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On even-dimensional Euclidean space for integer powers of the positive Laplace op-
erator greater than or equal to half the dimension, a fundamental solution of the 
polyharmonic equation has binomial and logarithmic behavior. Gegenbauer polyno-
mial expansions of these fundamental solutions are obtained through a limit applied 
to Gegenbauer expansions of a power-law fundamental solution of the polyharmonic 
equation. This limit is accomplished through parameter differentiation. By combin-
ing these results with previously derived azimuthal Fourier series expansions for 
these binomial and logarithmic fundamental solutions, we are able to obtain addi-
tion theorems for the azimuthal Fourier coefficients. These logarithmic and binomial 
addition theorems are expressed in Vilenkin polyspherical geodesic polar coordinate 
systems and as well in generalized Hopf coordinates on hyperspheres in arbitrary 
even dimensions.

Published by Elsevier Inc.

1. Introduction

Analysis of polyharmonic operators (natural powers of the Laplace operator) are ubiquitous in many 
areas of pure and applied mathematics and as well in physics and engineering problems. Here we concern 
ourselves with a fundamental solution of the polyharmonic equation (Laplace, biharmonic, etc.), which is 
connected to solutions of the inhomogeneous polyharmonic equation. Solutions to inhomogeneous polyhar-
monic equations are useful in many physical applications including those areas related to Poisson’s equation 
such as Newtonian gravity, electrostatics, magnetostatics, quantum direct and exchange interactions [11, §1], 
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etc. Furthermore, applications of higher-powers of the Laplace operator include such varied areas as minimal 
surfaces [27], continuum mechanics [23], mesh deformation [21], elasticity [24], Stokes flow [22], geometric 
design [34], cubature formulae [31], mean value theorems (cf. Pizzetti’s formula) [28], and Hartree-Fock 
calculations of nuclei [35].

Closed-form expressions for the Fourier expansions of a logarithmic fundamental solution for the poly-
harmonic equation are extremely useful when solving inhomogeneous polyharmonic problems on even-
dimensional Euclidean space, especially when a degree of rotational symmetry is involved. A fundamental 
solution of the polyharmonic equation on d-dimensional Euclidean space Rd has two arguments and there-
fore maps from a 2d-dimensional space to the reals. Solutions to the inhomogeneous polyharmonic equation 
can be obtained by convolution of a fundamental solution with an integrable source distribution. Eigenfunc-
tion decompositions of a fundamental solution reduces the dimension of the resulting convolution integral to 
obtain Dirichlet boundary values in order to solve the resulting elliptic system, replacing it instead by a sum 
or an integral over some parameter space. By taking advantage of rotational or nearly rotational symmetry 
in the azimuthal Fourier decomposition of the source distribution, one reduces the dimensionality of the 
resulting convolution integral and obtains a rapidly convergent Fourier cosine expansion. In the case of an 
axisymmetric (constant angular dependence) source distribution, the entire contribution to the boundary 
values are determined by a single term in the azimuthal Fourier series. These kinds of expansions have 
been previously shown to be extremely effective in solving inhomogeneous problems (see for instance the 
discussion [14] and those papers which cite it).

It is well-known (see for [29, p. 45], [20, p. 202]) that a fundamental solution of the polyharmonic equation 
on d-dimensional Euclidean space Rd is given by combinations of power-law and logarithmic functions 
of the global distance between two points. In [11], the Fourier coefficients of a power-law fundamental 
solution of the polyharmonic equation were obtained. Gegenbauer and Jacobi polynomial expansions of 
a power-law fundamental solution of the polyharmonic equation (which generalize the Fourier expansions 
presented in [11]) were obtained in [9]. The coefficients of these expansions are seen to be given in terms 
of associated Legendre functions. Fourier expansions of a logarithmic and binomial fundamental solution of 
the polyharmonic equation were obtained in [8].

The work presented in this manuscript is concerned with computing the Gegenbauer coefficients of 
binomial and logarithmic fundamental solutions of the polyharmonic equation. One obtains a logarithmic 
fundamental solution for the polyharmonic equation only on even-dimensional Euclidean space and only 
when the power of the Laplace operator is greater than or equal to the dimension divided by two. The 
most familiar example of a logarithmic fundamental solution of the polyharmonic equation occurs in two-
dimensions, for a single-power of the Laplace operator, i.e., Laplace’s equation. In this manuscript we 
present an approach for obtaining the Gegenbauer expansion of binomial and logarithmic fundamental 
solutions of the polyharmonic equation by parameter differentiation of a power-law fundamental solution of 
the polyharmonic equation.

This manuscript is organized as follows. In Section 2 we introduce the fundamental mathematical sets, se-
quences, functions and orthogonal polynomials, which are necessary to understand the mathematical details 
of this manuscript. In Section 3 we describe the properties of binomial and logarithmic fundamental solutions 
of the polyharmonic equation in even-dimensional Euclidean space Rd—and in particular in rotationally-
invariant coordinate systems and in Vilenkin polyspherical coordinates. In Section 4, we derive using a 
limit-derivative approach, the Fourier cosine and Gegenbauer polynomial expansions for the kernels which 
occur in binomial and logarithmic fundamental solutions of the polyharmonic equation in Euclidean space. 
These kernels are (z−x)p and (z−x)p log(z−x), where z > 1, x ∈ (−1, 1) and p ∈ N0. In Section 5 we use 
the results presented in the previous sections to obtain the azimuthal Fourier and Gegenbauer expansions 
for binomial and logarithmic fundamental solution of the polyharmonic equation in rotationally-invariant 
coordinate systems in even-dimensional Euclidean space. In Section 7 we derive addition theorems for the 
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azimuthal Fourier coefficients for the binomial and logarithmic fundamental solutions of the polyharmonic 
equation in of even-dimensional Euclidean space.

2. Preliminaries

Here we introduce some nomenclature which we will rely upon in the text below. Throughout this paper 
we adopt the following set notations: N0 := {0} ∪N = {0, 1, 2, 3, . . .}, and we use the sets Z, R, C to represent 
the integers, real and complex numbers respectively. As is the common convention for associated Legendre 
functions [1, (8.1.1)], for any expression of the form (z2 − 1)α, read this as (z2 − 1)α := (z + 1)α(z − 1)α, 
for any fixed α ∈ C and z ∈ C \ (−∞, 1]. Over the set of complex numbers, we assume that empty sum 
vanishes and the empty product is unity. Given two numbers: r, r′ ∈ R, define

r≶ := min
max{r, r′}. (2.1)

The harmonic number Hn ∈ Q, n ∈ Z, is given by

Hn :=

⎧⎪⎪⎨⎪⎪⎩
0, if n ≤ 0,
n∑

k=1

1
k
, if n ≥ 1.

(2.2)

The harmonic number is related to the polygamma function [18, (5.2.2)] with n ∈ N0 since [25, p. 14]

ψ(n + 1) = −γ + Hn,

where γ ≈ 0.57721 . . . is the Euler-Mascheroni constant [18, (5.2.3)].
The Pochhammer symbol (shifted factorial) is defined for a ∈ C, n ∈ N, such that

(a)0 := 1, (a)n := (a)(a + 1) · · · (a + n− 1). (2.3)

One also has

(−p)n =

⎧⎪⎨⎪⎩
(−1)pp!
(p− n)! if 0 ≤ n ≤ p,

0 if n ≥ p + 1.
(2.4)

Note for z ∈ C, k ∈ N0, the binomial coefficient can be given in terms of the Pochhammer symbol as follows 
[18, (1.2.6)]

(
z

k

)
= (−1)k(−z)k

k! . (2.5)

The Gauss hypergeometric function 2F1 : C ×C × (C \ −N0) ×C \ [1, ∞) [18, Chapter 15] is defined as

2F1

(
a, b

c
; z
)

=
∞∑

n=0

(a)n(b)n
(c)n

zn

n! ,

for |z| < 1 and through analytical continuation for the rest of its domain. If one takes b = c in the Gauss 
hypergeometric function, one produces the binomial theorem [18, (15.4.6)]
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1F0

(
a

− ; z
)

= (1 − z)−a. (2.6)

Associated Legendre functions of the first and second kind Pμ
ν , Q

μ
ν : C \ (−∞, 1] → C [18, (14.3.6-7) and 

Section 14.21] are defined as

Pμ
ν (z) := 1

Γ(1 − μ)

(
z + 1
z − 1

)μ
2

2F1

(
−ν, ν + 1

1 − μ
; 1 − z

2

)
, (2.7)

for |1 − z| < 2,

Qμ
ν (z) :=

√
πeiπμΓ(ν + μ + 1)(z2 − 1)μ

2

2ν+1Γ(ν + 3
2 )zν+μ+1 2F1

(
ν+μ+1

2 , ν+μ+2
2

ν + 3
2

; 1
z2

)
, (2.8)

for |z| > 1, and elsewhere in z by analytic continuation of the Gauss hypergeometric function. A property of 
the associated Legendre functions that we will take advantage of are the Whipple formulae [18, (14.9.16-17)]
(these are equivalent to each other)

Qμ
ν (z) =

√
π

2 eiμπΓ(ν + μ + 1)(z2 − 1)− 1
4P

−ν− 1
2

−μ− 1
2

(
z√

z2 − 1

)
, (2.9)

Pμ
ν (z) = i

√
2
π

eiνπ(z2 − 1)− 1
4

Γ(−ν − μ) Q
−ν− 1

2
−μ− 1

2

(
z√

z2 − 1

)
, (2.10)

for 
z > 0. These allow one to convert between the associated Legendre functions of the first and second 
kind. We also take advantage of [18, (14.9.14)]

Q−μ
ν (z) = e−2iπμ Γ(ν − μ + 1)

Γ(ν + μ + 1)Q
μ
ν (z). (2.11)

Some useful special cases are (cf. [18, (14.5.17)])

Q
1
2
1
2
(z) =

i
√

π/2
(z2 − 1) 1

4 (z +
√
z2 − 1)

, (2.12)

and

Q
3
2
n+ 1

2
(z) =

−i
√

π/2(z + (n + 1)
√
z2 − 1)

(z2 − 1) 3
4 (z +

√
z2 − 1)n+1

, (2.13)

which follows from [18, (14.10.6)] and [18, (14.5.17)]. One also has

Q
μ+ 1

2
μ− 1

2
(z) =

eiπ(μ+ 1
2 )2μ− 1

2 Γ(μ + 1
2 )

(z2 − 1)μ
2 + 1

4
, (2.14)

where in this formula μ ∈ C \ {−1
2 , −1, −3

2 , . . .}, which follows using (2.8) and the binomial theorem (2.6).
Let p, m ∈ N0. In regard to parameter differentiation of associated Legendre functions of the first kind, 

then Szmytkowski derived [33, cf. (5.12)]



H.S. Cohl et al. / J. Math. Anal. Appl. 517 (2023) 126576 5
[
∂

∂ν
Pm
ν (z)

]
ν=p

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
log z + 1

2 + 2H2p −Hp −Hp−m

)
Pm
p (z)

+ (−1)p+m

p−m−1∑
k=0

(−1)k
(2k + 2m + 1)

[
1 + k!(p+m)!

(k+2m)!(p−m)!

]
(p−m− k)(p + m + k + 1) Pm

k+m(z)

+ (−1)p (p + m)!
(p−m)!

m−1∑
k=0

(−1)k(2k + 1)
(p− k)(p + k + 1)P

−m
k (z), if 0 ≤ m ≤ p,

(−1)p+m+1(p + m)!(m− p− 1)!P−m
p (z), if m ≥ p + 1.

(2.15)

One interesting consequence of Szmytkowski’s formula is the following corollary which does not seem to 
have appeared elsewhere in the literature.

Corollary 2.1. Let p, m ∈ N0, 0 ≤ m ≤ p, z ∈ C \ (−∞, 1]. Then

[
∂

∂ν
Q

ν+ 1
2

m− 1
2
(z)
]
ν=p

=
[
2H2p −Hp − γ + iπ + log z +

√
z2 − 1

2
√
z2 − 1

]
Q

p+ 1
2

m− 1
2
(z)

+(p−m)!
p−m−1∑
k=0

(2k + 2m + 1)
[
1 + k!(p+m)!

(k+2m)!(p−m)!

]
k!(p−m− k)(p + m + k + 1) Q

k+m+ 1
2

m− 1
2

(z)

+(p + m)!
m−1∑
k=0

2k + 1
(k + m)!(p− k)(p + k + 1)Q

k+ 1
2

m− 1
2
(z). (2.16)

Proof. Starting with (2.10) for μ = m ∈ N0, and the reflection formula for the gamma function [18, (5.5.3)], 
we have

Pm
ν (z) = −i

(z2 − 1) 1
4

√
2
π

e−iπν

Γ(ν −m + 1)Q
ν+ 1

2
m− 1

2

(
z√

z2 − 1

)
.

