associated with numerical experiments are considerably lower than physically conducting the full-

scale experiments, LBS provides flexibility to optimize the data quality through trial-and-error and 
to ensure the acquisition of a large amount of relevant data. 

 
In the fire research community, LBS plays a significant role in the data collection process in recent 
studies. In [31], a zone model is used as the simulation engine to facilitate data generation for 

various fire scenarios within a simple building structure. Other studies, such as [33], attempt to use 
a field model [34] to obtain the required fire data in a tunnel with different fire and ventilation 

settings. In the present study, the zone model, namely CFAST [22], is used. CFAST is a two-zone 
fire model that predicts the thermal environment caused by a fire within a compartmented 
structure. Each compartment is divided into an upper and lower gas layer. The fire drives 

combustion products from the lower to the upper layer via the plume. The temperature within each 
layer is uniform, and its evolution in time is described by a set of ordinary differential equations 

derived from simplified mass and energy conservation. The transport of smoke and heat from one 
zone to another is governed by empirical correlations. Because of the zone assumption, the 
modeling of fluid flow within the computational domain is not performed. For this reason, if the 

effect from the spread of hot gas becomes significant and the zone assumption becomes invalid 
(i.e., a warehouse like structure with a large floor area or a closet like compartment with an 

extremely small floor area), the use of a more sophisticated fire simulation program, such as [34], 
is more appropriate. 
 

Certainly, two questions can be raised for the use of CFAST: 1) does the model have the modeling 
capabilities to produce reliable synthetic data for the domain of interest in the current problem 

settings, and 2) since the model is being trained based on CFAST data, can the model be trusted 
to be used in real fire scenarios. In order to address the first and the second questions, model 
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validation for CFAST (refer to Sec. 2.1.2) and model testing of the machine learning based model 
against full-scale experimental data (refer to Sec 4.2) are conducted, respectively.  

 
Even though the concept of LBS seems a promising solution to overcome the challenge associated 

with data collection, an additional maneuver is needed because manually creating CFAST input 
files is a time consuming task. In order to carry out the data collection process systematically, 
CData is utilized to automatically generate the desired number of CFAST input files. As described 

in [31], CData is an in-house program that can operate on a Linux cluster. Given the user-specified 
simulation parameters, such as building layouts, surface materials, fire conditions, ventilation 

configurations, location of detector(s), and output intervals, the program provides corresponding 
CFAST input files based on seven different probability density functions. The user-defined 
functions can formulate inputs for desired fire environments. Depending on the problem 

complexity and computational resources of the Linux cluster, approximately 10 000 CFAST cases 
can be executed and completed in a day. A summary spreadsheet containing detailed information 

about all input parameters for each of the cases is also generated. This spreadsheet can be used to 
carry out data inspection to eliminate any duplicate cases and to examine the data behavior of each 
of the simulation parameters. This information is crucial to ensure the quality and the covering 

range of the fire data. A detailed discussion of the numerical setup for the present study is 
elaborated in the following sections.  

 
2.1.1. Numerical Setup 

Single Story Structure 

Consider a single story ranch-style structure as shown in Fig. 1a. There are seven major 
compartments: a living room, a dining room, a kitchen, three bedrooms, and a hallway connecting 

the living room and the three bedrooms. The overall approximate interior dimensions of the 
structure are 13.92 m x 7.7 m with a ceiling height of 2.44 m. The detailed dimensions associated 
with each of the compartments are shown in Fig. 1a. Since fire rarely occurs in bathrooms, they 

are not considered in the current layout. For the interior finish, the walls, ceiling, and floor of each 
compartment are constructed with gypsum wallboards. In some occasions, concrete is also used as 

building material. In order to examine the effect associated with different building materials, 
numerical experiments are carried out to obtain data for two different building materials. The 
approximate thermal properties of the two materials are summarized in Table 1. 

 

      
Figure 1. Plan view dimensioned drawing of a) the single story structure [36] and b) vent 

openings with heat detectors (HD). Note that the heat detectors are added to the simulations. 
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Table 1. Summary of approximate thermal properties for building materials. 

Materials Conductivity Specific Heat Density Thickness Emissivity 

 kW/(m·K) kJ/(kg·K) kg/m3 m  

Gypsum 0.00016 1 480 0.025 0.9 

Concrete 0.0016 0.75 2400 0.15 0.94 

Glazing 0.0008 0.8 2500 0.003 0.95 

 
Figure 1b shows the relative position of the vents and the heat detectors in different compartments. 
For vents, there are two exterior doors (front and back), three bedrooms doors, and seven windows 

(A through G). The vent sizes and sill heights are summarized in Table 2. One heat detector is 
located at each compartment, and they are approximately 0.02 m down from the ceiling. The 

response time index for the heat detector is 35 (m-s)0.5. It is worth noting that this single story, 
traditional ranch-style structure is selected because about 90 % of residential buildings were built 
using this layout since the mid-1950s [36]. Currently, this structure remains the most popular style 

of home in 34 states across the United States [37]. The flashover prediction model developed based 
on this structure is expected to have substantial benefits for fire fighting across the U.S. Also, 

another main reason for the selection of this building layout is that full-scale experimental data are 
available for model verification and model testing. Additional efforts accounting for the effect 
associated with different structure layouts is underway. Findings will be reported in future studies.  

 
Table 2. Summary of approximate vent size and sill height [32]. 

Vents Size Sill Height 

Front 0.89 m x 2.05 m 0 m 

Back 1.78 m x 2.05 m 0 m 

A 0.85 m x 1.02 m 1.07 m 

B 0.86 m x 1.46 m 0.61 m 

C 0.86 m x 1.46 m 0.61 m 

D 0.86 m x 1.46 m 0.61 m 

E 0.85 m x 1.46 m 0.61 m 

F 2.67 m x 1.46 m 0.61 m 

G 1.78 m x 1.46 m 0.61 m 

 
Fire and Vent Opening Conditions 

For fire and vent opening conditions, three realistic conditions are taken into account in this study, 
and they are 1) the use of experimentally validated fire growth of single burning items, 2) 

consideration of various fire locations, and 3) arbitrary opening conditions of vents. 
 
Realistic Fire Growth of a Burning Item: HRR is the single most important variable in 

characterizing the fire growth of an item [38]. In order to obtain the HRR, experiments are typically 
performed under a furniture calorimeter, and Figure 2 shows the standard HRR curve of a burning 

item. Specifically, the fire growth behavior is described by a t-squared power function with respect 
to time. Although more complex burning behaviors (i.e., a fire growth curve with multiple peaks) 
are often found in typical items, Babrauskas and his co-worker [5] demonstrated that the details of 

the shape of the fire growth curve up to the time of flashover are of secondary importance. They 
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further commented that even curves with multiple HRR peaks prior to flashover have little impact 
on the HRR value found at flashover. As it was shown in their study, given enough oxygen, the 

primary factor causing the onset of flashover is the HRR value and how fast an item would cause 
flashover depends on its HRR/time relation. For this reason, the current study adopts the t-squared 

fire growth curve to describe the burning behavior of a single item. It should be noted that this 
burning behavior has also been well observed in many classic experimental studies [39,40]. 
 

Similar to the plot shown in Fig. 2, a burning item typically goes through four different fire growth 
stages: linear growth (i.e., smoldering fire), t-squared growth (i.e., flaming fire), peak, and decay. 

In the current study, three items are considered, and they are flaming chairs, polyurethane foam 
mattresses, and cotton based mattresses. The transition HRR from smoldering to flaming fire (Q1), 
peak HRR (Qmax), time to transition (t1), time to peak HRR (t2), peak time (t3 – t3), and decay time 

(t4 – t2) are summarized in Table 3. The peak HHR and time to peak HRR are obtained from [41], 
and the fire growth rate, α, is determined between 0.000329 kW/s2 and 0.041387 kW/s2, ranging 

from slow to fast fire growth rate. In general, the selection of these items follows the primary 
burning items in [36]. The transition HRR and time to transition HRR are selected based on 
examination of HRR data provided in [42]. Since the flashover usually occurs during the t-squared 

growth stage and peak stage, the exact value for peak time and decay time is not significant. Also, 
the incipient stage of the fire is highly variable, as opposed to the t-squared flaming growth stage. 

