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The application of artificial intelligence (AI) methods to materials re-

search and development (MR&D) is poised to radically reshape how ma-

terials are discovered, designed, and deployed into manufactured products.

Materials underpin modern life, and advances in this space have the po-

tential to markedly increase the quality of human life, address pressing en-

vironmental issues, and provide new, enabling, technologies that can help

people realize their potential. This chapter delves into the many ways that

AI is currently being applied to accelerate MR&D, the implications of this

revolution, and the new frontiers that are now being opened for exploration.
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1.1 Introduction

Modern materials research and development is the driving force behind new

materials that transform our lives ranging from advances in battery tech-

nology to the nanoparticle technology behind messenger ribonucleic acid

(mRNA) vaccines. It tackles grand challenges such as clean energy and a

circular economy, as well as more mundane, but important advances such as

stronger glass for cell phones and warmer, less bulky clothing. It includes

brand new products never seen before, as well as incremental advances.

However, it is also a slow process. For example, it took over half a cen-

tury from when poly(lactic acid) was first discovered until it was regularly

used in products such as compostable cups. To reduce the barriers, the

Materials Genome Initiative (MGI) was established in 2011 in the United

States where the goal is to bring materials to market twice as fast and

at a fraction of the cost by making data accessible, leading a culture shift,

training the next generation, and integrating experiment, computation, and

theory [1]. Related efforts include the Findability, Accessibility, Interoper-

ability, and Reusability (FAIR) Data Infrastructure (Europe, 2018), which

encompasses the Novel Materials Discovery (NOMAD) data repository (Eu-

rope, 2014) and Material Research by Information Integration Initiative

(Japan, launched 2015, ended 2020).

Since the initial launching of the MGI, artificial intelligence (AI), includ-

ing machine learning (ML), has led to numerous, rapid advances in society

including virtual assistants, image recognition, recommender systems, lan-

guage translation, etc. It quickly became obvious that these concepts could

also play a similarly transformative role in the materials domain. AI in

material science starts to appear in comprehensive reports [2] a mere five

years since the initial MGI strategy [1], which included the foundations

such as accessible data but not AI explicitly.

To understand the power of AI in the materials domain, consider recent

advances in the protein structure prediction problem. Specifically, this is an

over 50 year old grand challenge to predict the structure of a protein based

on its sequence of amino acids that has spurred an enormous amount of

research and, notably, a competition called Critical Assessment of protein

Structure Prediction (CASP) that occurs every two years since 1994 to

benchmark global advances. In 2020, AlphaFold, [3] an AI entry from

DeepMind, achieved an average error on the order of the size of a carbon

atom and almost a factor of 3 less than the next closest entry. The reason

why it is significant is not only that it made astonishing progress on a grand
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challenge, but that it can often predict accurate structures with uncertainty

in minutes as opposed to costly, time-consuming experiments that require

specialized equipment and that both the model and a database of results

was made available [4]. This subsequently enabled research in antibiotic

resistance, investigations of severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) biology, and enzymes to break down plastics. However,

there is still more progress to be made. Experiments will still be necessary

for outliers, the architecture of AlphaFold is complex, and both why it

works and the science behind it is still unknown.

AI can also catalyze similar advances within the more traditional materi-

als domain. Below we highlight the rapid advances, outstanding challenges

and vision for the future in the field of materials AI; we also refer the reader

to an excellent perspective [5]. In Section 1.2 we introduce the reader to AI

for materials including the different types of tasks, models and approaches

that are commonly used. Particular attention is paid to recent advances.

One of the largest barriers for widespread adoption of AI in materials is

often the need for large, curated datasets. Fortunately, AI can be used to

tackle this problem. Section 1.3 discusses how AI can be used for genera-

tion of data with a focus on simulation data, as well as unstructured text.

As discussed in Section 1.4, AI can, in principle, plan and execute scientific

experiments and simulations completely independently or with humans in

the loop. Yet, for AI in materials to reach its full potential, it is not only

the data scarcity problem that needs to be solved. Other challenges in-

clude the need for benchmarks, uncertainty quantification, interpretability,

the need for semantic search and further intertwining of experiment, simu-

lation, theory and data in the spirit of the MGI as discussed in Section 1.5.