Then replace

[
∂

∂ν
Pm
ν (z)

]
ν=p

= −i

(z2 − 1) 1
4

√
2
π

[
∂

∂ν

e−iπν

Γ(ν −m + 1)Q
ν+ 1

2
m− 1

2

(
z√

z2 − 1

)]
ν=p

= −i

(z2 − 1) 1
4

√
2
π

{[
∂

∂ν

e−iπν

Γ(ν −m + 1)

]
ν=p

Q
p+ 1

2
m− 1

2

(
z√

z2 − 1

)
+ (−1)p

(p−m)!

[
∂

∂ν
Q

ν+ 1
2

m− 1
2

(
z√

z2 − 1

)]
ν=p

}
,

with [
∂

∂ν

e−iπν

Γ(ν −m + 1)

]
ν=p

= (−1)p+1

(p−m)! (iπ + ψ(p−m + 1)) ,

in (2.15) for 0 ≤ m ≤ p, together with (2.10), [18, (14.9.14)], and applying the map z �→ z√
z2−1 [6, Appendix 

A], completes the proof. Unfortunately, applying this same method for m ≥ p +1 does not seem to produce 
an analogous result. �
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On the other hand, using the map z �→ z√
z2−1 , (2.15), and (2.9), produces the following useful relation

[
∂

∂ν
Pm
ν

(
z√

z2 − 1

)]
ν=p

= i

√
2
π

(z2 − 1) 1
4

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)p+1

(p−m)!

(
log z +

√
z2 − 1

2
√
z2 − 1

+ 2H2p −Hp −Hp−m

)
Q

p+ 1
2

m− 1
2
(z)

+ (−1)p+1
p−m−1∑
k=0

(2k + 2m + 1)
k!(p−m− k)(p + m + k + 1)

[
1 + k!(p + m)!

(k + 2m)!(p−m)!

]
Q

k+m+ 1
2

m− 1
2

(z)

+ (−1)p+1(p + m)!
(p−m)!

m−1∑
k=0

2k + 1
(k + m)!(p− k)(p + k + 1)Q

k+ 1
2

m− 1
2
(z), if 0 ≤ m ≤ p,

(−1)m(m− p− 1)! Qp+ 1
2

m− 1
2
(z), if m ≥ p + 1.

(2.17)

One main orthogonal polynomial that we use in this manuscript is the Gegenbauer polynomial. The 
Gegenbauer polynomial Cν

n : C → C can be defined by

Cν
n(x) := (2ν)n

n! 2F1

(
−n, n + 2ν

ν + 1
2

; 1 − x

2

)
, (2.18)

where n ∈ N0, ν ∈ (−1
2 , ∞) \ {0}. The Gegenbauer polynomial can also be written in terms of the Ferrers 

function of the first kind (associated Legendre function of the first kind on-the-cut) [18, (18.11.1)]

C
m+ 1

2
n−m (x) = 1

(1
2 )m(−2)m(1 − x2)m

2
Pm
n (x), (2.19)

where x ∈ (−1, 1), n, m ∈ N0 such that 0 ≤ m ≤ n. The Ferrers function of the first kind is defined as [18, 
(14.3.1)]

Pμ
ν (x) = 1

Γ(1 − μ)

(
1 + x

1 − x

) 1
2μ

2F1

(
−ν, ν + 1

1 − μ
; 1 − x

2

)
, (2.20)

where ν, μ ∈ C, x ∈ C \ ((−∞, −1] ∪ [1, ∞)). One may consider the limit as μ → 0 of the Gegenbauer 
polynomial [2, (6.4.13)]

lim
μ→0

n + μ

μ
Cμ

n(x) = εnTn(x) (2.21)

where εn = 2 − δn,0 is the Neumann factor, commonly appearing in Fourier cosine series. The Chebyshev 
polynomial of the first kind Tn : C → C, is defined by

Tn(x) := 2F1

(
−n, n

1
2

; 1 − x

2

)
,

with the useful Fourier cosine representation Tn(cos θ) = cos(nθ). The Chebyshev polynomial of the second 
kind Un : C → C, is defined by [18, (18.7.4)] Un(x) := C1

n(x).
For generalized Hopf coordinates (see Section 6.2 below) we use Jacobi polynomials which are defined as 

[18, (18.5.7)]

P (α,β)
n (z) = (α + 1)n

2F1

(
−n, α + β + n + 1; 1 − z

)
.

n! α + 1 2
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Theorem 2.2. Let α, β, n ∈ N0, z ∈ C. Then the Jacobi polynomials have the following symmetry in param-
eter relations

P (α,β)
n (z) = (α + n)!(β + n)!

n!(α + β + n)!

(
z − 1

2

)−α

P
(−α,β)
α+n (z), (2.22)

P (α,β)
n (z) = (α + n)!(β + n)!

(α + β + n)!n!

(
z + 1

2

)−β

P
(α,−β)
β+n (z). (2.23)

Proof. For (2.22), start with [25, p. 212]

P (α,β)
n (z) =

(
n + β

n

)(
z − 1

2

)n

2F1

(
−n,−n− α

β + 1 ; z + 1
z − 1

)
,

replace α �→ −α, then n �→ n + α. Then using (2.5), and the reflection formula [18, (5.5.3)], the final result 
follows since for x, y ∈ Z, one has

lim
ε→0

sin(π(x + y + 2ε))
sin(π(x + ε)) = cos(πy) = (−1)y.

For (2.23) use [18, (18.5.8)]

P (α,β)
n (z) = (α + 1)n

n!

(
z + 1

2

)n

2F1

(
−n,−n− β

α + 1 ; z − 1
z + 1

)
,

and replace first β �→ −β, and then n �→ n + β. �
Corollary 2.3. Let α, β ∈ Z, n ∈ N0, z ∈ C. Then the Jacobi polynomials have the following symmetry in 
parameter relation

P (α,β)
n (z) =

(
z − 1

2

)−α(
z + 1

2

)−β

P
(−α,−β)
α+β+n (z). (2.24)

Proof. For (2.24) use (2.22) and then substitute (2.23) to replace the Jacobi polynomial which appears on the 
right-hand side. Notice that the restriction α, β ∈ N0 is relaxed to α, β ∈ Z in the resulting expression. �
3. Binomial and logarithmic kernels for the even dimensional fundamental solution of the polyharmonic 
equation in Euclidean space

If x, x′ ∈ Rd then the Euclidean inner product (·, ·) : Rd ×Rd → R defined by

(x,x′) := x1x
′
1 + · · · + xdx

′
d, (3.1)

induces a norm (the Euclidean norm) ‖ · ‖ : Rd → [0, ∞), on Rd, given by ‖x‖ :=
√

(x,x′). If Φ : Rd → R

satisfies the polyharmonic equation given by

(−Δ)kΦ(x) = 0, (3.2)

where k ∈ N and Φ ∈ C2k(Rd), x ∈ Rd, and Δ : Cp(Rd) → Cp−2(Rd) for p ≥ 2, is the Laplace operator on 
Rd defined by Δ := ∂2

2 + · · ·+ ∂2
2 . Then Φ is referred to as polyharmonic, and (−Δ)k is referred to as the 
∂x1 ∂xd
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polyharmonic operator. If the power k of the Laplace operator equals two, then (3.2) is referred to as the 
biharmonic equation and Φ is called biharmonic. The inhomogeneous polyharmonic equation is given by

(−Δ)kΦ(x) = ρ(x), (3.3)

where we take ρ to be an integrable function so that a solution to (3.3) exists. A fundamental solution for 
the polyharmonic equation on Rd is a function Gd

k : (Rd × Rd) \ {(x, x) : x ∈ Rd} → R which satisfies the 
distributional equation

(−Δ)kGd
k(x,x′) = δ(x − x′), (3.4)

where δ is the Dirac delta distribution and x′ ∈ Rd. One might want to obtain solutions Φ : Rd → R to the 
inhomogeneous polyharmonic equation (3.3) given an integrable function ρ ∈ C2

c (Rd). An integral solution 
of the polyharmonic equation is given by

Φ(x) =
∫
Rd

Gd
k(x,x′)ρ(x′) dx′ (3.5)

(see [5, (3.13)]). In order to solve (3.3) on some simply-connected domain Ω ⊆ Rd, one may require Dirichlet 
boundary values on the boundary ∂Ω. By using (3.5), one may obtain the Dirichlet boundary values in order 
to solve (3.3), given a fundamental solution of the polyharmonic equation, by convolution of a fundamental 
solution of that partial differential operator with the source distribution over Ω.

Let n ∈ N and recall the definition of the harmonic number Hn :=
∑n

k=1
1
k . Then a fundamental solution 

of the polyharmonic equation (3.2) on Euclidean space Rd is given by (see for instance [4, (2.1)], [8, Theorem 
1], [31, Section II.2])

Gd
k(x,x′) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)k+ d

2 +1 ‖x − x′‖2k−d

(k − 1)!
(
k − d

2
)
! 22k−1π

d
2

(
log ‖x − x′‖ − βk− d

2 ,d

)
, if d even, k ≥ d

2 ,

Γ(d2 − k)‖x − x′‖2k−d

(k − 1)! 22kπ
d
2

, otherwise,
(3.6)

where βp,d ∈ Q is defined as βp,d := 1
2 (Hp + H d

2 +p−1 −H d
2−1).

Remark 3.1. In regard to a logarithmic fundamental solution of the polyharmonic equation (d even, k ≥ d
2 ), 

note that [31, Section II.2] is missing the term proportional to ‖x − x′‖2k−d. This term is in the kernel 
of the polyharmonic operator (−Δ)k, so for any constant multiple of this term βp,d may be added to a 
fundamental solution of the polyharmonic equation. Our choice for this constant is given so that

−ΔGd
k = Gd

k−1, (3.7)

is satisfied for all k > d
2 , and that for k = d

2 , the constant vanishes. Boyling’s fundamental solution satisfies 
(3.7) for all k > d

2 , but is missing the term proportional to H d
2−1, and therefore only vanishes when k = d

2
for d = 2. Sobolev does not include this constant term, so for him Gd

k is purely logarithmic for all k ≥ d
2 , 

d ≥ 2 even. However in that case (3.7) is not satisfied for k > d
2 .

We consider parametrizations of Euclidean space Rd which are given in terms of coordinate systems whose 
coordinates are curvilinear, i.e., based on some transformation which converts the Cartesian coordinates 
to a coordinate system with the same number of coordinates in which the coordinate lines are curved. 
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We consider solutions of the polyharmonic equation (3.2) in a curvilinear coordinate system, which arises 
through the theory of separation of variables. We refer to coordinate systems which yield solutions through 
the separation of variables method as separable. In this manuscript, we restrict our attention to separable 
rotationally-invariant coordinate systems for the polyharmonic equation on Rd which are given by

x1 = x1(ξ1, . . . , ξd−1)
...

xd−2 = xd−2(ξ1, . . . , ξd−1)
xd−1 = R(ξ1, . . . , ξd−1) cosφ

xd = R(ξ1, . . . , ξd−1) sinφ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.8)

These coordinate systems are described by d coordinates: an angle φ ∈ R plus (d −1)-curvilinear coordinates 
(ξ1, . . . , ξd−1). Rotationally-invariant coordinate systems parametrize points on the (d −1)-dimensional half-
hyperplane given by φ = const and R ≥ 0 using the curvilinear coordinates (ξ1, . . . , ξd−1). A separable 
rotationally-invariant coordinate system transforms the polyharmonic equation into a set of d-uncoupled 
ordinary differential equations with separation constants m ∈ Z and kj for 1 ≤ j ≤ d − 2. For a separable 
rotationally-invariant coordinate system, this uncoupling is accomplished, in general, by assuming a solution 
to (3.2) of the form

Φ(x) = eimφ R(ξ1, . . . , ξd−1)
d−1∏
i=1

Ai(ξi,m, k1, . . . , kd−2),

where the properties of the functions R and Ai, for 1 ≤ i ≤ d − 1, and the constants kj for 1 ≤ j ≤ d − 2, 
depend on the specific separable rotationally-invariant coordinate system in question. Separable coordinate 
systems are divided into two separate classes, those which are simply separable (R = const), and those 
which are R-separable. For an extensive description of the theory of separation of variables see [26].

