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Introduction

Postdisaster structural performance assessments provide quantifi-
able evidence of infrastructure system performance under hazard
conditions, help to prioritize emergency response and recovery
activities, and identify broader design issues. Such assessments
can form a basis for empirical fragility functions, refine existing
process-based models based on validation exercises, and establish

baseline conditions for recovery tracking and modeling. Therefore,
understanding the uncertainty associated with an assessment and its
effect on damage, loss, or recovery models is critical for the verifi-
cation and validation processes of these models. Uncertainties in a
model’s characterization of a hazard and the resulting structural re-
sponse should be quantified when possible. Many models propagate
these uncertainties to evaluate their effects on model outputs or per-
form sensitivity tests to changes in model parameters. However,
modal, temporal, and human factors that may cause variability in
the assessment of a given system’s condition or state at a specific
point in time are rarely characterized to assess how sources of
uncertainty can compound in postdisaster performance assessments.
This study identified and analyzed sources of uncertainty in post-
disaster performance assessments including how and when as-
sessments are performed and who is involved with postdisaster
assessments. The discussion of how covers the mode of assessment,
including field-based assessments, remote observation, and/or com-
bined observation and measurement. When considers the temporal
nature of an assessment, including the timing of performance assess-
ments following a disaster and the effects of cascading or successive
disasters. Last, who captures human factors, including surveyor bias,
training, and familiarity with the affected area. A framework for
quantifying uncertainty factors in field-based performance assess-
ments is proposed. The framework follows the methodology pre-
sented in FEMA P-695 (FEMA 2009), which characterizes total
system collapse uncertainty for seismic hazards based on four uncer-
tainty (β) factors. Repositories of publicly available damage data
hosted on platforms such as DesignSafe-CI [a cyberinfrastructure
component of the Natural Hazards Engineering Research Infrastruc-
ture (NHERI) collaboration funded by the National Science Foun-
dation] (Rathje et al. 2017) may be leveraged in future work to
develop quantitative values for proposed uncertainty parameters in
field study measurements and modeling applications.

Background

While many previous studies have investigated infrastructure and
social systems subjected to natural hazard events through postevent
reconnaissance efforts, few report uncertainty as a standard element
in assessed damages or performance. In recent years, several stud-
ies have explicitly addressed uncertainty in various aspects of per-
formance assessment; several recent examples are presented in
Table 1. However, a robust, standardized framework for systemati-
cally and consistently quantifying these inherent uncertainties is
necessary for comparison across hazard types and individual
events. Such a framework is critical for verification and validation
processes when collected data and assessments are used to inform
vulnerability and resilience models.

A Theoretical Framework for Characterizing
Uncertainty in Postdisaster Performance
Assessments

Uncertainty in postdisaster performance assessments can stem from
various factors, all of which are affected by the nature of the event
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as well as the typology and scale of the assessed system. A frame-
work for characterizing these uncertainties is shown in Fig. 1. The
framework comprises four steps to identify, characterize, quantify,
and propagate uncertainty in postevent performance assessment
and modeling. This study focused on the first two steps of the
framework: (1) identifying factors affecting sources of uncertainty;
and (2) characterizing sources of uncertainty in postevent perfor-
mance assessments.

In Step 1, factors affecting sources of uncertainty include the
nature of the event and the type and scale of the assessed system.
The nature of the event (red box) refers to hazard intensity and
damage mechanisms that may impact a system or component of
a system. It also includes factors that may alter the capabilities
of researchers to establish baseline conditions: for example, for

characterizing multihazard events, cascading or successive hazard
events, or longitudinal recovery. The type and scale of the assessed
system (cyan box) affect the sample size, sample methodology, and
system archetypes chosen for performance assessment.