 
Probability density functions (PDF) are used to facilitate case samplings and the use of a specific 
PDF is based on numerical experiments such that a wide range of fire growth behavior is included 

and sufficient data for flashover cases are obtained. A uniform PDF is used to sample peak HRR 
for the three different items and a skew normal PDF is used to sample time to peak HRR. This is 

because a ML based model is intended to be developed for potential flashover prediction and there 
is a significant data imbalance associated with non-flashover related and flashover related data. 
Also, the motivation of using different PDFs is to include more flashover cases (i.e., more intensive 

rapidly growing fires) in the data set so that the ML based model can learn the important 
relationship about potential flashover conditions. For transition HRR, time to transition, peak time, 

and decay time, a uniform probability density function is utilized.  
 

 
Figure 2. Overview of HRR in different fire growth stages for a typical t-squared fire.   
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Table 3. Approximate HRR parameters for chair and mattresses [41, 42]. 

Items Q1 (kW) Qmax (kW) t1 (s) t2 (s) t3-t2 (s) t4-t3 (s) 

Chair 10 – 30 270 – 3500 150 – 1200 295 – 675 200 10 

Mattress 
(foam) 

10 – 30 2275 – 4620 150 – 1200 305 – 435 200 10 

Mattress 
(cotton) 

10 – 30 130 – 1670 150 – 1200 360 – 1240 200 10 

 
Fire Location and Vent Conditions: A fire can be initiated on the floor at the center, against a 
wall surface, or at a corner within a compartment. It can also take place in any one of the six 

different compartments as shown in Fig. 1a. Although a fire can occur anywhere within a 
compartment, the exact location of the fire is generally not critical due to the assumption inherent 

in a zone model. However, fire against a wall surface or at a corner leads to an enhanced effect to 
the HRR due to radiation feedback from the wall surface and/or reduced entrainment due to the 
presence of wall surfaces. In CFAST [22], the HRR will be double or quadruple for a fire located 

against a wall surface or at a corner, respectively. In addition to the horizontal location of a fire, 
the vertical location of the base of the fire plays an important role in the fire growth. Since the hot 

gas layer is usually filled with by-products of combustion, the base of the fire is always located on 
the floor surface. This setting allows entrainment of oxygen-rich air and facilitates a more idealized 
condition for burning. In contrast, the fire growth of a burning item is expected to be diminished 

due to a lack of oxygen at an elevated location. For that, the base of the fire in this study is always 
located on the floor surface. For sampling, a uniform PDF is utilized to generate the identical 

number of cases for fires at three different locations in six different compartments (except the 
hallway).  
 

For vent opening conditions, all doors and windows are initially closed and they can be opened 
based on the following two settings: a time-trigger setting for doors and a temperature-trigger 
setting for windows. For the time-trigger setting, doors in any compartments within the building 

structure can be opened at any given time within the time to peak HRR (t2) as shown in Fig. 2. A 
skew normal PDF is used and each door will have a 50 % chance to be opened. This setting is 

expected to mimic door opening events due to activities such as leaving the room of the fire origin 
and/or leaving the building structure. Also, the arbitrarily open conditions of doors indirectly 
introduce more complex fire growth behaviors to the numerical experiments. For example, 

assuming that the door and the two windows in Bedroom 1 as shown in Fig. 1a are initially closed, 
if a fire occurs in Bedroom 1, there is not enough oxygen to sustain the fire growth to reach 

flashover conditions. However, if the door is opened due events such as evacuation, fresh air will 
enter the room and the fire will continue to grow to its peak if oxygen is sufficient. In these 
situations, there are two fire growth scenarios and the fire data (i.e., temperature or species 

concentration) are expected to be significantly different. When all vents are closed in Bedroom 1 
(denoted as Scenario A), the temperature will continue to increase. But, due to lack of oxygen, the 

temperature is likely to level off and eventually drop. For that, flashover conditions will not be 
met. For Scenario B where the door is opened, the temperature behavior will change and there will 
be an increase in temperature. This kind of double-peak fire growth behavior is not captured in a 

simple t-squared fire. If the fire is large enough, flashover conditions might be met. It is believed 



9 

 

that both scenarios do occur in real structure fires and the arbitrarily opening of doors helps to 
generate numerical experiments to obtain these data. 

 
The temperature-trigger setting allows windows to be arbitrarily opened when a temperature 

threshold is reached. In a fire scenario, a window is subjected to heating either from the local gas 
temperature and/or from the fire. Due to temperature or a flux gradient [43], a window may crack 
and eventually break out and create an opening to the outside environment. There have been studies 

that quantify the range of lower bound gas temperatures for window breakage. In this study, single-
pane windows (ordinary float glass) with thickness varying from 3 mm to 6 mm are considered. 

Based on [44], breakage of a single-pane float glass is experimentally observed at temperature 
between 100 °C and 200 °C. In order to adopt the window breakage phenomenon, a target is placed 
at the top of a window. The direction of the target is normal to the window surface and the target 

thermal properties are taken to be that of a 3 mm single-pane float glass [44]. The thermal 
properties of the glazing are summarized in Table 1. In general, when the temperature of a target 

reaches a threshold, the corresponding window will then be opened . A uniform PDF is utilized to 
sample the window breakage temperature threshold. Similar to that of a door opening, arbitrarily 
opening windows facilitates the generation of realistic conditions in fire scenarios, and it provides 

more complex data behavior for development of a more robust ML-based model. It is worth noting 
that although only one building layout is considered, the data set needed to cover the realistic 

conditions about fire and vent opening conditions is enormous. 
 
2.1.2. Model Validation against Full-Scale Experiments 

In order to make sure that CData can be used to generate the corresponding temperature data for 
different fire scenarios, model validation is carried out. Specifically, temperature measurements 

obtained from two full-scale gas burner experiments reported in [45], where a fire initiated the 
living room within the single story residential structure is used to benchmark the synthetic data. 
The fire location and the HRR of the gas burner fires are the same for the two tests (Exp 1 and 

Exp 2). Yet, opening conditions of each of the vents are different. The details of the opening time 
for each vent is provided in Table 4. It should be noted that natural gas burners are used in these 

pre-run experiments. The reason is that the HRR of the fire can be fully controlled by regulating 
how much natural gas is being burned. By doing so, the simulation conditions and the experimental 
conditions can be adjusted to have identical settings.  

 
Table 4. Event sequence. 

Event Exp 1 Exp 2 

Front Door Open 300 s 1200 s 

Back Door Open 1275 s 1860 s 

Window A Open 1260 s 1845 s 

Window B Open 1245 s 1830 s 

Window C Open 1230 s 900 s 

Window D Open 1215 s Closed 

Window E Open 600 s 600 s 

Window F Open 1200 s 1815 s 
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Figure 3. CFAST validation against measurement for a) Experiment 1 and b) Experiment 2. 

 

Figures 3 show the upper gas layer temperature profiles for the two experiments. The blue solid 
lines represent the synthetic temperature data obtained from CFAST. The red dash lines are the 
estimated upper gas layer temperature for the experiments, and they are obtained based on the hot 

gas layer reduction method provided in [30]. It can be seen that the magnitudes and trends of the 
temperature profiles match the experimental data for different vent opening events. This 

observation indicates that CFAST, the simulation engine of CData, is capable of capturing both 
the corresponding effect of fire and vent openings in the single story multi-compartment structure. 
In terms of uncertainty, the absolute root mean squared error is about 30 °C and 10 °C for Exp 1 

and Exp 2, respectively. Comparison is also made for other compartments and the overall 
agreement is very good. Therefore, it can be expected that the generated temperature data can be 

reliably used for model development. It is worth noting that CFAST is validated against more than 
15 other sets of full-scale experiments with peak heat release rate (HRR), compartment aspect ratio 
(i.e., compartment length against ceiling height), and global equivalence ratio, ranging from 

approximately 50 kW to 15 700 kW, 0.4 to 4.9, and roughly 0 to a value larger than 1 for a wide 
range of ventilation factors, respectively. Validating against these experimental d ata, CFAST 

predictions of upper layer gas temperature average within 6 % of experimental measurements [46]. 
 