The Euclidean distance between two points x, x′ ∈ Rd, expressed in a rotationally-invariant coordinate 
system, is given by

‖x − x′‖ =
√

2RR′ [χ− cos(φ− φ′)]
1
2 , (3.9)

where the hypertoroidal parameter χ > 1, is given by

χ := χ(R,R′, x1, . . . , xd−2, x
′
1, . . . , x

′
d−2) :=

R2 + R′2 +
d−2∑
k=1

(xk − x′
k)2

2RR′ , (3.10)

and R, R′ ∈ (0, ∞) are defined in (3.8). The hypersurfaces given by χ = const are independent of coordinate 
system and represent hypertori of revolution.

One type of coordinate system which parametrizes points in d-dimensional Euclidean space which has a 
high degree of symmetry are Vilenkin’s polyspherical coordinates (for a detailed description of Vilenkin’s 
polyspherical coordinates, see [9, Appendix B and references therein]). These curvilinear orthogonal coor-
dinate systems are composed of a radius r ∈ [0, ∞) and (d − 1) angles which must have domains given 
in {[0, 12π], [0, π], [−π, π)}. Using these coordinate systems, we can also express the distance between two 
points as

‖x − x′‖ =
√

2rr′(ζ − cos γ) 1
2 , (3.11)
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where ζ : [0, ∞)2 → [1, ∞) is defined by

ζ = ζ(r, r′) := r2 + r′ 2

2rr′ , (3.12)

and the separation angle γ ∈ [0, π] is defined through the relation

cos γ := (x,x′)
‖x‖‖x′‖ = (x,x′)

rr′
, (3.13)

using the Euclidean inner product and norm. Note that

√
ζ2 − 1 =

r2
> − r2

<

2rr′ . (3.14)

From (3.6) we see that apart from a multiplicative constant, the algebraic expression of a fundamental 
solution for the polyharmonic equation on Euclidean space Rd for d even, k ≥ d

2 , is given by ldk : (Rd×Rd) \
{(x, x) : x ∈ Rd} → R defined by

ldk(x,x′) := ‖x − x′‖2k−d
(
log ‖x − x′‖ − βk− d

2 ,d

)
. (3.15)

By expressing ldk in a rotationally-invariant coordinate system (3.8) one has the following result. Let p =
k − d/2 ∈ N0. Then

ldk(x,x′) = (2RR′)p
(

1
2 log (2RR′) − βp,d

)
(χ− cos(φ− φ′))p

+1
2 (2RR′)p (χ− cos(φ− φ′))p log (χ− cos(φ− φ′)) . (3.16)

Also, in a Vilenkin polyspherical coordinate system, one has

ldk(x,x′) = (2rr′)p
(

1
2 log (2rr′) − βp,d

)
(ζ − cos γ)p + 1

2 (2rr′)p (ζ − cos γ)p log (ζ − cos γ) . (3.17)

For the polyharmonic equation on even-dimensional Euclidean space Rd, if 1 ≤ k ≤ d
2 − 1 then a 

fundamental solution is given by hdk : (Rd × Rd) \ {(x, x) : x ∈ Rd} → R which is a power-law given by 
hdk(x, x′) = ‖x − x′‖2k−d, where 2k − d ∈ −2N. For this range of k values then 2k − d is a negative even 
integer and this case and all its implications are fully covered by the material presented in [9].

For the case in which a logarithmic fundamental solution exists, namely k ≥ d
2 , then 2k − d ∈ 2N is a 

positive even integer and the kernel jdk : Rd ×Rd → R

jdk(x,x′) := ‖x − x′‖2k−d, (3.18)

corresponds to a binomial expression (z − x)p, where p = k − d/2 ∈ N0 and its series expansion either in 
terms of Chebyshev polynomials of the first kind or in terms of Gegenbauer polynomials truncates in a finite 
number of terms. By expressing jdk in a rotationally-invariant coordinate system there is

jdk(x,x′) = (2RR′)p [χ− cos(φ− φ′)]p , (3.19)
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and expressing jdk in a Vilenkin polyspherical coordinate system one has

jdk(x,x′) = (2rr′)p [ζ − cos γ]p , (3.20)

where p = k − d/2 ∈ N0.

4. Fourier and Gegenbauer expansions of binomial and logarithmic kernels

We require Gegenbauer (polynomial) expansions for kernels which naturally arise in a logarithmic funda-
mental solution of the polyharmonic equation in Vilenkin’s polyspherical coordinates in even-dimensional 
Euclidean space. Since these coordinates are rotationally invariant, in this study of addition theorems in these 
coordinates, we require Fourier cosine (Chebyshev polynomials of the first kind) and Gegenbauer polynomial 
expansions (see [9]). By necessity, here we treat the binomial (z − x)p and logarithmic (z − x)p log(z − x)
kernels, where x, z, ν ∈ C and p ∈ N0. We have previously derived Fourier expansions of the binomial [11, 
(3.10)] and the logarithmic [8, (20), (26)] kernels. We now treat those corresponding Gegenbauer polynomial 
expansions. By examining (3.16), (3.17), (3.19), we see that for the computation of Fourier and Gegenbauer 
expansions, we are interested in the Fourier and Gegenbauer expansions of the Euler and logarithmic kernels.

The formulas which are presented below all rely in one way or another on the following important 
Gegenbauer polynomial expansion which can be found in [9, (3.4)], namely

(z − x)−ν = 2μ+ 1
2 Γ(μ)√

π Γ(ν)
eiπ(μ−ν+ 1

2 )(z2 − 1)
μ−ν

2 + 1
4

∞∑
n=0

(n + μ)Cμ
n(x)Qν−μ− 1

2
n+μ− 1

2
(z), (4.1)

where z ∈ C \ (−∞, 1], and x ∈ C lies inside the ellipse with foci at ±1 that passes through z. This result 
and the following results have the curious property of z, x lying on ellipses with foci at ±1 and this is due 
to the important theorem of Szegő, namely [32, Theorem 12.7.3, Expansion of an analytic function in terms 
of orthogonal polynomials].

Lemma 4.1. Let p ∈ N0, z ∈ C \ (−∞, 1], x ∈ C. Then the expansion of Euler kernel in Chebyshev 
polynomials of the first kind is given by the following binomial expansion (see [11, (4.4)])

(z − x)p = i(−1)p+1
√

2
π
p!(z2 − 1)

p
2 + 1

4

p∑
n=0

(−1)nεnTn(x)
(p− n)!(p + n)!Q

p+ 1
2

n− 1
2
(z). (4.2)

Proof. This truncated series result follows from (4.1) with −ν = p ∈ N0 and then taking μ → 0 with 
(2.21). �

The Fourier cosine expansion of the important logarithmic kernel is given in the following lemma.

Lemma 4.2. Let p ∈ N0, z ∈ C \ (−∞, 1], z − x ∈ C \ (−∞, 0], x lies inside the ellipse with foci at ±1 that 
passes through z. Then

(z − x)p log(z − x) = (z − x)p
(

log z +
√
z2 − 1
2 + 2H2p

)

+i

√
2
π

(−1)pp!
(
z2 − 1

) p
2 + 1

4

p∑ εn(−1)nTn(x)
(p− n)!(p + n)! (Hp+n + Hp−n)Qp+ 1

2
n− 1

2
(z)
n=0
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+i

√
2
π

(−1)p+1p!
(
z2 − 1

) p
2 + 1

4

p−1∑
n=0

εn(−1)nTn(x)
(p + n)!

p−n−1∑
k=0

(2n + 2k + 1)
[
1 + k!(p+n)!

(2n+k)!(p−n)!

]
k!(p− n− k)(p + n + k + 1) Q

n+k+ 1
2

n− 1
2

(z)

+i
2 3

2
√
π

(−1)p+1p!
(
z2 − 1

) p
2 + 1

4

p∑
n=1

(−1)nTn(x)
(p− n)!

n−1∑
k=0

2k + 1
(n + k)!(p− k)(p + k + 1)Q

k+ 1
2

n− 1
2
(z)

+i
2 3

2
√
π
p!
(
z2 − 1

) p
2 + 1

4

∞∑
n=p+1

(n− p− 1)!Tn(x)
(p + n)! Q

p+ 1
2

n− 1
2
(z). (4.3)

Proof. Use [8, (26)], with (2.9), (2.10), (2.11). �
The following consequence of (4.3) is also given in [25, p. 259].

Corollary 4.3. Let z ∈ C \ (−∞, 1], z − x ∈ C \ (−∞, 0], x lies inside the ellipse with foci at ±1 that passes 
through z. Then

log(z − x) = log z +
√
z2 − 1
2 − 2

∞∑
n=1

Tn(x)
n

1
(z +

√
z2 − 1)n

.

Proof. Let p = 0 in (4.3) and use [18, (14.5.17)]. This completes the proof. �
The Gegenbauer polynomial expansion of the binomial is given in the following lemma.

Lemma 4.4. Let p ∈ N0, μ ∈ (−1
2 , ∞) \ {0}, z ∈ C \ (−∞, 1], x ∈ C. Then

(z − x)p = 2μ+ 1
2

√
π

eiπ(p−μ− 1
2 )Γ(μ)p!(z2 − 1)

p+μ
2 + 1

4

p∑
n=0

(−1)n(n + μ)Cμ
n(x)

(p− n)!Γ(n + p + 2μ + 1)Q
p+μ+ 1

2
n+μ− 1

2
(z). (4.4)

Proof. Starting with [9, (3.4)], (4.1), we take the limit ν → −p, producing

(z − x)p = 2μ+ 1
2

√
π

eiπ(μ+p+ 1
2 )Γ(μ)(z2 − 1)

μ+p
2 + 1

4

∞∑
n=0

(n + μ)Cμ
n(x) lim

ν→−p

1
Γ(ν)Q

ν−μ− 1
2

n+μ− 1
2
(z). (4.5)

By using (2.11), (2.4), we have

lim
ν→−p

1
Γ(ν)Q

ν−μ− 1
2

n+μ− 1
2
(z) =

⎧⎪⎨⎪⎩
(−1)n+1e−2iπμp!

(p− n)!Γ(n + p + 2μ + 1)Q
p+μ+ 1

2
n+μ− 1

2
(z) if 0 ≤ n ≤ p,

0 if n ≥ p + 1.

Using this limit in (4.5) completes the proof. �
Note that the above lemma generalizes (4.2) by the limit formula (2.21).
The Gegenbauer polynomial expansion of the logarithmic kernel is given as follows.

Lemma 4.5. Let p ∈ N0, μ ∈ N, z ∈ C \ (−∞, 1], z − x ∈ C \ (−∞, 0], x lies inside the ellipse with foci at 
±1 that passes through z. Then
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(z − x)p log(z − x) = (z − x)p
(

log z +
√
z2 − 1
2 + 2H2p+2μ + Hp −Hp+μ

)

+i(−1)p+μ 2μ+ 1
2

√
π

p!(μ− 1)!
(
z2 − 1

) p+μ
2 + 1

4

p∑
n=0

(n + μ)(−1)nCμ
n(x)

(p− n)!(p + n + 2μ)! (Hp+n+2μ + Hp−n)Qp+μ+ 1
2

n+μ− 1
2
(z)

+i(−1)p+μ+1 2μ+ 1
2

√
π

p!(μ− 1)!
(
z2 − 1

) p+μ
2 + 1

4

p−1∑
n=0

(n + μ)(−1)nCμ
n(x)

(p + n + 2μ)!

×
p−n−1∑
k=0

(2n + 2k + 2μ + 1)
k!(p− n− k)(p + n + k + 2μ + 1)

[
1 + k!(p + n + 2μ)!

(k + 2n + 2μ)!(p− n)!

]
Q

k+n+μ+ 1
2

n+μ− 1
2

(z)

+i(−1)p+μ+1 2μ+ 1
2

√
π

p!(μ− 1)!
(
z2 − 1

) p+μ
2 + 1

4

p∑
n=0

(n + μ)(−1)nCμ
n(x)

(p− n)!

×
n+μ−1∑
k=0

2k + 1
(n + k + μ)!(p + μ− k)(p + k + μ + 1)Q

k+ 1
2

n+μ− 1
2
(z)

+i(−1)μ 2μ+ 1
2

√
π

p!(μ− 1)!
(
z2 − 1

) p+μ
2 + 1

4

∞∑
n=p+1

(n + μ)(n− p− 1)!Cμ
n(x)

(p + n + 2μ)! Q
p+μ+ 1

2
n+μ− 1

2
(z). (4.6)

Proof. Let ν ∈ C, μ ∈ (−1
2 , ∞) \ {0}, z ∈ C \ (−∞, 1] and x ∈ C lies inside the ellipse with foci at ±1 that 

passes through z. Using (4.1) and (2.9), one has

(z − x)ν = 2μΓ(μ)(z2 − 1)
ν+μ

2

∞∑
n=0

(n + μ)(−ν)nP−n−μ
ν+μ

(
z√

z2 − 1

)
Cμ

n(x). (4.7)

Let p ∈ N0. One then may use the following identity

(z − x)p log(z − x) = lim
ν→0

∂

∂ν
(z − x)ν+p,

which upon substituting ν �→ ν + p in (4.7) produces

(z−x)p log(z−x) = 2μ(z2−1)
μ+p

2

∞∑
n=0

(n+μ)(−1)nCμ
n(x) lim

ν→0

∂

∂ν

(z2 − 1) ν
2 Γ(ν + p + 1)

Γ(ν + p + 2μ + 1) Pn+μ
ν+p+μ

(
z√

z2 − 1

)
.