In Step 2, nature, type, and scale affect epistemic uncertainties in
performance assessments due to modal (blue box, the method by
which damage data are collected), temporal (orange box, assess-
ment timelines in comparison to damage or recovery timelines),
and human (yellow box, potential bias in damage observations)
factors, all of which comprise aleatory and epistemic uncertainties.
While aleatory uncertainty cannot be reduced, aleatory and episte-
mic uncertainties arising from modal, temporal, and human factors
can be characterized. By evaluating the uncertainties in these three
factors, research teams can (1) take steps to mitigate epistemic

Table 1. Selected previous damage studies that considered uncertainty in damage state assessment

Study Event (year) Assessed system (scale)
Mode of collection

considered Uncertainty considerations

Roueche et al. (2018) Joplin tornado (2011) Buildings Data set of 1,241 residential
structures

Investigated epistemic uncertainties in
fragility functions based on
postdisaster assessments of structural
damage. Uncertainty in hazard
intensity measurement (wind speed)
was identified as the greatest
contributor to uncertainty in
fragilities; potential misclassification
and sampling error were small
contributors to uncertainty with a
sufficient number of samples.

Marvi (2020) General flooding Residential, commercial,
industrial buildings:
structure and contents

Review paper describing
empirical models and
analytical models for flood
damage analysis

Reviewed previous works on flood
damage analysis for building
structures and contents. For both
empirical and analytical models, the
study identified a lack of reliable data
for model construction and validation
as a methodological challenge. The
study noted that previous studies
identified the inability to
communicate uncertainty in models.

Nofal and van de
Lindt (2020a)

General flooding Community resilience Review paper describing
flood risk components
(hazard, exposure, and
vulnerability) and
deterministic and stochastic
approaches for modeling
damage, loss, and recovery

Described the need for probabilistic
approaches for propagating
uncertainties and identified the need
for a standardized assessment
framework to measure the impact of
approaches to community resilience.

Helgeson et al. (2021) Hurricane Florence (2018) Households, businesses Field-based performance
assessments; in-person
surveys of residents and
businesses

Addressed uncertainty due to repeated
flood events in a community and
proposed a methodology for
disaggregating the impacts of first and
second flood events.

Khajwal and
Noshadravan (2021)

Hurricane Harvey (2017) Buildings Crowdsourced surveys based
on postdisaster imagery

Implemented a decision rule to infer
damage state based on participant
responses and used an information
theoretic model to obtain probabilistic
descriptions of inferred damage states
while quantifying reliability of
respondents and ambiguity of images.

Sutley et al. (2021) Hurricane Matthew (2016) Households, businesses In-person surveys of
residents and businesses

Addressed uncertainty due to mode of
performance assessment, comparing
household-reported damage to
engineering assessments; addressed
temporal uncertainties associated with
time of data collection.
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uncertainty; and (2) quantify uncertainty factors that can be used
in damage or recovery models to better communicate risks to
decision makers and stakeholders. The following sections charac-
terize factors affecting aleatory and epistemic uncertainties and
offer mechanisms to reduce epistemic uncertainties.

Nature of the Event

The nature of the event comprises the type and intensity of hazard
(s), warning time, and impacted area or footprint. This study fo-
cused on natural hazards, including earthquakes, tsunamis, floods,
droughts, wildfires, and wind. Many of these hazards can occur
(1) simultaneously in multihazard events, such as hurricanes
(surge + wave + wind + rain + debris) and tornadoes (wind + rain
+ debris), (2) successively, such as a second flood event occurring
before a community is able to recover from an earlier event (e.g.,
Helgeson et al. 2021; Crawford et al. 2022), or (3) with cascading
effects, such as seismic events that cause fire or fire events that
cause flooding.