2.1.3. Temperature Data Behaviors and Potential Modeling Challenges 

Understanding the temperature data behaviors is vital to the design of a robust model architecture 
such that the ML-based prediction model is capable of learning the important relationship between 

temperature and flashover conditions. In this section, two different fire scenarios are highlighted. 
Fig. 4a shows seven heat detector temperatures and a temperature indicator for a medium growth 
fire with high peak HRR occurring in the living room. In this case, the front door is open and all 

interior doors are closed. Given sufficient oxygen, the fire continues to grow and the detector 
temperature increases accordingly until the fire goes out. It is worth noting that the temperature 

indicator (dash line) is the upper layer gas temperature for the room of fire origin, and it is used to 
determine when the temperature threshold for flashover condition is met.  
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Figure 4. Temperature profiles of different compartments for a) fuel-controlled fire case and b) 

ventilation-controlled fire case. 

 
Fig. 4b shows temperature data for a more complex fire situation that is similar to that described 
in Scenario B in section 2.1.1. A fire occurs in Bedroom 1. All the doors and windows in the 

building structure are closed. This setting initially creates a “sealed” compartment for Bedroom 1. 
As seen in the figure, the temperature first increases and then decreases due to the lack of oxygen. 

At around 470 s, the door is opened and the fire is approaching its peak. The temperature increases 
in bedroom 1, living room, kitchen, and dining room, but the temperatures in Bedroom 2 and 3 
remain relatively close to initial temperature. Physically, it is completely understandable because 

the doors are closed and the heated gases cannot enter the bedrooms. However, the information 
about the opening of the doors in not known in a real fire scenario. For that, the model needs to 

have capabilities to determine the temperature data with higher importance.  
 
2.1.4. Defining Thresholds 

Heat Detector Maximum Operational Temperature Limits 

Loss of heat detector temperature signal is another realistic condition that is being accounted for 

in this study. In actual fire scenarios, heat detectors are very unlikely to survive at elevated 
temperature [47] and would fail at temperatures well below the flashover conditions. According 
to NFPA 72 [48], heat sensing fire detectors are categorized into seven different classes with 

temperature classifications ranging from low to ultra-high, and the maximum operational 
temperature ranging from approximately 29 °C to 302 °C. Table 4 provides the temperature 

classification for the different heat detectors. As an illustration, Fig. 5 depicts the temperature 
profiles as shown in Fig. 4b with a temperature cut-off at 150 °C. As seen in Fig. 5, the lower the 
maximum operational temperature of the heat detectors, less temperature signals are available. 

With less temperature information, the prediction of the potential flashover occurrence will 
become more difficult. Therefore, in addition to being able to discriminate temperature data with 

high importance, the model also needs to have learning capabilities to correlate complex 
temperature information from other compartments to flashover conditions in the room of fire 
origin. 
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Table 4. Temperature classification and approximate temperatures for heat sensing fire detectors. 

Temperature 

Classification 

Temperature Range 

(°C) 

Maximum Ceiling 

Temperature (°C) 

Low 39 to 57 28 

Ordinary 58 to 79 47 

Intermediate 80 to 121 60 

High 122 to 162 111 

Extra high 163 to 204 152 

Very extra high 205 to 259 194 

Ultra high 260 to 302 249 

 
Flashover Criteria 

Flashover is the near-simultaneous ignition of almost all of the directly exposed combustible 
material in a compartment. Numerous variables can affect the transition of a compartment fire to 

full room involvement (i.e., flashover) [4]. Thermal influences including radiative and convective 
heat flux are assumed to be the driving forces and are clearly important. Ventilation conditions, 
compartment volume, and the chemistry of the hot gas layer can also influence the occurrence of 

flashover. Based on the experimental studies reviewed in [4], the onset of flashover within a 
compartment can be quantified by two measurable criterions: 1) heat flux and 2) temperature. 

Peacock and his co-workers [4] demonstrated that when the incident heat flux onto the floor 
surface is between approximately 15 kW/m2 to 33 kW/m2, there can be a potential occurrence of 
flashover. However, the measurement of heat flux can rarely be measured in typical building 

environments because heat flux gauges are usually not installed. For that, the flashover criteria 
associated with heat flux cannot be used, and it will not be considered in this study. For the 
temperature criterion, the range of values obtained from nine different literature sources in [4] 

ranges from 450 °C to 771 °C. The wide range of values for the temperature criterion is due to the 
large change in temperature within a very short period of time. Yet, it can be observed from [4] 

that most of the values are in the 550 °C to 650 °C range and the possible flashover temperature is 
shown in Fig. 5. To be conservative, the upper gas layer temperature of 600 °C is used as the 
threshold for the potential occurrence of flashover in this study. 

 

  
Figure 5. Temperature profiles of different compartments for Scenario B with a heat detector 

temperature cut-off value of 150 °C. 
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3. Development of the Prediction of Flashover Neural Network Model (P-
Flashv2) 

3.1. Recurrent Neural Network 

Among many widely used neural networks [49-51], the recurrent neural networks (RNN) [51] 

have model architectures that are the most suitable for the multivariable time-series classification 
task which is being considered in this study. Different from the feed-forward neural network [49] 

and the convolutional neural networks [50], RNN consists of recurrent hidden states [51], and the 
hidden states allow the temporal dynamic behavior and the sequential information of the data to 
be both captured and persisted. For the development of the Prediction of Flashover neural network 

(P-Flashv2), the RNN mode architecture is utilized. 
 

For the development of P-Flashv2 in complex fire situations similar to those shown in Fig. 4b, 
making use of all available temperature information is crucial. This is because even though the 
rapid temperature increase in Bedroom 1 appears at different time-stamps (i.e., ~ 250 s and ~ 500 

s), the temperature increase does not always lead to a potential occurrence of flashover. In addition, 
the prediction model will have to neglect temperature data with less significance. For example, 

since the doors from Bedroom 2 and Bedroom 3 are closed throughout the entire numerical 
experiment, the corresponding heat detector temperatures from the two bedrooms remained at 
ambient temperature. In principle, standard RNNs may not have sufficient capabilities to 

distinguish the physical significance associated with temperature data from different 
compartments. For that, in order to facilitate the learning of inherent patterns and complex 

relationships between temperature signals from non-fire compartments and flashover conditions 
from the room of fire origin in various fire scenarios and with arbitrary vent opening conditions, 
the bi-directional gated recurrent unit (BiGRU) [52] with attention mechanism [53] is used. In this 

following subsection, the details of the model structure are presented.  
 
 

3.2. Model structure 

P-Flashv2 will need to be able to carry out the following two tasks: 1) to relate complex data 

behavior to flashover conditions accounting for the effect of different fire and vent opening 
conditions and 2) to discriminate data with higher significance and encode contextual information. 
Fig. 6 depicts the overall model structure of P-Flashv2, consisting of a BiGRU layer, three dense 

layers, and one attention layer. In general, the model takes only the temperature signals of each of 
the heat detectors from all compartments, ({𝑆1, 𝑆2 … , 𝑆𝑁}, 𝑁 = 7), as inputs and provides a binary 

classification, (flashover or non-flashover), as the output. Since the model structure of P-Flashv2 

is complex, the descriptions of BiGRU, attention mechanism, and layer configurations are 
separately given in section 3.2.1, 3.2.2, and 3.2.3, respectively.  
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Figure 6. P-Flashv2 model structure with the presence of the BiGRU layer, three dense layers, 
the attention mechanism, and layer configurations. 