Performing the derivatives, one obtains

∂

∂ν

(z2 − 1) ν
2 Γ(ν + p + 1)

Γ(ν + p + 2μ + 1) Pn+μ
ν+p+μ

(
z√

z2 − 1

)

= (z2 − 1) ν
2 Γ(ν + p + 1)

Γ(ν + p + 2μ + 1)

(
log
√

z2 − 1 + ψ(p + ν + 1) − ψ(p + n + ν + 2μ + 1)
)
Pn+μ
ν+p+μ

(
z√

z2 − 1

)

+(z2 − 1) ν
2 Γ(ν + p + 1)

Γ(ν + p + 2μ + 1)
∂

∂ν
Pn+μ
ν+p+μ

(
z√

z2 − 1

)
,

and after taking the limit one has
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lim
ν→0

∂

∂ν

p!
Γ(p + 2μ + 1)P

n+μ
p+μ

(
z√

z2 − 1

)

= p!
Γ(p + 2μ + 1)

(
log
√
z2 − 1 + ψ(p + 1) − ψ(p + n + 2μ + 1)

)
Pn+μ
p+μ

(
z√

z2 − 1

)

+ p!
Γ(p + 2μ + 1)

[
∂

∂ν
Pn+μ
ν

(
z√

z2 − 1

)]
ν=p+μ

.

For general μ, the parameter derivative of the associated Legendre function of the first kind given in 
the above equation is not known. However for μ ∈ N0 it is known (see (2.15)). The expansion for the 
logarithmic kernel for μ = 0 corresponds to the Chebyshev polynomial of the first kind (see (2.21)), and 
therefore corresponds to (4.3). Hence from this point forward we treat μ ∈ N, and the result follows using 
(2.17). �

One interesting consequence of (4.6) is the following expansion.

Corollary 4.6. Let m ∈ N, z ∈ C \ (−∞, 1], z − x ∈ C \ (−∞, 0], x lies inside the ellipse with foci at ±1
that passes through z. Then

log(z − x) = log z +
√
z2 − 1
2 + H2m −Hm

+i(−1)m+1 2m+ 1
2

√
π

m!(z2 − 1)m
2 + 1

4

m−1∑
k=0

2k + 1
(k + m)!(m− k)(k + m + 1)Q

k+ 1
2

m− 1
2
(z)

+i(−1)m 2m+ 1
2

√
π

(m− 1)!(z2 − 1)m
2 + 1

4

∞∑
n=1

(n + m)n!Cm
n (x)

(2m + n)! Q
m+ 1

2
n+m− 1

2
(z). (4.8)

Proof. Let p = 0 in (4.6) using the duplication theorem [18, (5.5.5)], and (2.14), completes the proof. �
Corollary 4.7. Let z ∈ C \ (−∞, 1], z − x ∈ C \ (−∞, 0], x lies inside the ellipse with foci at ±1 that passes 
through z. Then

log(z − x) = log z +
√
z2 − 1
2 + 1

2 −
√
z2 − 1

z +
√
z2 − 1

− 2
∞∑

n=1

Un(x)
n(n + 2)

z + (n + 1)
√
z2 − 1

(z +
√
z2 − 1)n+1

.

Proof. Let μ = 1 in (4.8), then use (2.12), (2.13). Simplification completes the proof. �
5. Azimuthal Fourier and Gegenbauer polynomial expansions of binomial and logarithmic fundamental 
solutions

The behavior of a logarithmic fundamental solution of the polyharmonic equation on even-dimensional 
Euclidean space Rd in a rotationally-invariant coordinate system and in a Vilenkin polyspherical coordinate 
system are given respectively by (3.16), (3.17). For rotationally-invariant coordinate systems (3.8), recall 
that R, R′ are the cylindrical radii and φ, φ′ are azimuthal angles and that χ, the toroidal parameter, is 
defined in (3.10). Furthermore, for the polyharmonic equation (3.2), k ∈ N is the power of the positive 
Laplacian. For the definitions of the special functions and numbers used in the results presented in this 
section, see Section 2. We now present the expression for the azimuthal Fourier expansion of a logarithmic 
fundamental solution of the polyharmonic equation.
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Theorem 5.1. Let x, x′ ∈ Rd with d ∈ 2N, p = k − d/2 ∈ N0. Then the azimuthal Fourier expansion of 
a logarithmic fundamental solution of the polyharmonic equation ldk in a rotationally-invariant coordinate 
system on Euclidean space Rd is given by

ldk(x,x′) = ip!√
2π

(2RR′)p (χ2 − 1)
p
2 + 1

4

[(
log (RR′) + log(χ +

√
χ2 − 1) + 2H2p −Hp −H d

2 +p−1 + H d
2−1

)

×(−1)p+1
p∑

m=0

εm(−1)m cos (m(φ− φ′))
(p−m)!(p + m)! Q

p+ 1
2

m− 1
2
(χ)

+(−1)p
p∑

m=0

εm(−1)m cos (m(φ− φ′))
(p−m)!(p + m)! (Hp+m + Hp−m)Qp+ 1

2
m− 1

2
(χ)

+(−1)p+1
p−1∑
m=0

εm(−1)m cos (m(φ− φ′))
(p + m)!

p−m−1∑
k=0

(2m + 2k + 1)
[
1 + k!(p+m)!

(2m+k)!(p−m)!

]
k!(p−m− k)(p + m + k + 1) Q

m+k+ 1
2

m− 1
2

(χ)

+2(−1)p+1
p∑

m=1

(−1)m cos (m(φ− φ′))
(p−m)!

m−1∑
k=0

2k + 1
(m + k)!(p− k)(p + k + 1)Q

k+ 1
2

m− 1
2
(χ)

+2
∞∑

m=p+1

(m− p− 1)! cos (m(φ− φ′))
(p + m)! Q

p+ 1
2

m− 1
2
(χ)
]
. (5.1)

Proof. Beginning with (3.16), applying the identities (4.2), (4.3) and simplifying, completes the proof. �
A logarithmic fundamental solution of the polyharmonic equation expressed in a Vilenkin polyspheri-

cal coordinate system is given by (3.17). Also recall that r, r′ are the hyperspherical radii and cos γ =
(x, x′)/(‖x‖‖x′‖) (3.13) is the separation angle (3.13) in a Vilenkin polyspherical coordinate system [9, 
Appendix B and references therein], and that ζ = (r2 + r′ 2)/(2rr′) is defined in (3.12). We now give the 
Gegenbauer expansion for a logarithmic fundamental solution of the polyharmonic equation in Vilenkin 
polyspherical coordinate systems.

Theorem 5.2. Let x, x′ ∈ Rd with d ∈ 2N, p = k−d/2 ∈ N0. Then the Gegenbauer expansion of a logarithmic 
fundamental solution of the polyharmonic equation ldk on even-dimensional Euclidean space Rd in a Vilenkin 
polyspherical coordinate system is given by

ldk(x,x′) = i
2μ− 1

2
√
π

p!Γ(μ)(ζ2 − 1)
p+μ

2 + 1
4 (2rr′)p

×
[(

log (rr′) + log
(
ζ +
√
ζ2 − 1

)
+ 2H2p+2μ + Hp −Hp+μ − 2βp,d

)

×(−1)p+μ+1
p∑

l=0

(−1)l(l + μ)Cμ
l (cos γ)

(p− l)!(l + p + 2μ)! Q
p+μ+ 1

2
l+μ− 1

2
(ζ).

+(−1)p+μ

p∑
l=0

(−1)l(l + μ)Cμ
l (cos γ)

(p− l)!(p + l + 2μ)! (Hp+l+2μ + Hp−l)Q
p+μ+ 1

2
l+μ− 1

2
(ζ)

+(−1)p+μ+1
p−1∑ (−1)l(l + μ)Cμ

l (cos γ)
(p + l + 2μ)!
l=0
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×
p−l−1∑
k=0

(2l + 2k + 2μ + 1)
k!(p− l − k)(p + l + k + 2μ + 1)

[
1 + k!(p + l + 2μ)!

(k + 2l + 2μ)!(p− l)!

]
Q

k+l+μ+ 1
2

l+μ− 1
2

(ζ)

+(−1)p+μ+1
p∑

l=0

(−1)l(l + μ)Cμ
l (cos γ)

(p− l)!

l+μ−1∑
k=0

2k + 1
(l + k + μ)!(p + μ− k)(p + k + μ + 1)Q

k+ 1
2

l+μ− 1
2
(ζ)

+(−1)μ
∞∑

l=p+1

(l + μ)(l − p− 1)!Cμ
l (cos γ)

(p + l + 2μ)! Q
p+μ+ 1

2
l+μ− 1

2
(ζ)
]
. (5.2)

Proof. Applying the identities (4.6) and (4.4) to (3.17) completes the proof. �
For the polyharmonic equation on even-dimensional Euclidean space Rd with k ≥ d

2 , apart from mul-
tiplicative constants, the algebraic expression for a binomial fundamental solution of the polyharmonic 
equation jdk : Rd × Rd → R is given by jdk(x, x′) := ‖x − x′‖2k−d, with 2k − d ∈ 2N. By expressing jdk in a 
rotationally-invariant coordinate system one has (3.19) which leads to the following result for an azimuthal 
Fourier expansion of the binomial fundamental solution of the polyharmonic equation.

Theorem 5.3. Let x, x′ ∈ Rd with d ∈ 2N, p = k − d/2 ∈ N0. Then the azimuthal Fourier expansion of a 
binomial fundamental solution of the polyharmonic equation jdk on Euclidean space Rd is given by

jdk(x,x′) = i(−1)p+1
√

2
π
p!(2RR′)p(χ2 − 1)

p
2 + 1

4

p∑
n=0

(−1)nεn cos (n(φ− φ′))
(p− n)!(p + n)! Q

p+ 1
2

n− 1
2
(χ). (5.3)

Proof. Starting with (3.19), and using the binomial expansion (4.2) with the Fourier cosine representation 
of the Chebyshev polynomials of the first kind completes the proof. �

The expression jdk can also be represented in any Vilenkin polyspherical coordinate system (3.20) which 
likewise can be expanded using Gegenbauer polynomials. This is presented as in the following result.

Theorem 5.4. Let x, x′ ∈ Rd with d ∈ 2N, p = k− d/2 ∈ N0. Then the Gegenbauer expansion of a binomial 
fundamental solution of the polyharmonic equation jdk on Euclidean space Rd is given by

jdk(x,x′) = i(−1)p− d
2
2 d−1

2
√
π

p!(d2 − 2)!(2rr′)p
(
r2
> − r2

<

2rr′

)p+ d−1
2

×
p∑

n=0

(−1)n(n + d
2 − 1)C

d
2−1
n (cos γ)

(p− n)!(n + p + d− 2)! Q
p+ d−1

2
n+ d−3

2
(ζ). (5.4)

Proof. The Gegenbauer polynomial expansion of Lemma 4.4 with μ = d/2 − 1, is combined with a fun-
damental solution written in a Vilenkin polyspherical coordinate system and using (3.14) completes the 
proof. �
6. Global analysis on Rd of standard and generalized Hopf Vilenkin polyspherical coordinate systems

Now we study some of the particular details which will arise in the study of binomial and logarithmic 
fundamental solutions of the polyharmonic equation in standard polyspherical coordinates and generalized 
Hopf coordinates. We will utilize the addition theorem for hyperspherical harmonics to expand the critical 
Gegenbauer polynomial (that with an order equal to d/2 −1) over the product of normalized hyperspherical 
harmonics in that particular Vilenkin polyspherical coordinate system. The reason we used the critical order 
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d/2 −1 is that these Gegenbauer polynomials with this particular order provide a basis for analytic solutions 
on the hypersphere Sd−1

r . For d ≥ 3, the addition theorem for hyperspherical harmonics is given by (for a 
proof see [36], [19, §10.2.1])

Cd/2−1
n (cos γ) = 2(d− 2)πd/2

(2n + d− 2)Γ(d/2)
∑
K

Y K
n (x̂)Y K

n (x̂′), (6.1)

where K stands for a set of (d −2)-quantum numbers identifying harmonics for a given value of n ∈ N0, and 
cos γ is the cosine of the separation angle (3.13) between two arbitrary vectors x, x′ ∈ Rd. The functions Y K

n :
Sd−1 → C are the normalized hyperspherical harmonics. Normalization of the hyperspherical harmonics is 
achieved through the integral

∫
Sd−1

Y K
n (x̂)Y K

n (x̂)dΩ = 1,

where dΩ is the Riemannian volume measure on Sd−1.
First we will treat standard polyspherical coordinates and then we will treat generalized Hopf coordinates. 