In a performance assessment, it can be challenging to isolate
damage sources. For example, during tornadoes, damage to a build-
ing structure may be initially caused by strong uplift and torsional
wind loads or from windborne debris, among other factors, whereas
total damage may be caused by a combination of multiple hazards
(Minor et al. 1977). Depending on whether debris missiles remain
on site, their existence and impact can be difficult to discern. Multi-
hazard events such as hurricanes can similarly create challenges in
distinguishing between wind and water damage. Properly identify-
ing the source and magnitude of structural damage due to either
wind and wind-driven rainfall or storm surge and wave action
can be critical in allocating separate insurance policies, which
may cover only one hazard. While wind loading and storm surge
and wave loading cause different damage signatures for affected
structures, structural expertise and experience as well as knowledge
of construction and structural responses to either loading type are
necessary to accurately identify the occurrence and magnitude of
either source of damage during a hurricane (Peraza et al. 2014).
Accurately assessing these differences may require specific recon-
naissance methods (i.e., field inspections rather than resident sur-
veys or assessment of remote aerial imagery) and significant
investment of time and resources. Some types of damage may
be more visible than other types in remote sensing data such as

aerial imagery. For example, building collapse due to an earthquake
or roof damage due to a wind storm is often evident from above a
structure, whereas intermediate damage or flood damage to a build-
ing’s walls or interior is often not easily identifiable from aerial
images. If on-the-ground surveyors cannot see the roof or cannot
enter building interiors, they may not be able to accurately assess
damage to these systems.

The warning time and footprint of a hazard event affect prepa-
ration, sheltering, and evacuation decisions and can ultimately
affect the magnitude of infrastructure and social system disruptions.
The magnitude of a disruption of infrastructure and social systems
may alter a survey team’s arrival depending on available resources,
transportation, and safety concerns. In turn, a survey team’s arrival
and the proportion of residents who evacuated versus sheltered in
place during an event may affect a research team’s ability to seek
occupant input on predisaster conditions and peak hazard levels
(e.g., peak inundation height during a flood or peak wind speeds
during a tornado). Last, hazard intensity impacts accuracy in assess-
ment. For example, systems experiencing complete damage/loss
can be more obvious to a surveyor, whereas minor or intermediate
damage levels may be more subjective. Characterizations of minor
or intermediate damage levels may require site familiarity or infor-
mation being confirmed by an occupant, particularly for interior
damage that may occur due to flooding or rainwater intrusion
(e.g., Tomiczek et al. 2020; Sutley et al. 2021). Furthermore, the
evolution of damage with increasing or sustained hazard conditions
is difficult to identify following an event. For example, floods leave
watermarks on structures at the height of sustained inundation
levels. It can be challenging for surveyors to determine whether
watermarks indicate peak inundation height or represent a lower
level of inundation that was sustained for a longer duration. All of
these aspects create uncertainty surrounding the nature of an event.

Type and Scale of the Assessed System

The type and scale of the assessed system can affect the epistemic
uncertainty and level of detail of postevent reconnaissance. Both
the research question and system of interest drive the effective
sample size and sampling methodology for detecting and mitigat-
ing uncertainties. In addition, other parameters such as statistical
significance and expected prevalence of an investigated outcome
(e.g., damage) influence decisions on sample size and sampling

Fig. 1. (Color) Framework for uncertainty characterization in postdisaster performance assessments.
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methods. Using an appropriate sample size and sampling methods
is critical to avoid Type I (incorrectly rejecting the null hypothesis)
or Type II (incorrectly accepting the null hypothesis) errors in in-
terpretation of collected data (Jones et al. 2003; Groves et al. 2011;
Martínez-Mesa et al. 2014). For example, if residential buildings
are the system of interest, then a sample size sufficient to represent
the entire geographical area and all construction types of interest
should be designed. If residential buildings with a specific founda-
tion (e.g., crawlspace, pile-elevated) are the system of interest, then
a smaller (relative to all residential buildings) sample can be iden-
tified. If specific building components constitute the system of in-
terest, a targeted sample should be designed, and sample design
methodology may require in-person investigation rather than re-
mote data collection. Including a control group (i.e., of undamaged
systems) is another crucial part of sample design, because it helps
identify uncertainties related to a hazard event and common con-
struction and maintenance practices of the local area. For example,
to assess resilience and recovery in Lumberton, North Carolina,
following a flood precipitated by a hurricane, van de Lindt et al.
(2018) used a nonproportional stratified cluster sampling technique
to select housing units with high and low probabilities of being in
the inundation zone at a three to one ratio by census block. Given
that the goal was to evaluate community-level resilience and recov-
ery, it was critical for the sample to include housing units inside and
outside the flooded area.