 

3.2.1. Temperature Signal Learning 

In order to overcome the challenge associated with the 1st task, the bi-directional gated recurrent 

unit (BiGRU) is used. Fig. 7a shows the overall model structure of the BiGRU, and Fig. 7b shows 
the schematic of a single GRU cell from the BiGRU. Within the single GRU cell, there are four 
primary properties: memory state, hidden state, reset gate, and update gate. At each time step, a 

memory state is obtained based on two types of inputs: detector temperature data at the current 
time step (si) and hidden states/outputs from the previous time step (hi-1). The amount of 

information from the previous time step being retained in memory states is regulated based on the 
reset gate. If the previous hidden state is important for relating the target (i.e., the flashover 
conditions in this study), the information will be kept. Mathematically, the memory state, c, at time 

step, i, can be expressed as [48]: 
 

𝑐𝑖 = tanh(𝑊𝑐[𝑟𝑖 ∗ ℎ𝑖−1, 𝑠𝑖] + 𝑏𝑐) (1) 
  

where hi-1, si, Wc, bc, and tanh are the hidden state from the previous time step, temperature data of 

a heat detector at the current time step, weight and bias for the memory state, and the tangent 
hypobaric function, respectively. The weight and the bias are the parameters that have to be 
optimized through the model training process. The parameter, r, is known as the reset gate and it 

is given as: 
 

𝑟𝑖 = 𝜎(𝑊𝑟[ℎ𝑖−1, 𝑠𝑖] +  𝑏𝑟) (2) 
 

with σ, Wr, and br being the sigmoid function and the weight and bias for the reset gate, 
respectively. The selection of the tangent hyperbolic function in Eq (1) and the sigmoid function 
in Eq (2) is based on many in-depth studies such as [50] in which the GRU model structure is 

optimized for a wide range of problems. From Eq (2), it can be seen that if the reset gate approaches 
zero, the effect associated with the hidden state from the previous time step becomes negligible. 
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In general, the value of the memory state ranges from – 1 to 1 and the reset gate value varies from 
0 to 1.  

 
Inside the GRU cell, there is another gate, namely the update gate, that controls how much 

information from the memory state is being accepted to formulate the new hidden state. The update 
gate, z, is expressed as:  

 

𝑧𝑖 = 𝜎(𝑊𝑧[ℎ𝑖−1, 𝑠𝑖] +  𝑏𝑧) (3) 

 
with Wz, and bz being the weight and bias for the update gate and the new hidden state is given as:  

 
ℎ𝑖 = 𝑧𝑖 ∗ 𝑐𝑖 + (1 − 𝑧𝑖) ∗ ℎ𝑡−1 (4) 

  
which is the sum of the hidden state from the previous time step and the memory state at the current 

time step. It can be seen that if the information from the current memory state is not important for 
relating the flashover conditions, the update gate will become zero. With that, the new hidden state 
will basically be the hidden state from the previous time step. The hidden state will only be updated 

if important information to the target is recognized. Due to the nature of the sigmoid function, the 
value for the update gate is varied between 0 and 1. It should also be noted that the two gates from 

the GRU cell help overcome the long time-dependent issues (i.e., gradient explosion where a 
model is not converging [52]) from which traditional RNNs such as simple RNN [55] suffer.  
 

As shown in Fig. 7a, the BiGRU consists of two GRU units. It can be seen that the temperature 

signals from a heat detector, 𝑆 𝑗 = (𝑠1, 𝑠2 , 𝑠𝑖 ,… , 𝑠𝜏), are fed into both the forward GRU unit and 

the backward GRU unit. The forward GRU takes temperature data from time step i = 1 to i = τ 
where τ is the moment when the flashover condition is met. The first time step does not need to be 

at the beginning of the numerical experiment and the exact time stamp can be determined based 
on the desired/required length of the temperature data. Likewise, the backward GRU takes 

information from i = τ to i = 1. With that, ℎ𝑖
⃗⃗⃗  is the forward hidden state and ℎ𝑖

⃖⃗ ⃗⃗  is the backward 

hidden state. It should be noted that the reason for using BiGRU over the unidirectional GRU is 

that BiGRU can learn more effectively because it makes use of all information (i.e., information 
from the past and in the future) to determine the current hidden state whereas unidirectional 

forward GRU only uses information in the past and important information towards the beginning 
can be difficult to remain preserved. In this study, since the complete behavior for temperature 

signals is needed, only the last hidden states of ℎ𝜏
⃗⃗⃗⃗   and ℎ𝜏

⃖⃗ ⃗⃗⃗ are outputted. As shown in Fig. 7a, 

concatenation is applied to yield ℎ𝜏 = [ℎ𝜏
⃗⃗⃗⃗  ,ℎ𝜏

⃖⃗ ⃗⃗⃗] to encode temperature behavior with flashover 

conditions, and this information will be passed onto the next layer.  
 
The robustness of the bi-directional RNN model structure and the performance of BiGRU is 

compared to four other RNN variants, such as Basic RNN [55], unidirectional GRU [56], long 
short-term memory [57], and bi-directional long short-term memory [58], in other literature.  
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Figure 7. Schematic of a) model structure of BiGRU and b) a single GRU cell. 
 

3.2.2. Sensor-Wise Self-Attention 

In order to enhance the learning capability of the model in discriminating temperature signals with 

higher significance (i.e., neglecting temperature signals from Bedroom 2 and Bedroom 3 in 
Fig. 4b), a self-attention mechanism is added to correlate sensor-wise relations. It is expected that 
contextual temperature information of all compartments within the structure can be extracted and 

the contextual information can contribute to provide more accurate flashover predictions. 

As shown in Fig. 6, the temperature signals from all compartments ({𝑆1,𝑆2, … , 𝑆𝑁} for 𝑁 = 7) 
are the inputs. The hidden state of the temperature behavior (ℎ𝜏) for each signal is obtained from 

the BiGRU, and they are fed into the sensor-wise self-attention module for learning the sensor 

relation. Mathematically, the attention weight (𝛽𝑖𝑗) of each pair of sensor signals (𝑆 𝑖 ,𝑆𝑗) is 

determined based on the interaction of their temperature behavior (ℎ𝜏
𝑖 , ℎ𝜏

𝑗 ): 

 

𝛼𝑖𝑗 = ℎ𝜏
𝑖 𝑇

ℎ𝜏
𝑗  (4a) 

  

𝛽𝑖𝑗 =
exp (𝛼𝑖𝑗)

∑ exp (𝛼𝑖𝑘)
𝑁
𝑘=1

 (4b) 
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To obtain the contextual temperature information that captures the temperature behaviors of all 
compartments, context features based on the learned attention weights need to be extracted. For a 

signal 𝑆 𝑖, its context feature, 𝑔𝑖, is computed as: 

 

𝑒𝑖 = 𝜎𝑅𝑒𝐿𝑈(𝑊𝑒ℎ𝜏
𝑖 + 𝑏𝑒) (5a) 

  

𝑔𝑖 = ∑ 𝛽
𝑖𝑗
𝑒𝑖

𝑁

𝑗=1

 (5b) 

  

where 𝜎𝑅𝑒𝐿𝑈  is the rectified linear unit (ReLU) activation function and 𝑊𝑒 and 𝑏𝑒 are the 

parameters of the 1st dense layer. As seen in Fig. 6, the size of the outputs from the dense layer is 
reduced. Instead of allowing all the hidden states to be used in the attention module, a constraint 

is applied through the use of a dense layer to enhance the selection of better features which will 
help to improve the model robustness. The exact number of nodes is determined based on 
numerical experiments, and it will be discussed in section 3.2.3. Another dense layer is applied to 

concatenate the context features to encode selective feature, 𝑢𝑖 = [𝑔𝑖 , 𝑒𝑖], such that the final 

feature representation 𝑣 𝑖 for 𝑆 𝑖 is obtained: 

 
𝑣𝑖 = 𝜎𝑅𝑒𝐿𝑈(𝑊𝑐𝑢𝑖 + 𝑏𝑐) (6) 

  
The feature representations for all temperature signals, 𝑆1,𝑆2,… , 𝑆7, are obtained by the same 

manner, and the overall representation of the whole structure: 𝑣 = [𝑣1,𝑣2, … , 𝑣7] is constructed. 