Both of these polyspherical coordinate systems and many of their various properties are described in [9, 
Appendix B].

6.1. Standard polyspherical coordinates

Here we review details connected with standard Vilenkin polyspherical coordinates. These coordinates 
and as well the general Vilenkin polyspherical coordinates are described carefully in [9, Appendix B], and 
we will not depart from the description and usage of standard polyspherical coordinates described therein. 
Standard polyspherical coordinates are a generalization of the spherical coordinate system that is most 
commonly encountered in multi-dimensional calculus. What we refer to as standard polyspherical coordinates
are given by

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

x3 = r sin θ1 sin θ2 cos θ3,

· · · · · · · · · · · · · · · · · · · · · · · ·

xd−2 = r sin θ1 · · · sin θd−3 cos θd−2,

xd−1 = r sin θ1 · · · sin θd−3 sin θd−2 cosφ,

xd = r sin θ1 · · · sin θd−3 sin θd−2 sinφ, (6.2)

where θi ∈ [0, π] for 1 ≤ i ≤ d − 2 and φ ∈ [−π, π). In standard polyspherical coordinates, the normalized 
hyperspherical harmonics can be written as [9, (B.19)]

Y K
l (x̂) = eimφ

√
2π

d−2∏
j=1

Θd
j (lj , lj+1; θj), (6.3)

where [9, (B.20)]
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Θd
j (lj , lj+1; θj) :=

Γ
(
lj+1 + d−j+1

2

)
2lj+1 + d− j − 1

√
22lj+1+d−j−1(2lj + d− j − 1)(lj − lj+1)!

π(lj + lj+1 + d− j − 2)!

× (sin θj)lj+1C
lj+1+(d−j−1)/2
lj−lj+1

(cos θj). (6.4)

The addition theorem for hyperspherical harmonics (6.1) involves the product Y K
l (x)Y K

l (x′), so we intro-
duce a convenient notation, namely Ωd

k : N0 × Z × [0, π]2 → R is defined by

Ωd
k

(
lk, lk+1;

θk

θ′k

)
:= Θd

k(lk, lk+1; θk)Θd
k(lk, lk+1; θ′k). (6.5)

6.1.1. Standard polyspherical coordinates multi-sum reversal lemmas
An important ingredient in the production of the binomial and logarithmic addition functions is reversing 

the order of the multi-sums that appear when the Gegenbauer polynomials are expanded as multi-sums 
of hyperspherical harmonics. This allows us to compare the Fourier coefficients relying on the azimuthal 
quantum number m.

Lemma 6.1. Let p ∈ N0. Then the multi-sum Y1, over the allowed quantum numbers for standard polyspher-
ical hyperspherical harmonics (6.3) defined by

Y1 :=
p∑

l=0

∑
K

=
p∑

l=0

l∑
l2=0

· · ·
ld−3∑

ld−2=0

ld−2∑
m=0

, (6.6)

can then be re-expressed with the sum order reversed as

Y1 =
p∑

m=0

p∑
ld−2=m

· · ·
p∑

l2=l3

p∑
l=l2

. (6.7)

Proof. To reverse the multi-sum, the upper and lower bounds of the indices need to be determined. Each 
index of the original multi-sum can have values between 0 and p inclusively. However, the upper bounds of 
the original multi-sum give the following constraint:

0 ≤ m ≤ ld−2 ≤ ... ≤ l2 ≤ l. (6.8)

When the indices are reversed, this constraint determines the new lower bound of each of the indices. Since 
there are no other constraints, the upper bound for each index will be p. �
Lemma 6.2. Let p ∈ N0. Then the multi-sum Y2 over quantum numbers for standard polyspherical harmonics 
defined by

Y2 :=
∞∑

l=p+1

∑
K

=
∞∑

l=p+1

l∑
l2=0

· · ·
ld−3∑

ld−2=0

l2∑
m=0

,

can then be re-expressed with the sum order reversed as

Y2 =
p∑ ∞∑

· · ·
∞∑ ∞∑

+
∞∑ ∞∑

· · ·
∞∑ ∞∑

. (6.9)

m=0 ld−2=m l2=l3 l=max(l2,p+1) m=p+1 ld−2=m l2=l3 l=l2
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Proof. First it is noted that each of the indices in the original multi-sum, except for l, will have a lower 
bound of 0 and an upper bound of infinity. The index l will have the same upper bound, but a lower bound 
of p + 1. Like the previous lemma, the upper bounds of the original multi-sum will give us the constraint 
(6.8), which determines the lower bounds of the reversed multi-sum. The combination of the following two 
lower bounds:

l2 ≤ l, p + 1 ≤ l,

yields the lower bound max(p + 1, l2). With this, the multi-sum can be reversed:

Y2 =
∞∑

m=0

∞∑
ld−2=m

· · ·
∞∑

l2=l3

∞∑
l=max(l2,p+1)

.

In later theorems, the scenarios of m ≤ p and m ≥ p + 1 need to be treated separately. With the index 
m being the first sum of the multi-sum, this split is uncomplicated. When m ≥ p + 1, we can drop the 
maximum function on the lower bound of l. �
6.2. Generalized Hopf coordinates

Generalized Hopf coordinates are a type of Vilenkin polyspherical coordinates on Rd with d = 2q for q ≥ 1. 
They are Vilenkin polyspherical orthogonal curvilinear coordinates with one radial coordinate r ∈ [0, ∞), 
and (d − 1)-angular coordinates which together parametrize points on Sd−1

r the (d − 1)-dimensional real 
hypersphere with radius r. Of the (d − 1)-angular coordinates (d/2 −1)-ϑ coordinates take values in [0, 12π], 
and the other (d/2)-φ coordinates are of azimuthal type and take values in [−π, π). For a careful treatment 
of generalized Hopf coordinates, see [9, Appendix B].

In this paper we depart slightly from our previous description of generalized Hopf coordinates—we 
have adopted a reversed azimuthal identification for the azimuthal angles and their corresponding quantum 
numbers. In particular if one considers the collection of angles in generalized Hopf coordinates given by some 
vector of angles Θ := (Θ1, . . . , Θd−1) with vector of corresponding quantum numbers p := (p1, . . . , pd−1). 
In our previous paper, these were ordered as

Θ = (ϑ1, . . . , ϑd/2−1, φ1, . . . , φd/2), p = (l1, . . . , ld/2−1,m1, . . . ,md/2), (6.10)

and in the current paper we order them as

Θ = (ϑ1, . . . , ϑd/2−1, φd/2, . . . , φ1), p = (l1, . . . , ld/2−1,md/2, . . . ,m1) (6.11)

(see Fig. 1 as compared to [9, Figure 5]).
These coordinates generalize two-dimensional polar coordinates (see Fig. 1a)

x1 = r cosφ, x2 = r sinφ, (6.12)

and four-dimensional Hopf coordinates (see Fig. 1b)

x1 = r cosϑ cosφ2, x2 = r cosϑ sinφ2,

x3 = r sinϑ cosφ1, x4 = r sinϑ sinφ1. (6.13)

See Fig. 1c for a Vilenkin tree of the d = 8 generalized Hopf coordinates. In general the transformation 
formulae to Cartesian coordinates for generalized Hopf coordinates is given by
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Fig. 1. This figure is a tree diagram for polyspherical generalized Hopf coordinates of on R2q

with q = 1, 2, 3, 4 for (a), (b), (c), 
(d) respectively. The first (2q−1 −1)-branching nodes correspond to the angles ϑj ∈

[
0, 12π

]
and quantum numbers lj ∈ N0, 

1 ≤ j ≤ d/2 −1. The following (2q−1)-branching nodes correspond to the angles φk ∈ [−π, π) and quantum numbers mk ∈ Z, 
1 ≤ k ≤ d/2. These coordinates correspond to transformation (6.14).

x1 = r cosϑ1 cosϑ2 cosϑ4 cosϑ8 · · · cosϑ2q−2 cosφ2q−1 ,

x2 = r cosϑ1 cosϑ2 cosϑ4 cosϑ8 · · · cosϑ2q−2 sinφ2q−1 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x2q−1−1 = r cosϑ1 sinϑ2 sinϑ5 sinϑ11 · · · sinϑ3·2q−3−1 cosφ2q−2+1,

x2q−1 = r cosϑ1 sinϑ2 sinϑ5 sinϑ11 · · · sinϑ3·2q−3−1 sinφ2q−2+1,

x2q−1+1 = r sinϑ1 cosϑ3 cosϑ6 cosϑ12 · · · cosϑ3·2q−3 cosφ2q−2 ,

x2q−1+2 = r sinϑ1 cosϑ3 cosϑ6 cosϑ12 · · · cosϑ3·2q−3 sinφ2q−2 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x2q−1 = r sinϑ1 sinϑ3 sinϑ7 sinϑ17 · · · sinϑ2q−1−1 cosφ1,

x2q = r sinϑ1 sinϑ3 sinϑ7 sinϑ17 · · · sinϑ2q−1−1 sinφ1, (6.14)
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where ϑj ∈
[
0, 12π

]
for 1 ≤ j ≤ 2q−1−1 and φk ∈ [−π, π) for 1 ≤ k ≤ 2q−1. Generalized Hopf coordinates are 

unique in that they correspond to the only trees which contain only themselves in their equivalence class 
(see [9, (B.2)]). These coordinate systems have separated harmonic eigenfunctions which are given in terms 
of complex exponentials of the azimuthal angles, and for q ≥ 2, non-symmetric Jacobi polynomials for the 
quantum numbers corresponding to the ϑ-angles.

The cosine of the separation angle (3.13) in these coordinates may be given as follows. Define the symbol 
qGr

s ∈ [−1, 1], where 0 ≤ s ≤ q and 1 ≤ r ≤ 2q − 1, by the recursive formula

qGr
s = cosϑr−1+2q−s cosϑ′

r−1+2q−s qG2r−1
s−1 + sinϑr−1+2q−s sinϑ′

r−1+2q−s qG2r
s−1,

with qGi
0 = 1. Then the cosine of the separation angle is given by

cos γ = qG1
q.

Note that through the identification φk = Θd/2+1−k, where 1 ≤ k ≤ 2q−1, then qGi
1 = cos(φi − φ′

i). Thus, 
this shows one may stop this recursion at s = 1.

In regard to the quantum numbers in generalized Hopf coordinates, denote the meridional quantum 
numbers lk ∈ N0 and the azimuthal quantum numbers mj ∈ Z, such that 1 ≤ k ≤ d/2 − 1, 1 ≤ j ≤ d/2. 
Define L := (l1, l2, . . . , ld/2−1), M := (md/2, . . . , m1) where l := l1 and m := m1. In these coordinates, it is 
convenient to relate the meridional quantum numbers lk to corresponding surrogate quantum numbers nk

using lk = 2nk + l2k + l2k+1, and we define N := (n1, n2, . . . , nd/2−1), where n := n1, and nk ∈ N0 for all 
1 ≤ k ≤ d/2 − 1. For convenience define N :=

∑d/2−1
k=1 nk, M :=

∑d/2
j=1 mj . Note that one can always write

l1 = 2N + M,

l2 = 2
log2(d/2)∑

j=2

2j−2−1∑
k=0

n2j−1+k +
d/2∑

j=d/4+1

mj ,

l3 = 2
log2(d/2)∑

j=2

2j−2−1∑
k=0

n2j−2+2j−1+k +
d/4∑
j=1

mj .

In generalized Hopf coordinates, the normalized hyperspherical harmonics are given by [9, (B.21)]

Y K
l (x) =

∏
1≤j≤d/2 exp(imjφj)√

2πd/4
Υlog2 d

1

(
n

l2, l3
;ϑ
)

× · · · × Υlog2 d
d/2−1

(
nd/2−1
m2,m

;ϑd/2−1

)
,

where Υlog2 d
k : N3

0 × [0, 12π] → R is defined by

Υlog2 d
k

(
nk

l2k, l2k+1
;ϑk

)
:=

√
(2nk + α + β + 1)(nk + α + β)!nk!

(nk + α)!(nk + β)!