Analysis of the archetypal performance of different infrastruc-
ture components under hazard conditions based on field observa-
tions can be applied by researchers in inter- or transdisciplinary
settings. Such analysis allows researchers to study resilience and
recovery issues from a broad range of theoretical and methodologi-
cal standpoints to identify, for example, differences in damage and
recovery of buildings with elevated or nonelevated foundation
types following a flood event. The use of systems archetypes is
critical when considering community-level resilience. However,
scaling archetypes across size and complexity is complicated.
Moreover, the scope and detail of reconnaissance efforts will be
affected by the archetype and system scale considered, and it is
difficult to note general trends in the formation and types of unin-
tended consequences when dealing with similar hazards across dif-
ferent system scales. The effects of risk factors for unintended
consequences may only be known in hindsight and may require
a high level of sample frequency across historical data to be
recognized as anything more than noise.

Modal Uncertainties

Modal uncertainties refer to epistemic and aleatory uncertainties;
epistemic uncertainties are affected by the methodology or combi-
nation of methodologies by which damage data are collected.
Damage observations may be collected in person or virtually via
field-based assessments, remotely-sensed data and imagery, stake-
holder input, or a combination of these data collection modes.
Depending on the nature of an event and the type and scale of
an assessed system, each mode has advantages and limitations,
and all modes face challenges of access, data availability, and data
quality. For example, while field-based performance assessments
readily identify damage to structural components, observations
may be limited to structural exteriors and may therefore limit
the ability of researchers to assess interior damage. Stakeholders
(e.g., residents, owners, or operators) can provide key details about
interior damage or changes in damage state between the time of an
event and the time of a survey team’s assessment. However,
stakeholder-reported damages can be affected by a respondent’s
trauma, bias, and experience with contractors (e.g., a contractor

may overimply damage to a respondent to gain more work). Field
reconnaissance efforts also must be based on an awareness that
resources in affected areas may be needed for disaster response
(e.g., hotel rooms for temporary shelter and/or for housing emer-
gency responders; generators for power; limited food, water, and
gas supplies for disaster victims and emergency responders from
local restaurants, grocery stores, and disaster relief efforts) and face
ethical considerations regarding the timing, duration, and logistics
of field-based performance assessments or surveys (Gaillard and
Peek 2019). While satellite imagery or other remotely sensed data
can allow surveyors to quickly assess a hazard’s footprint and
building-level impact without requiring travel to an affected com-
munity and associated fieldwork resources, such assessments are
often insufficient to capture intermediate damage states (Brown
et al. 2012) and are affected by the quality and extent of available
imagery.

To reduce modal uncertainty, a field study team can combine
modes of performance assessment. For example, preevent remote
sensing can provide a baseline for quality control of postevent as-
sessments and can identify preexisting issues, such as structural
damage due to deferred maintenance. Postevent virtual and field-
based remote sensing [e.g., data from ground, aerial/unmanned
aerial vehicles (UAV) or satellite sensors including, but not limited
to, photography, multispectral, or light detection and ranging
(LiDAR)] and virtual and field-based repair/recovery data collec-
tion can also enhance the overall characterization of disaster im-
pacts. However, combined methods must have sufficient overlap
(i.e., field-based and remote sensing assessments for the same
structures) to characterize performance robustly, and care must
be taken to maintain quality standards for combined modes. More
rapid measurement methods may be extrapolated to a broader sam-
ple than the subset of combined modes provided that uncertainty is
characterized through comparison of the rapid method with more
detailed assessment methods.