This feature representation is used to predict whether there is a flashover occurrence based on the 

available temperature signals. 
 
In order to assess the effect of the attention mechanism, the attention based RNN model structure 

is compared to the stand-alone RNN model structure and results will be discussed in Section 4. 
 

3.2.3. Model Configurations 

The dimensions of each layer are presented in Fig. 6. In principle, the determination of the number 
of layers and the corresponding nodes of the specified layer is based on a trial-and-error process, 

known as fine-tuning [60]. During this process, the model is optimized for prediction accuracy 
without being either underfitted or overfitted. In general, underfitting refers to the fact that the 

model is not adequately trained and the model does not learn sufficient relationships to correlate 
the inputs and the outputs. The latter term refers to over training the model. If the model is 
overfitted, it tends to memorize the data without learning any generalized information between the 

inputs and the outputs. 
 

Fig. 8a and 8b show an example of underfitting and overfitting, respectively. Loss (error) and 
accuracy for both the training data set and the validation data set are plotted against epoch 
(iteration). The training set is used to train the model and the validation set is to validate the trained 

model. Note that the model does not see any of the data from the validation set during the model 
training process.  
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Figure 8: Loss vs. epoch and accuracy vs. epoch plots for training and validation sets for a) 

underfitting and b) overfitting. 
 
As seen in Fig. 8a, even after 300 epochs, the loss remains high and the accuracy is relatively low 

for both data sets. In order to resolve the underfitting problem, a more complex model structure 
(i.e., adding more nodes or even more layers) can be applied such that the learning capability of 

the model is enhanced. In Fig. 8b, the training loss continues to decrease, but the validation loss 
stops decreasing at around epoch 50. For accuracy, it gradually increases for the training set. 
However, the accuracy for the validation set drops at around epoch 35. To avoid overfitting, a 

common practice is to introduce an early-stop in the model training. That is, if the validation loss 
does not improve for a given consecutive epochs (i.e., 5 in this study), the training is ended. 

Another approach is to reduce the model complexity and/or to add more relevant data. It is worth 
noting that the fine-tuning process for the development of a neural network based model is lengthy.  
 

In the current study, the following model configurations provide the most robust model. The 
dimension of the BiGRU, 1st dense layer, attention layer, and the 2nd dense layer is 48, 24, 14, and 

14, respectively. A dropout rate is set to be 0.15 to help avoid overfitting. The output layer is fully 
connected, and its dimension is two. Fig. 9 shows the loss and accuracy for the training set and 
validation set. It can be seen that the validation loss and accuracy approach a converging value for 

a proper trained model with the right number of nodes and model structure without under- and 
over-fitting. Early stop [55] with a patience of 10 epochs is used to check if the validation loss 

does not improve for 10 consecutive epochs. 
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Figure 9. Loss and accuracy plot for optimized P-Flashv2.  
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3.3. Data Preprocessing 

110 000 numerical experiments are carried out. Approximately 50 % of the total numerical 

experiments are assigned to two wall materials: gypsum and concrete. The experiments also 
include different fire conditions with peak HRR ranging from 100 kW to 5100 kW and time to 

peak HRR ranging from 100 s to 1000 s. In addition, the experiments accounts for different 
bedroom door opening time, ranging from 1 s to 900 s and window breakage temperature from 
100 °C to 200 °C. The histograms of each parameter for the 110 000 numerical experiments  are 

provided in Appendix A. From these 110 000 cases, 25 853 cases reach the potential flashover 
conditions (i.e., 600 °C). The flashover data being used to develop P-Flashv2 is available in the 

NIST data repository3.  
 

In terms of data structure, each experiment consists of seven temperature signals (𝑆𝑗). Each signal 

corresponds to a compartment, j, and the temperature signals from the compartment are denoted 

as 𝑆𝑖
𝑗 = (𝑠0, 𝑠1, … ,𝑠𝑀) where 𝑠0 and 𝑠𝑀  are the first and the last temperature for the j experiment, 

respectively. 𝑀 is the total duration for each of the experiments, and it is 1930 s. The sampling 

rate for all temperature signals is 1 s.  

 

     

Figure 10: Illustration for a) the use of sliding windows and b) the inclusion of loss of 
temperature signals and the use of lead time for a fuel-controlled fire case. 

 
3.3.1. Formulation of Instances 

Instances need to be constructed for model training/development, and three practical aspects are 
considered while the instances are formulated. First, the sliding window is applied. The sliding 
window is used to simulate the physical limits associated with heat detector memory capacity and 

data transmission. In general, only a certain amount of temperature data can be stored in or 
transmitted to a computational platform. The schematic of the sliding window is illustrated in Fig. 

10a, and it can be seen that an instance from a flashover case is defined as 𝐼𝑘 = {𝑆𝑘
1,… , 𝑆𝑘

7} where 

𝑆𝑘
𝑗 = (𝑠𝑘 ,… , 𝑠𝑘+𝑤 ) with k as the first time step of the sliding window and 𝑤 as the window size. 

 
3 The temperature dataset can be obtained from the following data repository: https://doi.org/10.18434/mds2-2479. 

Since the size of the raw data directly from CFAST for the 110,000 cases is more than 2 TB, they  will only be provided 

upon request. 
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Extracting all the 𝐼𝑘  from all fire events, the set of instances 

{[𝐼𝑘
1,… , 𝐼𝑘−𝑤

1 ], [𝐼𝑘
2, … , 𝐼𝑘−𝑤

2 ], … , [𝐼𝑘
𝐹𝑂 ,… , 𝐼𝑘−𝑤

𝐹𝑂 ]} are obtained where FO is the number of flashover 

cases. Secondly, the heat detector temperature cut-off is applied. Given a specified threshold 
mentioned in section 2.1.5, the heat detector failure moment (𝑡𝑏) for signal 𝑆 𝑖 is first determined. 

Then, if time 𝑡 ≥  𝑡𝑏 , the temperature, 𝑠𝑡, at time t and onward is replaced by a value of 0 °C to 

represent a loss of temperature signals. An example is provided in Fig. 10b where a temperature 

cut-off at 150 °C is applied. It should be noted that the dash line for the dining room temperature 
is only to reference temperature to determine when a flashover condition is met. Thirdly, lead time 

is considered for the prediction of the potential occurrence of flashover. Due to movement limit 
(i.e., crawling to avoid excessive heat from ceiling), it will take 10 s for fire fighters to travel 
approximately 3 m in a fire scene [59]. For that, making predictions ahead of flashover occurrence 

is crucial in order to allow the fire fighters to get away from the dangerous compartments or find 

shelter. Figure 10b shows a flashover data instance, 𝐼𝑓−𝑤−𝑥
𝐹𝑂 , when sliding window and lead time 

are both applied. In the present study, two lead time settings: x = 30 s and x = 60 s, are considered. 

 
3.3.2. Labeling of Instances 

Each instance is labeled to form our data samples. Since the present study focuses on the prediction 

of potential flashover occurrence based on temperature data, the input instances are the 
temperature data and the outputs are the corresponding targets which can either be Flashover or 

Non-Flashover. In the current dataset, there is a data imbalance for samples associated with two 
targets. It can be seen that when x = 30 s with a sampling interval of 15 s, there are only 2 Flashover 

samples in one fire event (i.e., [𝐼𝑓−𝑤−15
𝐹𝑂  and 𝐼𝑓−30

𝐹𝑂 ] where 𝑓 is the flashover moment for fire event 

FO). Likewise, when x = 60 s, the number of Flashover samples is 4 for one fire event (i.e., [𝐼𝑓−15
𝐹𝑂 , 

𝐼𝑓−30
𝐹𝑂  , 𝐼𝑓−45

𝐹𝑂 , 𝐼𝑓−60
𝐹𝑂 ]). However, there are many Non-Flashover samples. In order to overcome the 

data problem, we first take all the Flashover samples and randomly select the Non-Flashover 

samples from each fire event. These samples are used to form the final dataset. In this setting with 
a sampling interval of 15 s, there are a total 103 412 and 206 824 data samples (from 25 853 fire 
events where the flashover condition is met) for 𝑥 = 30 s and x = 60 s, respectively.  