×(cosϑk)l2k(sinϑk)l2k+1P (β,α)
n (cos(2ϑk)), (6.15)

α = αd
k(l2k) := l2k − 1 + 2log2(d/4)−�log2 k	,

β = βd
k(l2k+1) := l2k+1 − 1 + 2log2(d/4)−�log2 k	.

Remark 6.1. Note that if d/4 ≤ k ≤ d/2 − 1 then −1 + 2log2(d/4)−�log2 k	 = 0, hence α, β, l2k, l2k+1 ∈ M. 
Also if 1 ≤ k ≤ d/4 − 1, then l2k, l2k+1 ∈ L.
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The addition theorem for hyperspherical harmonics (6.1) involves the product Y K
l (x)Y K

l (x′), so we 
introduce a convenient notation, namely Ψlog2 d

k : N3
0 × [0, 12π]2 → R is defined by

Ψlog2 d
k

(
nk

l2k, l2k+1
;
ϑk

ϑ′
k

)
:= Υlog2 d

k

(
nk

l2k, l2k+1
;ϑk

)
Υlog2 d

k

(
nk

l2k, l2k+1
;ϑ′

k

)
. (6.16)

Theorem 6.3. In generalized Hopf coordinates, the product of normalized harmonics which appears in the 
addition theorem for hyperspherical harmonics (6.1) is given by

Y K
l (x)Y K

l (x′) = 1
2π d

2
εm cos(m(φ− φ′))εm2 cos(m2(φm2 − φ′

m2
)) · · · εmd/2 cos(md/2(φd/2 − φ′

d/2))

×Ψlog2 d
d/2−1

(
nd/2−1
m2,m

;
ϑd/2−1

ϑ′
d/2−1

)
× · · · × Ψlog2 d

1

(
n

l2, l3
; ϑ

ϑ′

)
. (6.17)

Proof. In the sequel, we sum over all quantum numbers. If the coefficients of a product of Fourier series over 
mj ∈ M, whose coefficients are fmj

, are invariant under sign reversal transformation, namely f−mj
= fmj

, 
we can rewrite the product of complex exponentials as a product of trigonometric cosine functions. This is 
accomplished using ∑

mj∈Z
fj exp(imjψj) =

∑
mj∈N0

εmfj cos(mjψj),

where εm = 2 − δm,0. The eigenfunctions Ψlog2 d
k are invariant under this transformation, which can be 

verified by applying (2.22), (2.23) for d/4 ≤ k ≤ d/2 − 1 (see Remark 6.1). �
6.2.1. Generalized Hopf multi-sum reversal lemmas

In generalized Hopf coordinates (as well as in the large-part of Vilenkin polyspherical coordinate systems), 
the procedure for summing over the degenerate quantum numbers can become somewhat technical. In the 
specialized case of generalized Hopf coordinates we outline the procedure for describing the multi-sums over 
the degenerate quantum numbers and derive descriptions of those same multi-sums, but instead with the 
sum orders reversed.

Lemma 6.4. Let p ∈ N0, 1 ≤ j ≤ d/2, 1 ≤ k ≤ d/2 − 1. Consider the multi-sum Z1 defined by

Z1 :=
p∑

l=0

∞∑
l2=0

· · ·
∞∑

l2q−1−1=0

∞∑
m2q−1=0

· · ·
∞∑

m2=0

p∑
m=0

(6.18)

over L ∪M with 0 ≤ mj ≤ p, 0 ≤ lk ≤ p, where the sum over the lk ∈ L quantum numbers are restricted 
such that

nk = lk − l2k − l2k+1

2 ∈ N0.

Then the multi-sum Z1 can be re-expressed as a multi-sum over N ∪M, with sum order reversed to obtain

Z1 =
p∑

m=0
· · ·

p−
∑k−1

i=1 mi∑
m =0

· · ·
p−
∑2q−1−1

i=1 mi∑
m =0

⌊
p−
∑2q−1

i=1 mi
2

⌋
∑

n =0
· · ·

⌊
p−
∑2q−1

i=1 mi−2
∑2q−1−1

i=2 ni
2

⌋
∑
n=0

. (6.19)

k 2q−1 2q−1−1
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Proof. Let q denote an integer at least 2. Put d = 2q and suppose also that p is a positive integer. Let 
Λ ⊆ Rd−1 consisting of (d −1)-tuples l̄ = (l1, . . . , ld−1) satisfying the following conditions: (i) for k satisfying 
1 ≤ k ≤ d − 1, 0 ≤ lk ≤ p; (ii) for k satisfying 1 ≤ k ≤ d

2 − 1, lk − l2k − l2k+1 is a nonnegative, even integer. 
Let S ⊆ Rd−1 denote the convex polytope defined by the following inequalities:

l1 ≤ p,

lk ≥ l2k + l2k+1 (1 ≤ k < d
2 ),

lk ≥ 0 (d2 ≤ k < d).

If L denotes the lattice L ⊆ Zd−1 consisting of (d − 1)-tuples of integers for which lk − l2k − l2k+1 is even 
for 1 ≤ k < d

2 , then Λ = L ∩ S. (The polytope S is a (d − 1)-simplex, as shown below.) For 1 ≤ k < d
2 , put 

nk = 1
2(lk−l2k−l2k+1); for d2 ≤ k < d, put nk = lk. The function ϕ : Rd → Rd taking l̄ to n̄ = (n1, . . . , nd−1)

is an invertible linear transformation. In particular, l1 is given in terms of the nk’s by

l1 = 2(n1 + · · · + n d
2−1) + n d

2
+ · · · + nd−1.

The transformation takes S to the polytope T = ϕ(S) defined by

nk ≥ 0 (1 ≤ k < d),

2(n1 + · · · + n d
2−1) + n d

2
+ · · · + nd−1 ≤ p.

The polytope T is a simplex, being the subset of the first orthant in Rd−1 that is cut off by a hyperplane. 
Therefore the linearly equivalent set S is also a simplex. The function ϕ takes L to Zd−1 and consequently 
it takes Λ := L ∩ S to Γ := Zd−1 ∩ T . For a set {xn̄} indexed by Γ, one has 

∑
n̄∈Γ xn̄ =

∑
l̄∈Λ xϕ(l̄). This 

completes the proof. �
Lemma 6.5. Let p ∈ N0, 1 ≤ j ≤ d/2, 1 ≤ k ≤ d/2 − 1. Consider the multi-sum Z2 defined by

Z2 :=
∞∑

l=p+1

∞∑
l2=0

· · ·
∞∑

l2q−1−1=0

∞∑
m2q−1=0

· · ·
∞∑

m2=0

p∑
m=0

(6.20)

over L ∪M with 0 ≤ mj ≤ p, lk ≥ p + 1, with the same restriction over the lk ∈ L in the above lemma. 
Then Z2 can be re-expressed as a multi-sum over N ∪M with sum order reversed to obtain

Z2 =
p∑

m=0

∞∑
m2=0

· · ·
∞∑

m2q−1=0

∞∑
n2q−1−1=0

· · ·
∞∑

n2=0

∞∑
n=max

(
0,
⌊

p−
∑2q−1

i=1 mi−2
∑2q−1−1

i=2 ni
2

⌋
+1
) . (6.21)

Proof. Let S′ ⊆ Rd−1 denote the convex polyhedron defined by the following inequalities:

l1 ≥ p + 1,

lk ≥ l2k + l2k+1 (1 ≤ k < d
2 ),

p ≥ lk ≥ 0 (d2 ≤ k < d).

The polyhedron T ′ = ϕ(S′) is given by the following inequalities:
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nk ≥ 0 (1 ≤ k < d),

nk ≤ p (d2 ≤ k < d),

2(n1 + · · · + n d
2−1) + n d

2
+ · · · + nd−1 ≥ p + 1.

The set Λ′ := S′ ∩L is mapped to Γ′ := T ′ ∩Zd−1 by ϕ. For a set {xn̄} indexed by Γ′, one has 
∑

n̄∈Γ′ xn̄ =∑
l̄∈Λ′ xϕ(l̄). This completes the proof. �

Lemma 6.6. Let m, p, k ∈ N0 such that p = k − d/2 ∈ N0, d ∈ 2N and 1 ≤ k ≤ d/2 − 1. Consider the 
following multi-sum over L ∪M with m ≥ p + 1:

Z3 :=
∞∑

l=p+1

∞∑
l2=0

· · ·
∞∑

ld/2−1=0

∞∑
md/2=0

· · ·
∞∑

m2=0

∞∑
m=p+1

, (6.22)

with the same restriction over the lk ∈ L in the above lemmas. Then the multi-sum Z3 can be re-expressed 
as a multi-sum over N ∪M with sum order reversed to obtain

Z3 =
∞∑

m=p+1

∞∑
m2=0

· · ·
∞∑

md/2=0

∞∑
nd/2−1=0

· · ·
∞∑

n=0
. (6.23)

Proof. Let S′′ ⊆ Rd−1 denote the convex polyhedron defined by the following inequalities:

lk ≥ l2k + l2k+1, (1 ≤ k < d
2 ),

lk ≥ 0, (d2 ≤ k < d),

ld−1 ≥ p + 1.

The polyhedron T ′′ = ϕ(S′′) is given by the following inequalities:

nk ≥ 0 (1 ≤ k < d),

nd−1 ≥ p + 1.

The set Λ′′ := S′′ ∩ L is mapped to Γ′′ := T ′′ ∩ Zd−1 by ϕ. For a set {xn̄} indexed by Γ′′, one has∑
n̄∈Γ′′

xn̄ =
∑
l̄∈Λ′′

xϕ(l̄).

This completes the proof. �
7. Binomial and logarithmic addition theorems for the azimuthal Fourier coefficients

In even-dimensional Euclidean space Rd, the kernels for a fundamental solution of the polyharmonic 
equation are represented by a function of the distance between two points (3.6), ‖x − x′‖. In rotationally-
invariant coordinates systems, one may represent the distance between the source and observation points in 
terms of the difference between azimuthal coordinates, namely (3.9). In Vilenkin’s polyspherical coordinates, 
which are rotationally-invariant, one may also represent this distance in terms of the separation angle, 
namely (3.11). In a previous publication [9], addition theorems which arise when a fundamental solution of 
the polyharmonic equation is a power-law in Euclidean space with odd-dimensions and for even-dimensions 
when 1 ≤ k < d/2 were derived. In this manuscript, we treat the even-dimensional case for k ≥ d/2, in 
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which the functional dependence is either logarithmic or of binomial form. By considering the equivalent 
azimuthal φ −φ′ and separation angle γ, Fourier and Gegenbauer expansions respectively of the kernels for 
the polyharmonic equation in even-dimensional space, one can derive addition theorems for the azimuthal 
Fourier coefficients.

The procedure for developing the addition theorems in this section is as follows. Let p = k − d/2 ∈ N0, 
with fp : Rd × Rd → R, gp : (Rd × Rd) \ {(x, x) : x ∈ Rd} → R, defined such that fp(x, x′) := ‖x − x′‖2p, 
gp(x, x′) := ‖x−x′‖2p log ‖x−x′‖. First, express fp, gp in terms of their azimuthal separation angle Fourier 
cosine series using (4.2), (4.3). Call these the left-hand sides. Then express fp, gp in terms of their separation 
angle Gegenbauer expansions given using (4.4), (4.6) with μ = d/2 − 1. Call these the right-hand sides. By 
using the addition theorem for hyperspherical harmonics (6.1), we can expand the right-hand sides in terms 
of a product of separable harmonics in a chosen Vilenkin polyspherical coordinate system. Since Vilenkin’s 
polyspherical coordinate systems are rotationally-invariant, one of the coordinates will correspond to the 
chosen azimuthal separation angle which has been expanded about on the left-hand side of the azimuthal 
Fourier expansion. To obtain the addition theorem, one must re-arrange the multi-sum expression which 
arises on the right-hand side so that the outermost sum is the sum over the relevant azimuthal quantum 
number. Addition theorems are simply derived by comparing the azimuthal Fourier coefficients on both 
sides.

In order to obtain binomial and logarithmic addition theorems in a Vilenkin polyspherical coordinate 
system, we relate respectively ‖x− x′‖2p and ‖x− x′‖2p log ‖x− x′|, in terms of their Fourier cosine series 
over the azimuthal separation angle, and their Gegenbauer polynomial expansions over the separation angle 
(3.13). These equalities reduce respectively to

(χ− cos(φ− φ′))p =
(

rr′

RR′

)p

(ζ − cos γ)p , (7.1)

and

log(2RR′) (χ− cos(φ− φ′))p + (χ− cos(φ− φ′))p log(χ− cos(φ− φ′))

=
(

rr′

RR′

)p

(log(2rr′) (ζ − cos γ)p + (ζ − cos γ)p log(z − cos γ)) . (7.2)

7.1. Addition theorems in standard polyspherical coordinates

The binomial addition theorems in standard polyspherical coordinates are given by the following two 
theorems.