Temporal Uncertainties

Temporal uncertainties refer to the timing after a hazard event when
a performance assessment is made. While aleatory uncertainties
(e.g., natural variations in damage or recovery progression over
time) will exist for any infrastructure and social system affected
by a hazard event, epistemic uncertainties related to a field team’s
knowledge of the immediate impacts and long-term response of
infrastructure and social systems can be identified and reduced.
Although performance assessments are generally performed in
the immediate aftermath of a disaster, the timing can vary and is
often a function of the nature of the event (e.g., when travel is pos-
sible based on safety concerns in the immediate aftermath, resource
allocation during response efforts, or survey team coordination).
For example, Sutley et al. (2021) assessed damage three days after
a tornado; van de Lindt et al. (2018) assessed damage six weeks
after a flood; Highfield et al. (2014) assessed damage approxi-
mately three months after a hurricane; and Marshall et al. (2019)
assessed damage seven weeks after a hurricane. The extent to which
assessment delay time creates uncertainty in a performance assess-
ment is difficult to quantify and can change based on the severity
and footprint of the hazard. For example, damage sustained from an
enhanced Fujita scale (EF) 1 tornado that is localized to the neigh-
borhood level may be cleaned up and repaired within days, whereas
damage sustained from a Category 5 hurricane that affects multiple
states may remain untouched for weeks or months in some areas. In
addition, remnants of damage that remain unrepaired long after ini-
tial damage occurs may be worse than initial damage. For example,
in a study of tornado impacts, Hamideh et al. (2021) observed
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cascading water-related damage during the winter resulting from
delayed repairs.

Temporal uncertainty can also be associated with recall bias
when residents are asked to provide an assessment of damage after
a period of time. Sutley et al. (2021) reassessed damage on a five-
point scale more than a year after a flood by asking building
occupants questions about the damage they observed during the
event. Identical categorizations had been utilized one month after
the flood in performance assessments by engineers (van de Lindt
et al. 2018, 2020). A comparison of damage states assigned in van
de Lindt et al. (2018) and Sutley et al. (2021) showed that it was
common for damage states to be higher in the occupant assessment
than in the engineering assessment. This difference likely stemmed
from temporal, modal, and human factors, in which the latter
includes recall bias (i.e., the tendency to remember previous events
or experiences inaccurately or omit details) and is described in the
following section.

Temporal uncertainty can be associated with cascading or sub-
sequent hazard events that create cumulative damage, especially
when damage from a previous event is unrepaired. As reported
in Helgeson et al. (2021), damage from a 2016 flood event was
still evident in 2018 after a second flood occurred. The evidence
of damage from two different events separated by two years
was only realized because the field study team had been conducting
a longitudinal study and was familiar with the site and sample (van
de Lindt et al. 2018, 2020; Sutley et al. 2021; Crawford et al. 2022).
The field study team in Helgeson et al. (2021) would have been
able to assess total, visible damage without prior field experience
and associated knowledge of conditions in the area from
previous events. However, they were only able to discern the root
cause of damage for a recent flood because of the team’s familiarity
with the site and their knowledge of a past event, as well as the level
of deferred maintenance or disrepair.

Last, temporal uncertainty can be related to variability in repair
pace across a community when some areas are already in repair and
some have not started repairs when performance assessments take
place. This type of temporal uncertainty can be reduced by con-
ducting assessments as early as possible, by combining different
modes of assessment, including resident surveys and interviews
with expert observation, or by completing follow-up performance
assessments.

Human Uncertainties

Human-induced uncertainty through bias and other sources is to be
expected and is both epistemic and aleatory in nature. Therefore, it
is important that key sources of epistemic uncertainty be recog-
nized, documented, and reduced to the extent possible. Key sources
of human-related uncertainty can stem from the design of a data
collection instrument, responses from survey participants or stake-
holders, or assessments by a researcher.

Cognitive biases can influence a survey instrument and cause
participants to reply in an imprecise or inaccurate manner. Data
collection instruments, which often aid researchers as guides for
observational record keeping or facilitate data collection through
interaction with stakeholders (e.g., residents, business operators,
emergency personnel) are vulnerable to the application of heuristics
and biases. Typical sources of such bias include, but are not limited
to, social desirability bias, response bias arising from a lack of
randomness in the sample, or a failure to meet sample quotas or
weighting factors applied to data. Data collection instruments are
developed by humans with their own views and opinions; therefore,
there are often subtle biases in the manner in which questions are
worded or results are recorded or interpreted (Bloomfield et al. 2016).