 

3.3.3. Assigning Training and Testing Subsets 

The final dataset is sub-divided into three subsets: training, validation, and testing sets. 

Specifically, data samples from a set of 2585 fire events are assigned to both the validation (2585) 
and testing (2585) sets. The remaining 20 683 fire events (25 853 – 2585 - 2585) are given to the 
training set. The relative portion of the data assignment is identical to both x = 30 s and x = 60 s. 

In order to facilitate the training process, mini-batches are used, and the batch size is determined 
to be 2048 data samples. Using the Adam optimizer [55] with a learning rate of 0.75e-4, the neural 

network weights and biases from the above equations are updated accordingly. SoftMax cross-
entropy [55] is used to measure the loss. 
 

4. Results and Discussion 
4.1. Model Performance Against Other RNNs 

Table 5 shows the approximate model performance for the prediction of potential occurrence of 
flashover for P-Flashv2 with attentional BiGRU and eight other RNN architectures with a lead 
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time of 30 s and 60 s. The data are obtained from the 25 853 flashover cases (see Sec. 3.3) with 
the sliding window size of 5 min, a flashover threshold of 600 °C, and the heat detector maximum 

operational temperature limit of 150 °C. The comparison consists of four measures: accuracy, 
precision, recall, and F1 score. In principle, the accuracy is the ratio of the number of correct 

predictions to the total number of predictions. The precision is the ratio of the true positive to the 
sum of the true positive and false positive, and recall is the ratio of the true positive to the sum of 
the true positive and false negative. If a model has more false positive numbers (i.e., classify 

flashover for non-flashover cases), the precision scores lower. Likewise, if the recall score is low, 
this indicates that the model classifies flashover cases as non-flashover. In general, these two 

measures provide additional details about the model prediction capabilities. The F1 score provides 
another means to access the model accuracy that gives more weight to false negatives and false 
positives while not letting large numbers of true negatives influence the score. When data is 

imbalanced, the F1 score is particularly useful.  
 

Table 5: Model performance of P-Flashv2 against eight different RNN architectures. 

x Model Acc. (%) Prec. (%) Rec. (%) F1 (%) 

30 s 

Basic RNN 81.2 81.0 81.6 81.3 

LSTM 83.6 82.7 85.0 83.8 

GRU 83.7 77.2 95.7 85.5 

LSTM-ATT 82.7 86.7 77.3 81.7 

GRU-ATT 84.9 78.2 96.9 86.5 

BiLSTM 84.6 80.7 90.9 85.5 

BiGRU 84.0 78.5 93.7 85.4 

BiLSTM-ATT 87.2 82.9 93.7 88.0 

BiGRU-ATT 87.7 81.9 96.9 88.8 

60 s 

Basic RNN 86.6 88.8 83.8 86.2 

LSTM 84.3 78.7 93.9 85.7 

GRU 84.3 81.6 88.6 85 

LSTM-ATT 86.6 88.8 83.9 86.2 

GRU-ATT 89.3 84.9 95.6 89.9 

BiLSTM 86.3 82.3 92.4 87.1 

BiGRU 84.1 79.0 92.9 85.4 

BiLSTM-ATT 89.0 85.1 94.5 89.6 

BiGRU-ATT 89.5 84.5 96.0 90.0 

 
For cases with a lead time setting of 30 s, it can be seen from Table 5 that the proposed model 

using BiGRU with the attention mechanism (BiGRU-ATT) has the highest overall prediction 
accuracy of 87.7 %. Yet, it should be noted that the model using BiLSTM with the attention 
mechanism (BiLSTM-ATT) also has the same level of overall prediction accuracy with ~ 87.2 %. 

BiLSTM-ATT has a slightly higher precision score which indicates that the model would have the 
least number of false alarms for flashover. For recall score, BiGRU-ATT has ~ 96.9 %, and this 

result suggests that BiGRU-ATT can effectively recognize the potential occurrence of flashover. 
Besides the comparison of model performance, it is worth noting that BiGRU-ATT is more 
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lightweight (i.e., smaller network structure with one less gated mechanism) as compared to 
BiLSTM-ATT. For that reason, BiGRU-ATT will provide a more numerically efficient model for 

practical applications.  
 

For cases with a lead time setting of 60 s, the overall prediction accuracy for most of the models 
including BiGRU-ATT and BiLSTM-ATT is improved. Also, results show that models with the 
attention mechanism out-perform the stand-alone RNN models. It should be noted that the 

difference in overall accuracy is due to the difference in the total number of instances from the two 
settings (lead time of 30s and 60 s). Readers can see Appendix B for the prediction accuracy for 

each instance from the two settings. However, it is important to highlight that when the lead time 
becomes much larger, the overall accuracy will begin to drop because the input data are at room 
temperature. The effect of the attention mechanism will be discussed below. 

 
Fig. 11 illustrates the learned attention weights between heat detector temperature signals of room 

of fire origin and other compartments. There are two different fire cases. Fig. 11a shows a kitchen 
fire case and Fig. 11b shows a dining room fire case. In each fire case, there are two bedroom door 
opening conditions: opened doors and closed doors. The abbreviations K, D, L, H, B1, B2, and B3 

are for the kitchen, dining room, living room, hallway, bedroom1, bedroom2, and bedroom3, 
respectively. It can be seen in both figures that the attention-based model can discover the spatial 

relation of temperature signals from different compartments. For example, when a fire occurs in 
the kitchen with all bedroom doors closed, the temperature signals of the dining room, living room, 
and the hallway are determined as the most effective surrogates (see Fig. 11a). Similarly, when a 

fire occurs in the dining room with all bedroom doors closed, the most effective surrogate 
temperatures for flashover predictions are from the kitchen, living room, and the hallway. 

Physically, this makes sense because these four different compartments (D, K, L, and H) are very 
close to each other. For the situations when all bedroom doors are all open, the temperature signals 
from the bedrooms do provide information to the model for flashover prediction, but it can be seen 

that the learned attention weights from the bedrooms are typically smaller. It should be noted that 
the difference for the learned attention weights between different bedrooms is driven by the door 

opening time and the effect of door opening time to temperature importance for predictions is 
described below.  
 

Fig. 12 shows the learned attention weights between the heat detector temperature signals of the 
room of fire origin and other compartments for two different fire cases in bedroom 2. The fire 

setting is similar but the door opening sequence and time are different. For the fire case as shown 
in Fig. 12a, the door of bedroom 1 and 3 are first opened at ~ 142 s and then the bedroom 2 door 
is opened at ~ 352 s. For another fire case as shown in Fig. 12b, the bedroom 2 door is first opened 

at ~ 84 s and the doors for bedroom 1 and 3 are opened later at ~ 189 s. It can be seen in Fig. 12 
that learned attention weights for the hallway, living room, dining room, and kitchen are 

significantly different. When the bedroom 2 door is opened earlier, temperature signals from the 
kitchen and dining room are shown to be useful for predicting flashover. For cases with all 
bedroom doors being closed, only temperature signals from bedroom 2 are useful. These 

observations indicate that, even when no information about the interior door conditions is 
provided, the attention-based model can determine the relationships between different heat 

detectors under different door opening conditions and discriminate temperature signals with less 
importance. Therefore, the model can provide more reliable flashover predictions. 
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Figure 11. Learned attention for a) kitchen fire and b) dining room fire under different door 

opening conditions. 
 

 
Figure 12. Learned attention for bedroom 2 fire cases with bedroom 2 door being opened at a) 

~ 352 s and b) ~ 84 s. 

 

4.2. Model Testing Against Real Fire Data 

Given the fact that P-Flashv2 is developed based on synthetic temperature data, it is necessary to 
examine its performance against real fire scenarios. In this evaluation process, 13 sets of full-scale 
experiments reported in [36] are utilized. The building structure is identical to that shown in Fig. 1. 