Theorem 7.1. Let m ∈ N0, p = k − d/2 ∈ N0, d ∈ 2N, 0 ≤ m ≤ p. Then

Q
p+ 1

2
m− 1

2
(χ) = (−1) d

2−1+m(2π) d
2−1(χ2 − 1)−

p
2− 1

4 (p−m)!(p + m)!
(

rr′

RR′

)p(
r2
> − r2

<

2rr′

)p+ d−1
2

×
p∑

ld−2=m

Ωd
d−2

(
ld−2,m;

θd−2

θ′d−2

)
· · ·

p∑
l=l2

Ωd
1

(
l, l2;

θ

θ′

)
(−1)l

(p− l)!(l + p + d− 2)!Q
p+ d−1

2
l+ d−3

2
(ζ).

Proof. This equality can be found by comparing the binomial expansions of Theorems 5.3 and 5.4. The 
Gegenbauer polynomials in Theorem 5.4 can be expanded with the aid of (6.1). The normalized hyper-
spherical harmonics can be written in standard polyspherical coordinates, as seen in (6.3). Using the concise 
notation of (6.5), the Gegenbauer expansion of (6.1) can be written as follows:
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C
d/2−1
l (cos γ) = (d− 2)π d

2−1

(2l + d− 2)Γ(d/2)
∑
K

eim(φ−φ′)Ωd
d−2

(
ld−2,m;

θd−2

θ′d−2

)
· · ·Ωd

1

(
l, l2;

θ

θ′

)
. (7.3)

Now the expansion of Theorem 5.4 will contain a multi-sum. Our goal is to compare the Fourier coefficients 
of the binomial expansions, this multi-sum will need to be reversed. This reversal is shown in Lemma 6.1. 
This allows us to compare the Fourier coefficients, and complete the proof. �
Theorem 7.2. Let m ∈ N0, k ∈ N, p = k − d/2 ∈ N0, d = 4 and 0 ≤ m ≤ p. Then

Q
p+ 1

2
m− 1

2
(χ) = (−1)1−m(χ2 − 1)−

p
2− 1

4 (p−m)!(p + m)!
(

rr′

RR′

)p(
r2
> − r2

<

2rr′

)p+ 3
2

×
p∑

l2=m

22l2 (l2!)2 (2l2 + 1)(l2 −m)!
(l2 + m)! (sin θ sin θ′)l2 Pm

l2 (cos θ2)Pm
l2 (cos θ′2)

×
p∑

l=l2

(−1)l(2l + 2)(l − l2)!
(p− l)!(l + p + 2)!(l + l2 + 1)!C

l2+1
l−l2

(cos θ)Cl2+1
l−l2

(cos θ′)Qp+ 3
2

l+ 1
2

(ζ).

Proof. To prove this, take the result of Theorem 7.1 and use d = 4. This simplifies the multi-sum of Ω
functions:

∑
ld−2

Ωd
d−2

(
ld−2,m;

θd−2

θ′d−2

)
· · ·
∑
l

Ωd
1

(
l, l2;

θ

θ′

)
→
∑
l2

Ω4
2

(
l2,m; θ2

θ′2

)∑
l

Ω4
1

(
l, l2;

θ

θ′

)
. (7.4)

By (6.5), we know the Ω-functions are products of Θ-functions, which are defined in (6.4). A couple of the 
Gegenbauer polynomials that appear can be rewritten as Ferrers functions using (2.19). This allows (7.4)
to be written as:

∑
l2

Ω4
2

(
l2,m; θ2

θ′2

)∑
l

Ω4
1

(
l, l2;

θ

θ′

)
= 1

π

∑
l2

22l2 (l2!)2 (2l2 + 1)(l2 −m)!
(l2 + m)!

×(sin θ sin θ′)l2Pm
l2 (cos θ2)Pm

l2 (cos θ′2)
∑
l

(l + 1)(l − l2)!
(l + l2 + 1)! Cl2+1

l−l2
(cos θ)Cl2+1

l−l2
(cos θ′). (7.5)

Then simplification completes the proof. �
In standard polyspherical coordinates, one has the following logarithmic addition theorem for 0 ≤m ≤ p.

Theorem 7.3. Let m ∈ N0, k ∈ N, p = k − d/2 ∈ N0, d ∈ 2N and 0 ≤ m ≤ p. Then

1
(p + m)!(p−m)!

(
log(RR′) + log(χ +

√
χ2 − 1) + 2H2p −Hp+m −Hp−m

)
Q

p+ 1
2

m− 1
2
(χ)

+ 1
(p + m)!

p−m−1∑
k=0

(2m + 2k + 1)
k!(p−m− k)(p + m + k + 1)

[
1 + k!(p + m)!

(2m + k)!(p−m)!

]
Q

m+k+ 1
2

m− 1
2

(χ)

+ 1
(p−m)!

m−1∑
k=0

2k + 1
(m + k)!(p− k)(p + k + 1)Q

k+ 1
2

m− 1
2
(χ)

=
(

rr′

RR′

)p

(−1)m+d/2−1(2π)d/2−1 (ζ2 − 1) p
2 + d−1

4

2 p+ 1
(χ − 1) 2 4
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×
{ p∑

ld−2=m

Ωd
d−2

(
ld−2,m;

θd−2

θ′d−2

)
· · ·

p∑
l=l2

Ωd
1

(
l, l2;

θ

θ′

)

×
[ (−1)lQp+ d−1

2
l+ d−3

2
(ζ)

(p− l)!(p + l + d− 2)!

(
log(rr′) + log(ζ+

√
ζ2 − 1)+2H2p+d−2+Hp −Hp+d/2−1−Hp+l+d−2−Hp−l

)
+ (−1)l

(p + l + d− 2)!

p−l−1∑
k=0

(2l + 2k + d− 1)
k!(p− l − k)(p + l + k + d− 1)

[
1 + k!(p + l + d− 2)!

(k + 2l + d− 2)!(p− l)!

]
Q

k+l+ d−1
2

l+ d−3
2

(ζ)

+ (−1)l

(p− l)!

l+d/2−2∑
k=0

2k + 1
(l + d/2 + k − 1)!(p + d/2 − k − 1)(p + d/2 + k)Q

k+ 1
2

l+ d−3
2

(ζ)
]

+
∞∑

ld−2=m

Ωd
d−2

(
ld−2,m;

θd−2

θ′d−2

)
· · ·

∞∑
l2=l3

Ωd
2

(
l2, l3;

θ2

θ′2

)

×
∞∑

l=max(p+1,l2)

(−1)p+1(l − p− 1)!
(p + l + d− 2)! Ωd

1

(
l, l2;

θ

θ′

)
Q

p+ d−1
2

l+ d−3
2

(ζ)
}
. (7.6)

Proof. To prove this theorem, we take the Fourier and Gegenbauer expansions of logarithmic fundamental 
solutions, seen in Theorems 5.1 and 5.2 respectively. For the Gegenbauer expansion, the substitution of 
μ = d/2 − 1 is used. Again, the Gegenbauer polynomials can be rewritten as in (7.3). The Gegenbauer 
expansion contains three different multi-sums, one contains the sum of l from zero to p, the next contains 
the sum of l from zero to p +1, and the last contains the sum of l from p +1 to infinity. The first two of these 
sums can be reversed as in Lemma 6.1, where the later p can be replaced with p +1. For the final multi-sum, 
Lemma 6.2 is used. Since only the region 0 ≤ m ≤ p is required, only the first term of the split multi-sum 
is used. When comparing the Fourier coefficients of the expansions, only those terms where 0 ≤ m ≤ p are 
used. Thus only the first two parts of the above multi-sum are used. �

The following corollary results from substituting d = 4 in the above logarithmic addition theorem (7.6).

Corollary 7.4. Let 0 ≤ m ≤ p, p = k − d/2 ∈ N0, k ∈ N and d = 4. Then

1
(p + m)!(p−m)!

(
log(RR′) + log(χ +

√
χ2 − 1) + 2H2p −Hp+m −Hp−m

)
Q

p+ 1
2

m− 1
2
(χ)

+ 1
(p + m)!

p−m−1∑
k=0

(2m + 2k + 1)
k!(p−m− k)(p + m + k + 1)

[
1 + k!(p + m)!

(2m + k)!(p−m)!

]
Q

m+k+ 1
2

m− 1
2

(χ)

+ 1
(p−m)!

m−1∑
k=0

2k + 1
(m + k)!(p− k)(p + k + 1)Q

k+ 1
2

m− 1
2
(χ)

= 2 (−1)m+1
(

rr′

RR′

)p (ζ2 − 1) p
2 + 3

4

(χ2 − 1) p
2 + 1

4

{ p∑
l2=m

(2l2 + 1)(l2 −m)!
(l2 + m)! Pm

l2 (cos θ2)Pm
l2 (cos θ′2)22l2(l2!)2(sin θ sin θ′)l2

×
p∑

l=l2

(−1)l(l + 1)(l − l2)!
(l + l2 + 1)! Cl2+1

l−l2
(cos θ)Cl2+1

l−l2
(cos θ′)

×
[

1
(p− l)!(p + l + 2)!

(
log(rr′) + log(ζ +

√
ζ2 − 1) + 2H2p+2 + Hp −Hp+1 −Hp+l+2 −Hp−l

)
Q

p+ 3
2

l+d/2(ζ)

+ 1
(p + l + 2)!

p−l−1∑ (2l + 2k + 3)
k!(p− l − k)(p + l + k + 3)

[
1 + k!(p + l + 2)!

(k + 2l + 2)!(p− l)!

]
Q

k+l+ 3
2

l+ 1
2

(ζ)

k=0
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+ 1
(p− l)!

l∑
k=0

2k + 1
(l + k + 1)!(p− k + 1)(p + k + 2)Q

k+ 1
2

l+ 1
2

(ζ)
]

+(−1)p+1
∞∑

l2=m

(2l2 + 1)(l2 −m)!
(l2 + m)! Pm

l2 (cos θ2)Pm
l2 (cos θ′2)22l2(l2!)2(sin θ sin θ′)l2

×
∞∑

l=max(l2,p+1)

(l + 1)(l − l2)!
(l + l2 + 1)! Cl2+1

l−l2
(cos θ)Cl2+1

l−l2
(cos θ′) (l − p− 1)!

(p + l + 2)!Q
p+ 3

2
l+ 1

2
(ζ)
}
. (7.7)

Proof. To prove this, take the result of Theorem 7.3 for the d = 4 case. The Ω-functions can be simplified 
as in the proof of Theorem 7.2, as seen in (7.5). This completes the proof. �

In standard polyspherical coordinates, one has the following logarithmic addition theorem for m ≥ p +1.

Theorem 7.5. Let m ∈ N0, p = k − d/2 ∈ N0, d ∈ 2N, m ≥ p + 1. Then

Q
p+ 1

2
m− 1

2
(χ) = (−1) d

2−1(2π) d
2−1(ζ2 − 1)

p
2 + d−1

4 (χ2 − 1)−
p
2− 1

4
(p + m)!

(m− p− 1)!

(
rr′

RR′

)p

×
∞∑

ld−2=p+1

Ωd
d−2

(
ld−2,m;

θd−2

θ′d−2

)
· · ·

∞∑
l=l2

Ωd
1

(
l, l2;

θ

θ′

)
(l − p− 1)!

(p + l + d− 2)!Q
p+ d−1

2
l+ d−3

2
(ζ). (7.8)

Proof. Again, this proof starts with equating the logarithmic expansions of Theorems 5.1 and 5.2. With the 
Gegenbauer expansion, the polynomials are rewritten as seen in (7.3). The Fourier coefficients of interest 
only appear in the multi-sum that has l summing over p + 1 to infinity. This multi-sum can be seen in 
Lemma 6.2. The second term of this multi-sum contains values of m that are greater than p, which are the 
terms needed for the comparison to complete the proof. �
Corollary 7.6. Let m ∈ N0, p = k − d/2 ∈ N0, d = 4, m ≥ p + 1. Then

Q
p+ 1

2
m− 1

2
(χ) = −2(ζ2 − 1)

p
2 + 3

4 (χ2 − 1)−
p
2− 1

4
(p + m)!

(m− p− 1)!

(
rr′

RR′

)p

×
∞∑

l2=p+1

22l2 (l2!)2 (2l2 + 1)(l2 −m)!
(l2 + m)!