Response bias is a general term for a wide range of tendencies for
participants and researchers to populate data collection instruments
with inaccurate information. This type of bias may be particularly
relevant when disaster victims are asked to substantiate or describe
physical damage. For stakeholders providing information to research-
ers, question order bias (i.e., items that appear earlier in a survey can
affect responses to later questions or even impact whether later ques-
tions are answered at all), social desirability bias (i.e., the tendency to
underreport undesirable outcomes and to overreport more desirable
attributes or outcomes), and respondent bias/trauma, including post-
event time of questioning, all contribute to response bias (Krumpal
2013). There is widespread agreement that disaster-related psycho-
logical and psychosocial impacts and recovery are prevalent. How-
ever, relative findings differ depending upon hazard type and level
of severity, timing of data collection, and theoretical perspectives
employed (Tierney 2000).

Both respondents and researchers can contribute to human-
related uncertainties in postdisaster reconnaissance. For example,
cognitive biases can influence a researcher toward more severe
or mild performance assessments. A standard method to quantita-
tively define damage is desirable and allows for comparison to dif-
ferent geographic areas, building stocks, and hazard characteristics
(Rathfon et al. 2013). Standardizing damage classification can be
particularly challenging for multihazard events such as combined
wind and storm surge during hurricanes. While several component-
based damage schemes for hurricane-induced damage have been
proposed, ranging from a binary scale (survive-fail) to an ordinal
scale with a number of intermediate damage states (i.e., Friedland
2009; Kennedy et al. 2011; Tomiczek et al. 2017, 2020), no assess-
ment methodology has been universally adopted for this type of
hazard.

Even given standardized metrics to assess damage, human fac-
tors in the field can contribute to assessment biases and uncertain-
ties. These factors include, but are not limited to, experience,
educational background, team composition, site familiarity, and
field conditions during performance assessments. For example,
in a study of assessor bias and the effect of site familiarity on per-
formance assessments, photographic damage data from 44 struc-
tures in Galveston, Texas, and the Bolivar peninsula in Texas
following Hurricane Ike (2008) were assessed by survey partici-
pants using a five-point damage scale. Individually-assessed struc-
tures varied by as many as two damage state categories among
surveyors, although agreement and overall damage tended to in-
crease when prestorm imagery was provided (Brodersen et al.
2017). When assessing component-based damage, bias may arise
based on the severity of damage in the area that a researcher as-
sesses first (e.g., looking at heavily or lightly damaged areas
may set the baseline superficially high or low). Furthermore, draw-
ing correlations between impacts and physical damage may be
challenging to researchers, causing bias; such challenges may arise
when assessing postevent loss of customers to a business and physi-
cal damage to a business structure.

Reducing Variation in Performance Assessment

By recognizing modal, temporal, and human factors leading to
uncertainty in performance assessment, steps can be taken to reduce
variation associated with these factors. Standardizing damage mea-
surements and conducting longitudinal studies will likely lead to
reductions in assessment uncertainties collectively and enhance
the ability to quantify sources of uncertainty.