In these experiments, a single item is first ignited in either the living room, kitchen, or bedroom 1. 
It should be noted that flashover occurred in most of the experiments, except Exp 6 and 8. Table 6 

provides a summary of the primary fire location, ignited item, and ventilation conditions for each 
fire experiment.  
 

Temperature measurements approximately 2 cm below the ceiling from different compartments 
are used. Fig. 13 depicts the complete temperature profiles of each compartment for two fire tests: 

1) Exp 1: a living room fire experiment with a sofa as the first ignited item and all doors and 
windows are closed and 2) Exp 13: a bedroom 1 fire experiment with a mattress as the first ignited 
item, two open doors (bedroom 1 and front door) and, open windows in bedroom 1. The use of 

temperature signals near the ceiling is to mimic the local temperature that typical heat detectors 
would measure. Also, although the complete temperature profiles are shown in Fig. 13, only 
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temperatures below 150 °C (i.e., to account for heat detector maximum temperature operational 
limit) will be used as model inputs. Based on videos recorded from the thermal image cameras 

from [36], the time for the transition to flashover is being identified for all fire experiments. The 
transition to flashover for Exp 1 happens at around 180 s, but flashover does not occur in Exp 6. 

As shown in Fig. 13, the rapid temperature increase from the room of fire origin can also be 
observed from the indicator temperature, indicating a fully involved room fire which is a typical 
fire phenomenon from flashover. The indicator temperatures are measured approximately 0.6 m 

above the floor surface. It should be noted that P-Flashv2 has never seen any of these experimental 
data during the training process. From these comparisons, insights regarding data fluctuation, local 

temperature effects, and the use of CFAST as data generator can also be examined.  
 

Table 6. Fire location, first ignited item, and ventilation conditions for each experiment. 

Exp # Fire Location Ignited item Ventilation Settings Flashover 

1 Living Room Sofa All Vents Closed Yes 

2 Living Room Sofa All Vents Closed Yes 

3 Living Room Sofa Front Door Open Yes 

4 Living Room Sofa Front Door Open Yes 

5 Living Room Sofa 
Front Door and Bedroom 3  

Window Open 
Yes 

6 Kitchen Cabinet All Vents Closed No 

8 Kitchen Cabinet All Vents Closed No 

10 Kitchen Cabinet Front Door Open Yes 

11 Kitchen Cabinet Front Door Open Yes 

7 Bedroom 1 Mattress All Vents Closed Yes 

9 Bedroom 1 Mattress All Vents Closed Yes 

12 Bedroom 1 Mattress 
Front Door and Bedroom 1  

Window Open 
Yes 

13 Bedroom 1 Mattress 
Front Door and Bedroom 1  

Window Open 
Yes 
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Figure 13. Temperature profiles at different compartments for a) a Living Room fire experiment 
(Exp 1) and b) a Kitchen fire experiment (Exp 6). 
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4.2.1. Formulation of Evaluation Instances and Comparison 

Due to the nature of the experiments, data associated with flashover and non-flashover conditions 

are imbalanced. In order to provide a fair comparison, the model performance is assessed based 
on an equal number of instances. Similar to the data preprocessing described in Sec. 3.1, two non-

flashover instances and two flashover instances for the 30 s lead time setting are selected. The 
longer lead time setting (i.e., 60 s) double the number of instances and so there are a total of eight 
instances for evaluation from each real fire experiment. 

 
Table 7 shows the approximate overall prediction accuracy for the instances associated with all 13 

experiments. P-Flashv2 using BiGRU-ATT provides the best model performance for cases with a 
lead time setting of 30 s and 60 s, and these results indicate that the model is capable of learning 
generalized features/temperature information which can be applied to fire scenarios/experiments 

that the model has never seen. Also, the results suggest that the synthetic temperature data being 
generated using CFAST are adequate to capture the relevant temperature increase in full-scale real 

fire experiments for a wide range of fire and vent opening conditions in this single story ranch 
house. 

 

Table 7. Model performance against real fire data for P-Flashv2 and 6 other models. 

  
Basic 

RNN 
LSTM GRU 

LSTM- 

ATT 

GRU-

ATT 
BiLSTM BiGRU 

BiLSTM-

ATT 

BiGRU-

ATT 

Acc. 

(30s)  
74.61 76.92 75.00 76.92 80.76 80.76 79.82 81.76 82.69 

Acc. 

(60s)  
79.80 80.76 81.73 78.88 83.65 82.69 83.65 84.61 85.57 

  

Table 8 and Table 9 show the approximate prediction accuracy at different times for 3 individual 
experiment series. There are two flashover moments for cases with the lead time setting of 30 s 
and four flashover moments for cases with the lead time setting of 60 s. Results for non-flashover 

moments are also given. P-Flashv2 can predict accurately the potential occurrence of flashover 
ahead of time. For cases with the lead time setting of 30 s, the model performance is excellent and 

the accuracy for flashover predictions is 100 %. For cases with the lead time setting of 60 s, P-
Flashv2 does have one miss prediction in the bedroom 1 experiment case (see Table 9). Yet, the 
model correctly predicts the flashover moment before 45 s. These results are encouraging because 

the model provides consecutive correct predictions well before the flashover condition is met.  
 

In terms of non-flashover moments, the overall model performance is good for the living room 
and bedroom 1 experiment cases. For kitchen fire experiments, the prediction accuracy drops and 
the significant decrease in performance is primarily due to the fact that the current dataset used 

from training P-Flashv2 does not cover the kind of kitchen fire scenarios which are included in the 
full-scale fire experiments. In this study, all fires are located on the floor whereas the ignited wood 

cabinet in both Exp 6 and Exp 8 from the full-scale fire experiments are located at an elevated 
location. Fig. 14 provides the temperature profiles for four different kitchen fire experiments. As 
seen in Fig. 14a and Fig. 14b, the temperature peaks and begins to decay at approximately 900 s 

for Exp 8 and Exp 10 where all exterior vents are closed. Since heat detectors are assumed to stop 
functioning at 150 °C and the temperature change in all bedrooms is small, the temperature 
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decrease is not seen by the model. For that, based on the available temperature information, the 
model predicts that there could be a potential occurrence of flashover. As seen in Table 10, P-

Flashv2 misses 6 out of 8 non-flashover moments and 4 out of 8 non-flashover moments for Exp 6 
and Exp 8 (with the lead time setting of 60 s), respectively. Yet, the model performance for the 

remaining two kitchen fire experiments is very promising. For Exp 10, P-Flashv2 only has one 
missed prediction and it does not have any missed predictions for Exp 11. Considering 
temperatures up to 150 °C, it can be seen in Fig. 14 that the temperature growth before flashover 

for Exp 6 and Exp 8 is very similar to that in Exp 10 and Exp 11. The authors suggest that the 
current dataset be expanded (i.e., including fire cases with ignited items at elevated locations) in 

order to enhance model accuracy for cases similar to Exp 6 and Exp 8. The model testing process 
helped to identify what is required for model improvement.  
 

Table 8. Prediction accuracy of P-Flashv2 using BiGRU-ATT for cases with the lead time setting 
of 30 s. 

  FO - 30 s FO - 15 s Non-Flashover 

All 100 % 100 % 70 % 

Living room 100 % 100 % 70 % 

Kitchen 100 % 100 % 43.75 % 

Bedroom 1 100 % 100 % 87.5 % 

 
Table 9. Prediction accuracy of P-Flashv2 using BiGRU-ATT for cases with the lead time setting 

of 60 s. 