×(sin θ sin θ′)l2Pm
l2 (cos θ2)Pm

l2 (cos θ′2)
∞∑

l=l2

(l + 1)(l − l2)!
(l + l2 + 1)! Cl2+1

l−l2
(cos θ)Cl2+1

l−l2
(cos θ′)Qp+ 3

2
l− 1

2
(ζ). (7.9)

Proof. Start with (7.8) and set d = 4. The Ω-functions can be simplified as in (7.5), which completes the 
proof. �
7.2. Addition theorems in generalized Hopf coordinates

In generalized Hopf coordinates, one has the following binomial addition theorem valid for 0 ≤ m ≤ p.

Theorem 7.7. Let p, m ∈ N0, 0 ≤ m ≤ p, d = 2q, q ≥ 2. Then

Q
p+ 1

2
m− 1 (χ) = (−1)m+d/2−12d/2−1(p−m)!(p + m)!(χ2 − 1)−

p
2− 1

4

(
rr′

′

)p(
r2
> − r2

<
′

)p+ d−1
2

2 RR 2rr
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×
p−m∑
m2=0

εm2 cos(m2(φ2 − φ′
2)) · · ·

p−
∑k−1

i=1 mi∑
mk=0

· · ·
p−
∑d/2−1

i=1 mi∑
md/2=0

εmd/2 cos(md/2(φd/2 − φ′
d/2))

×(−1)M

⌊
p−M

2

⌋∑
nd/2−1=0

Ψlog2 d
d/2−1

(
nd/2−1
m2,m

;
ϑd/2−1

ϑ′
d/2−1

)
· · ·

⌊
p−M−2

∑d/2−1
i=2 ni

2

⌋
∑
n=0

Ψlog2 d
1

(
n

l2, l3
; ϑ

ϑ′

)

× 1
(p− 2N −M)!(p + 2N + M + d− 2)!Q

p+ d−1
2

2N+M+ d−3
2

(ζ). (7.10)

Proof. Start with the Gegenbauer expansion of a fundamental solution given by Theorem 5.4. The hyper-
spherical harmonics contained within can be expanded with the aid of (6.1) and Theorem 6.3 to be

C
d/2−1
l (cos γ) = (d− 2)

(2l + d− 2)Γ(d/2)

×
∑
K

εm cos(m(φ− φ′))εm2 cos(m2(φm2 − φ′
m2

)) · · · εmd/2 cos(md/2(φd/2 − φ′
d/2))

×Ψlog2 d
d/2−1

(
nd/2−1
m2,m

;
ϑd/2−1

ϑ′
d/2−1

)
× · · · × Ψlog2 d

1

(
n

l2, l3
; ϑ

ϑ′

)
. (7.11)

The multi-sum in (7.11) can be combined with the sum in (5.4), and with the ability to reverse this multi-sum 
given by Lemma 6.4 yields:

hdk(x,x′) = 2 d
2− 1

2
√
π

eiπ(p− d
2 + 1

2 )p!(2rr)p
(
r2
> − r2

<

2rr′

)p+ d−1
2 p−m∑

m=0
εm cos(m(φ− φ′))

×
p−m∑
m2=0

εm2 cos(m2(φ2 − φ′
2)) · · ·

p−
∑k−1

i=1 mi∑
mk=0

· · ·
p−
∑d/2−1

i=1 mi∑
md/2=0

εmd/2 cos(md/2(φd/2 − φ′
d/2))

×(−1)M

⌊
p−M

2

⌋∑
nd/2−1=0

Ψlog2 d
d/2−1

(
nd/2−1
m2,m

;
ϑd/2−1

ϑ′
d/2−1

)
· · ·

⌊
p−M−2

∑d/2−1
i=2 ni

2

⌋
∑
n=0

Ψlog2 d
1

(
n

l2, l3
; ϑ

ϑ′

)

× 1
(p− 2N −M)!(2N + M + p + d− 2)!Q

p+ d−1
2

l+ d−3
2

(ζ). (7.12)

The Fourier coefficients of this can be compared with the Fourier expansion of a fundamental solution given 
in Theorem 5.3. This completes the proof �

The simplest example of a binomial addition theorem for 0 ≤ m ≤ p in generalized Hopf coordinates 
occurs in four dimensions.

Theorem 7.8. Let p, m ∈ N0, 0 ≤ m ≤ p, p = k − d/2 ∈ N0 and d = 4. Then

Q
p+ 1

2
m− 1 (χ) = −2(p−m)!(p + m)!(χ2 − 1)−

p
2− 1

4

(
rr′

′

)p(
r2
> − r2

<
′

)p+ 3
2

(sinϑ sinϑ′)m

2 RR 2rr
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×
p−m∑
m2=0

εm2 cos(m2(φ2 − φ′
2))(−1)m2(cosϑ cosϑ′)m2

⌊
p−m−m2

2

⌋∑
n=0

P (m,m2)
n (cos(2ϑ))P (m,m2)

n (cos(2ϑ′))

× (2n + m + m2 + 1)(n + m + m2)!n!
(p− 2n−m−m2)!(p + 2n + m + m2 + 2)!(n + m)!(n + m2)!

Q
p+ 3

2
2n+m+m2+ 1

2
(ζ). (7.13)

Proof. Starting with Theorem 7.7, let d = 4. From this we obtain the following:

Q
p+ 1

2
m− 1

2
(χ) = −2(p−m)!(p + m)!(χ2 − 1)−

p
2− 1

4

(
rr′

RR′

)p(
r2
> − r2

<

2rr′

)p+ 3
2

×
p−m∑
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Then by (6.15), (6.16), the function denoted by Ψ can be written in terms of Jacobi polynomials:

Ψ2
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Using this identity with (7.14) completes the proof. �
In generalized Hopf coordinates, one has the following logarithmic addition theorem valid for 0 ≤ m ≤ p.

Theorem 7.9. Let 0 ≤ m ≤ p, d = 2q, q ≥ 2 and p = k − d/2 ∈ N0. Then
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Proof. Again, we start by comparing the Fourier and Gegenbauer expansions of the logarithmic fundamental 
solutions. For the Gegenbauer expansion, replace μ with d2 − 1, use (3.14) and the following relation:

log(rr′) + log
(
ζ +
√

ζ2 − 1
)

= 2 log r>.

The Gegenbauer expansion of Theorem 5.2 can be rewritten in Hopf coordinates by use of (7.11). Next, we 
consider the multi-sums. The first sums of 

∑p
l=0
∑

K , are dealt with by Lemma 6.4. The later sum uses 
Lemma 6.5. Using the identity l = 2N +M and compare the Fourier coefficients to complete the proof. �

The simplest example of a logarithmic addition theorem for 0 ≤ m ≤ p in generalized Hopf coordinates 
occurs in four dimensions.

Corollary 7.10. Let 0 ≤ m ≤ p, m ∈ N0, p = k − d/2 ∈ N0 where d = 4. Then
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Proof. When d = 4, note that N = n and M = m + m2. The functions of the Hopf coordinate system can 
be simplified as in Theorem 7.8. �

The general logarithmic addition theorem for m ≥ p + 1 in generalized Hopf coordinates is given as 
follows.

Theorem 7.11. Let p, m ∈ N0, m ≥ p + 1, d = 2q, q ≥ 2. Then
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Proof. This is similar to the proof of Theorem 7.9. For this case only the Fourier coefficients where m ≥ p +1
are used, therefore Lemma 6.6 is needed. Simplifying the expression completes the proof. �

The simplest example of a logarithmic addition theorem for m ≥ p + 1 in generalized Hopf coordinates 
occurs in four dimensions.

Theorem 7.12. Let p, m ∈ N0, m ≥ p + 1. Then
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Proof. Simplifying as in Theorem 7.9 for d = 4 completes the proof. �
8. Conclusion and future outlook

With the publication of this work, we have fully-implemented the procedure which appeared for the first 
time in the Cohl mathematics thesis [5, §§6.3-4] for computing azimuthal Fourier expansions of fundamental 
solutions of the polyharmonic operator (−Δ)k on even dimensional Euclidean space R2n where the power 
of the Laplacian is restricted to k ≥ n. This effort illustrates the geometric notion concerning rotationally-
invariant coordinate systems which solve the underlying partial differential equation using separation and 
R-separation of variables (for both types we henceforward refer to as separable).

For a given linear partial differential operator which admits separable solutions in a given coordinate 
system on a Riemannian manifold, in principle, one may expand a fundamental solution of that partial 
differential operator in terms of the separated eigenfunctions, which provide a basis for solutions to the 
partial differential equation, over their corresponding degenerate quantum numbers. As a function of the 
dimension of the space, these systems are numerous! For the three-dimensional Laplace equation, there are 
17 conformally inequivalent separable coordinate systems. As far as the authors are aware, there has been no 
comprehensive study of the exact number of inequivalent separable Laplace coordinate systems as a function 
of dimension, but one can find at least an extreme lower bound by examining for instance Vilenkin’s poly-
spherical coordinates. Remember, in three-dimensions, spherical coordinates represent only one in the 17 
separable coordinate systems. In [9] it was shown that the sequence of numbers of inequivalent Vilenkin poly-
spherical coordinate systems of this type is for d = 2, ..., 13 given by 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 
and the sequence in general is given by the Wedderburn–Etherington numbers (see for instance the On-Line 
Encyclopedia of Integer Sequences [30, A001190]) and for d = 34, the number of inequivalent Vilenkin 
polyspherical coordinate systems is 44, 214, 569, 100. Therefore the growth of the numbers of inequivalent 
coordinate systems as a function of dimension in this case is exponential. In every one of these coordinate 
systems, there exist special functions which arise out of this procedure. It is mystifying to imagine their full 
quality, especially considering some of separable solutions to the three-dimensional problem for Laplace’s 
equation, most likely, have never been computed (take for instance, the special functions which arise in the 
asymmetric cyclidic coordinate systems which are solutions of a second order differential equation with five 
regular singularities [15–17]).

Now the problem at hand is the determination of addition theorems for the azimuthal Fourier coefficients 
in rotationally-invariant coordinate systems. Examining the particular case of the three-dimensional Laplace 
equation, 9 of the 17 conformally inequivalent coordinate systems are rotationally-invariant about an axis 
of symmetry (spherical, circular cylindrical, parabolic, oblate spheroidal, prolate spheroidal, toroidal, flat-
ring cyclidic, flat-disk cyclidic, bi-cyclidic). For Laplace’s equation, the azimuthal Fourier component of 
its fundamental solution was computed in [14]. To date, the various addition theorems in these coordinate 
systems, have not been computed, we are close! In fact, in each of these coordinate systems, there will be (at 
most) two different addition theorems since there are in general different harmonic solutions corresponding 
to both coordinate equals constant surfaces. The special functions which arise in separation of variables in 
these coordinate systems include Legendre functions, Bessel functions, Lamé functions and Lamé-Wangerin 
functions (see the discussions in [3]).

For the polyharmonic equation in Euclidean space Rd, as of the publication of this paper, the identification 
of the azimuthal Fourier components are now known for all powers of the Laplacian operator and for all 
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dimensions. These are given in terms of associated Legendre functions of the second kind with argument 
given by a hyper-toroidal function of all space. So addition theorems arising from comparing the azimuthal 
Fourier components with the eigenfunction expansions in terms of the described separated systems is clearly 
obtainable. All that remains is to obtain the separated eigenfunction expansions and integrals in the various 
separable coordinate systems and to compute the full expansion of a fundamental solution in that given 
coordinate system. We have now computed a smattering of all the possible addition theorems (we’ve only 
computed a vanishingly small number of possible Vilenkin polyspherical coordinate systems), the world is 
at hand to investigate their remainder, not to mention all those coordinate systems where harmonic (or 
polyharmonic) solutions are not straightforwardly computable, of which there are many.

There are some future steps that we would like take to further the investigation of this rich special func-
tions problem. These include the corresponding study for the polyharmonic operator (natural powers of the 
Laplace-Beltrami operator) in spaces of constant curvature [7,12,13] and beyond such as in the rank-one 
symmetric spaces. The rank-one symmetric spaces are the real, complex, quaternionic and octonionic (Cay-
ley) plane hyperbolic and projective spaces. These spaces are isotropic (two-point homogeneous Riemannian) 
so their fundamental solutions satisfy ordinary differential equations and are therefore straightforward to 
compute. In these spaces it is known that separable solutions exist, so it is compelling to obtain some 
example addition theorems in their rotationally-invariant coordinate systems for their harmonic problem. 
Of course, other intriguing problems include the application of this problem while meandering into other 
linear partial differential operators (as well as their natural powers) such as Helmholtz [10], heat and wave 
operators in Euclidean or curved isotropic spaces.
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