Using and assigning common archetypes provides a mechanism
for comparing damages across buildings or infrastructure systems
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by grouping units with similar attributes. Eisenack et al. (2019)
highlighted four major insights on the use of archetypes applicable
in the study of hazard and resilience impacts on infrastructure and
social systems that can be mapped to community assessment. These
insights included the following: (1) identify domains of validity for
specific archetypes, (2) ensure that archetypes can be aggregated to
assess a community impact, (3) clearly establish levels of abstrac-
tion (i.e., differences between essential characteristics of idealized
archetypes and characteristics of actual systems), and (4) determine
relationships between attribute configurations, theoretical models,
and ranges of validity over hazard conditions. The use of arche-
types can be either inductive or deductive in nature. For example,
the US Geological Survey developed detailed structure type catego-
ries based on construction type (e.g., wood frame, steel, reinforced
concrete, reinforced masonry) and details such as low- or high-rise
construction in order to develop a country-specific inventory for
assessing earthquake vulnerability (Jaiswal and Wald 2008). Addi-
tionally, Nofal and van de Lindt (2020b) developed 15 building
archetypes for investigating building vulnerability to flood hazards.
Appropriate use of archetypes should avoid overgeneralization by
identifying reappearing but nonuniversal patterns that hold for
well-defined subsets of cases. There is a need for quality criteria
and practices in the selection and use of archetypes—which may
range from defining built infrastructure to organizational structures
and hazard types—to guide the design of theoretically rigorous and
practical archetype analyses. Challenges in the use of archetypes
include, but are not limited to, demonstration of the validity of
the analysis, delineation of archetype boundaries, and selection
of appropriate attributes to define them. For example, varying haz-
ard intensity–system response relationships may exist among dif-
ferent archetypes. Therefore, grouping archetypes or inaccurately
delineating archetype boundaries can increase the uncertainty in
empirical fragility modeling. When possible, archetypes should
be determined or planned for in designing a postevent assessment
sample.

A standardized performance assessment module with associated
field protocols for disaggregating archetypes and determining
the performance of affected systems can be a breakthrough for
identifying uncertainties over multiple field-based performance
assessments. Proper equipment (e.g., safety gear, horizontal lev-
els, batteries for cameras or specialized equipment), preparation
(e.g., safety briefings, preparations for working in conditions with
no power, water, or restrooms), and documentation can contribute
to the success of data collection, interpretation, and dissemination
(Peraza et al. 2014; Roueche et al. 2019, 2020, 2021). Designing
and adopting valid and consistent measurements will provide dam-
age data that are directly comparable to published and publicly
available data based on the same measurements. For example,
the USDA Food Security Survey Module has been incorporated
into national level surveys (Pérez-Escamilla et al. 2004) as well
as independent studies, because researchers can use a core module
for required measurements and optional modules that can accom-
modate varying needs in field studies (Bickel et al. 2000). Using the
USDA compatible survey modules has enabled researchers to test
the validity and reliability of their own data by comparing them
with national statistics and shared data from other researchers.
In addition, subsidiary damage data offer a comparable layer for
performance assessment outcomes from field studies. For example,
pre- and postevent property tax records can provide an indirect
measurement of damage by decreased appraised values (Zhang and
Peacock 2009; Hamideh et al. 2018). Google street view and sat-
ellite images can also be employed to check preevent physical con-
ditions related to nondisaster damage by deferred maintenance and
housing abandonment (van de Lindt et al. 2018). Last, follow-up

assessments and longitudinal studies can enable comparison of
assessments made at different points in time to evaluate the optimal
timing for measuring initial damage and can provide a means of
quantifying modal, temporal, and human-induced uncertainty.

Discussion and Future Work

This paper introduced a framework for identifying and character-
izing uncertainties in postdisaster performance assessments. The
nature of an event, the type of system being assessed, the scale
of assessment, and mode, timing, and human factors all contrib-
ute to uncertainty in performance assessment. The study did not
attempt to quantify sources of uncertainty but rather articulated
the scope of potential sources of uncertainty and the interdependen-
cies among them. The framework is an attempt to isolate each
source. However, many sources of uncertainty inherently overlap
and may be correlated. For example, cognitive biases are affected
by the mode and timing of performance assessment. More data are
required for robust quantification of the various sources of uncer-
tainty across hazards, events, and geographies and their correla-
tions. It is critical to measure how each source independently
influences performance assessment and how sources combine to
jointly influence performance assessment. A method for addressing
correlations is also needed to identify factors that may increase
other sources of epistemic uncertainty.