  FO - 60 s FO - 45 s FO - 30 s FO - 15 s Non-Flashover 

All 91 % 100 % 100 % 100 % 78 % 

Living room 100 % 100 % 100 % 100 % 95 % 

Kitchen 100 % 100 % 100 % 100 % 68.75 % 

Bedroom 1 75 % 100 % 100 % 100 % 95 % 

 
For model efficiency, it should be noted that P-Flashv2 can provide predictions in less than a 

second. As compared to the current state of the art CFD models such as [18], P-Flashv2 is not only 
numerically more efficient, but it can also account for realistic fire conditions such as the heat 
detector temperature limit and various vent opening conditions without the need of prior 

knowledge. However, P-Flashv2 still has a number of limitations. For example, the model 
currently relies on the assumption that there is heat detector or heat sensing device at each 

compartment to have the temperature information. Also, P-Flashv2 can only account for a single 
building structure with a fixed number of inputs. If there are multiple building structures, the model 
is now needed to be retrained in order to be applied to another building structure with different 

number of inputs. Lastly, it is not well understood what specific temperature information the model 
focuses on making the predications. Therefore, it is necessary to make use of other machine 

learning techniques, such as feature visualization [61] and/or class activation map [62], to 
understand the model decision. It is hope that research outcome from this study can contribute a 
new approach to facilitate real-time data-driven fire fighting and reduce fire fighter deaths and 

injuries. 
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Figure 14. Temperature profiles from different compartments and flashover indicating 
temperature for a) Exp 6, b) Exp 8, c) Exp 10, and d) Exp 11. Note that there are measurement 

errors in Exp 6 (indicating temperature) and Exp 8 (dining room temperature). 

 

Table 10. Prediction details for Exp 6, Exp 8, Exp 10 and Exp 11. 

  Exp 6 Exp 8 Exp 10 Exp 11 
  Non-FO Non-FO Non-FO FO Non-FO FO 

Correct 

Predictions (30 s) 

2

4
 

2

4
 

1

2
 

2

2
 

2

2
 

2

2
 

Correct 

Predictions (60 s) 

2

8
 

4

8
 

3

4
 

4

4
 

4

4
 

4

4
 

Note that the numerator represents the correct prediction and the denominator represents the total number of 

predictions. 

 

5. Conclusion and Outlook 

In this present work, a machine learning based flashover prediction model, P-Flashv2, is developed 
for a single story ranch-style family home. Using only localized temperature data from heat 
detectors, P-Flashv2 can predict in advance if there is a potential occurrence of flashover, and is 

capable of making flashover predictions with a maximum lead time of 60 s. The use of the learning-
by-synthesis approach to overcome the lack of training data is discussed. CData is presented to 
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facilitate synthetic data collection and is used to generate more than 110 000 fire cases with a wide 
range of fire and vent opening conditions. Machine learning processes and data preprocessing are 

demonstrated. The model architecture of P-Flashv2 is presented. The proposed model using 
bidirectional gated recurrent units with attention mechanism (BiGRU-ATT) is benchmarked 

against 8 different popular recurrent neural network (RNN) architectures. For flashover 
predictions, results show that with synthetic data, BiGRU-ATT has well-balanced model 
performance. It has an overall prediction accuracy of ~ 87.7 % (~ 89.5 %) and the recall score of 

~ 96.9 % (~ 96 %) for the prediction lead time setting of 30 s (60 s). In addition to model accuracy, 
P-Flashv2 also has superior model efficiency and as compared to the current state-of-the-art CFD 

prediction model, P-Flashv2 is at least 300 times faster (< 1 sec vs > 300 sec). P-Flashv2, 
developed based on synthetic data, is tested against 13 different real fire scenarios. The overall 
model performance is good, but the current dataset needs to be expanded in order to capture oxygen 

limited fire scenarios with ignited items at elevated locations. Results from this study demonstrate 
that P-Flashv2, the machine learning based model, has the potential to facilitate real-time data-

driven fire fighting and help reduce fatalities and injuries for fire fighters.  
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Appendix A: Data Distribution for Development of P-Flash 

 

This appendix provides the histograms for eight varying parameters for generating the complete 
set of data for the development of P-Flash. Namely, they are 1) materials, 2) time to peak HRR, 3) 

peak HRR, 4) fire locations, 5) fire of origin, opening conditions for 6) exterior doors, 7) interior 
doors, and 8) exterior windows. There are three sets of colored columns: blue, orange, and gray 
representing all cases, flashover only cases, and non-flashover only cases, respectively.  

 
In total, 110,000 cases are completed. The size of the raw data is approximately two terabytes. 

Extracting the cases where the temperature meets the threshold for potential occurrence of 
flashover (i.e., upper layer gas temperature from the room of fire origin is at least 600 °C), the 
number of cases is reduced to 25,853 with a reduced data size of roughly five gigabytes. In 

principle, the histograms/data distributions are provided to present the range of fire and vent 
opening conditions being included for P-Flash. The reduced data set can be obtained at the data 

repository: doi:10.18434/mds2-2479, and the raw dataset can only be provided upon request. Note 
that this dataset can be used to benchmark the performance of more sophisticated machine learning 
flashover prediction models. 

 
 

 

 
Figure A1. Histogram of building materials. 

 

https://doi.org/10.18434/mds2-2479
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Figure A2. Histogram of peak HRR. 

 

 
Figure A3. Histogram of time to peak HRR. 
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Figure A4. Histogram of fire location. 

 

 
Figure A5. Histogram for room of fire origin. 
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Figure A6. Histogram for door status of front door. 

 

 
Figure A7. Histogram for door status of kitchen door. 
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Figure A8. Histogram for door opening time for bedroom 1 door (note that negative time 

indicates that the door is never opened). 

 

 
Figure A9. Histogram for door opening time for bedroom 2 door (note that negative time 

indicates that the door is never opened). 
 



38 

 

 
Figure A10. Histogram for door opening time for bedroom 2 door (note that negative time 

indicates that the door is never opened). 
 

 
Figure A11. Histogram for window breakage temperature threshold of dining room window. 

 



39 

 

 
Figure A12. Histogram for window breakage temperature threshold of living room window. 

 

 
Figure A13. Histogram for window breakage temperature threshold of kitchen window. 

 



40 

 

 
Figure A14. Histogram for window breakage temperature threshold of bedroom 1 front 

window (E). 

 

 
Figure A15. Histogram for window breakage temperature threshold of bedroom 1 side 

window (D). 
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Figure A16. Histogram for window breakage temperature threshold of bedroom 2 window. 

 

 
Figure A17. Histogram for window breakage temperature threshold of bedroom 3 window. 
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Appendix B: P-Flashv2 Prediction Accuracy for Each Instance from Cases 
with the Lead Time Setting of 30 s and 60 s 

 
For x = 30s cases, the non-flashover instances are 60 s and 45 s and the flashover instances are 30 

s and 15 s. It should be noted that the moment that the onset of flashover for the same case 
regardless of the lead time. 

 
Table B1. Prediction accuracy for each instance from cases with the lead time setting of 30 s. 

x = 30 s 
Non-Flashover Instances Flashover Instances   

60 s 45 s 30 s 15 s Average 

Accuracy 91.9 80.3 84.6 93.8 87.7 

 

As shown from the Table B1, the prediction accuracy tends to drop from 45 s and 30 s instances 
and this makes sense because the label of these two instances are completely different but the 
overall temperature data are relatively the same. In generally, the overall accuracy is 87.7 %. 

 
For x = 60 s, the non-flashover instances are (120, 105, 90, 75) s and the flashover instances are 

(60, 45, 30, 15) s.  
 

Table B2. Prediction accuracy for each instance from cases with the lead time setting of 60 s. 

x = 60 s 
Non-Flashover Instances Flashover Instances   

120 s 105 s 90 s 75 s 60 s 45 s 30 s 15 s Average 

Accuracy 89.3 87.4 85.5 79.6 85.0 95.8 96.7 96.9 89.5 

 
As seen from Table B2, there is a similar observation about significant accuracy drop in 75 s and 
60 s instances. Also, the model performance for instances away from 75 s and 60 s improves. For 

that, the average accuracy for all 8 instances is 89.5 %. However, consider only 4 instances similar 
that in Table B1, the average accuracy (highlighted in red) is about 86.5 % which is comparable 
to that shown in Table B1 (87.7 %). Therefore, the difference in overall accuracy is due to the 

number of instances from two different lead time settings.  