Uncertainty quantification for performance assessments
requires a significant and coordinated effort from researchers from
multiple hazards and fields. A foundation for quantifying these un-
certainties has been utilized by FEMA P-695 (FEMA 2009), which
quantified a series of β factors capturing uncertainty for seismic
hazard analysis. Four independent sources of uncertainty were
identified (seismic records, design requirements, test data, and
modeling) to estimate total structural collapse uncertainty. Record-
to-record uncertainty was found using a lognormal distribution,
while uncertainty in design requirements, test data, and modeling
were determined using expert opinions based on the completeness
and robustness of the uncertainty factor and confidence in the basis
of these factors (FEMA 2009). A similar approach could be em-
ployed to inform hazard, damage, and recovery models such that
fragility functions and subsequent use of such functions provide
more accurate depictions of system performance. For example,
comparisons for the same structure of performance assessments
based on field surveys, remote sensing, and/or resident surveys
may identify trends in modal uncertainties, allowing for similar un-
certainty factors to be determined based on the completeness,
robustness, or confidence of a given performance assessment data
set. Longitudinal studies of the same sample (e.g., Sutley et al.
2021; Helgeson et al. 2021) can provide insight into parameters
characterizing temporal effects on damage assessment, while
assessments by multiple researchers of the same sample (or sample
subset) can be analyzed to quantify inherent variability due to hu-
man uncertainties. Identification and quantification of these sources
of uncertainty may also lead to future research on strategies to
reduce uncertainty.

Deliberate uncertainty quantification can be time consuming
and challenging during already time- and resource-intensive re-
connaissance efforts following disasters. Therefore, it may not al-
ways be feasible to document uncertainty parameters during field
reconnaissance, given that field teams prioritize collection of per-
ishable performance data for a sufficient sample. A subset of a
sample may be analyzed in the field or evaluated based on imagery
and other data collected during reconnaissance efforts using
photography or emerging street-view image capture technology
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(e.g., Roueche et al. 2021). However, it is important for teams to
recognize trade-offs and to achieve a balance between uncertainty
quantification and robust data collection. Efforts to characterize
modal uncertainties from photographic and field-based assessments
may allow teams to perform uncertainty characterization after
returning from field efforts focused primarily on data collection.

Recommendations

To fully characterize the modal, temporal, and human uncertainties
affecting postdisaster performance assessments, a comprehensive
data-synthesis effort spanning hazards, geographies, and systems
is required.
• Field teams must seek to identify potential modal, temporal, and

human sources of uncertainty in performance assessments while
taking steps to minimize the effects of these uncertainties on
assessed samples by, for example, using combined modes of
performance assessment.

• When possible, assessment uncertainty should be quantified
and communicated in published data archives, with multiple
researchers participating in quality assurance processes for indi-
vidual records to identify error rates and reduce uncertainties
(e.g., Roueche et al. 2021). Objective damage state classifications
standardized across scale and granularity (i.e., number of damage
states) may facilitate replicability as well as cross-event compari-
son, although targeted efforts utilizing researcher-developed per-
formance assessment schemes can be useful in answering specific
questions.

• Efforts to quantify uncertainty in field-based performance
assessments can allow for uncertainty propagation into data-
driven modeling so that researchers can provide more informed
guidance to practitioners and community stakeholders. Such
efforts are only possible with the support of collective, collabo-
rative community practices toward the replicability and repro-
ducibility of research processes.

• Data sharing and reuse are essential to allow quantification of
performance assessment variation for different events and geog-
raphies. Ongoing initiatives to promote data sharing and reuse
include those taken by Structural Extreme Events Reconnais-
sance (StEER), DesignSafe, and other research groups or reposi-
tories for damage data following suggested replication standards
(data quality assurance and quality control, e.g., Roueche et al.
2019, 2020) as well as the Natural Hazards Center Weather
Ready Research Award Program (e.g., First et al. 2022) and
NHERI CONVERGE training modules (e.g., Adams et al. 2021;
Evans et al. 2021). These efforts can enable repeated perfor-
mance assessments for the quantification of human uncertainty
as well as investigation into modal and temporal uncertainties,
based on data availability.

• Last, intentionally designed longitudinal studies or follow-up
visits to the same sites at different points in time after a disaster
will glean new data and further advance the identification and
quantification of uncertainty in field assessments.
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