As detailed in Section 1.6, it is an exciting time in the field of materials and

AI—there are both lots of exciting advances and lots of interesting prob-

lems still to solve. For readers new to the field, we recommend REsource

for Materials Informatics (REMI) [6] and learning resources therein, as well

as a best practices guide [7].

1.2 AI allows you to make a material model

The transformative value of adding AI approaches to the collection of tools

already available to material scientists results from ML’s capacity to accel-

erate, optimize, correlate, and discover many of the linkages between how

a material is processed, the internal structures that are formed, and the re-

sultant properties. This capacity reflects ML’s ability to produce material
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models that, given specific inputs, quickly and reliably predict searched-for

outputs.

The process of making ML models is a complex one, involving a se-

ries of steps, each one critical to the overall success. The process starts

with data collection, often requiring a large, or relatively large, set of data.

Luckily, in the last few years many material properties databases have been

developed and continue to be developed, containing either computational

or experimental data [8]. The next step is data curation, where any in-

correct data are identified and eliminated, as well as areas of missing data

are searched for and, if possible, corrected. The third step focuses on rep-

resenting and preprocessing the data to facilitate machine learning use and

maximize performance. This step may include data rescaling, normaliza-

tion, binarization, and other data operations. A particular focus for su-

pervised learning analysis is featurization, i.e., identifying which material

properties need to be passed to the ML model as inputs. It’s a key step,

as the better the feature selection, the more effective the model. Often,

domain knowledge is used in determining such features, but that is not the

only approach. Other strategies include dimension reduction methods such

as Principal Component Analysis (PCA), where high-dimensional data is

projected into low-dimensional properties-relevant features, or describing

the material using graph features, where atoms are nodes and bonds are

edges, as done in graph neural network. The next critical choice, which

is tied to the featurization method, is the choice of the ML algorithm. A

vast gamut of possibilities are available, and are currently used, in ma-

terial science. The choice depends on the type of application. Materials

property prediction, in particular, has seen wide use of of ML, requires su-

pervised learning, where the dataset has to contain both input and output

data. Specifically, the prediction of continuous-value physical quantities like

electronic energy gaps or stress distributions, is called regression, while es-

tablishing discrete-value labeled groups is performing classification, as, for

instance, when determining if a material is metallic or not. Conventional

algorithms (decision tress, kernel methods, etc.) as well as deep learning

methods are used to these ends. An example of a different use of supervised

algorithms is Symbolic Regression, where ML is used to determine the best

mathematical formula to express correlations between inputs and outputs,

instead of evaluating a physical property. Regression and classification of-

ten focus on learning a surrogate ML function to map input to output. The

function is then used for predictions. Symbolic regression is used to find an

interpretable model. A variation in the possible applications is the use of
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supervised ML to determine, or optimize, not specific physical quantities,

but parameters in functions, as it is the case when determining classical

force fields [9]. Examples of all such application will be discussed later in

this section. While supervised learning is the AI type most used in materi-

als science, it’s not the only one. Examples of unsupervised learning can be

found, for instance, in automatic terminology extraction (natural language

processing [10]) for materials science, aimed at identifying information on

material properties, microstructures or process parameters currently dis-

perse in unstructured sources. As the name says, unsupervised learning

detects correlations/patterns between inputs with minimal external guid-

ance and without being given any form of outputs. Phase mapping is an

another example where unsupervised learning has been used. In addition

to supervised and unsupervised learning, material science’s applications are

also making use of semi-supervised learning [11], transfer learning [12],

and representation learning [13]. The last steps in the making of an ML

model are the validation and uncertainty quantification. A certain amount

of the input data is always set aside for validation purposes, i.e. never

enters in the training. This data is then used to quantify the performance

of the model though the evaluation of statistical quantities like the mean

average error (MAE) or the root mean square error (RMSE). Quantify-

ing uncertainty for predictions is a significant challenge on its own. While

probabilistic models natively output uncertainty, others may require addi-

tional processes such as varying parameters (and hyperparameters) of the

machine learning model. Additionally, uncertainty can be quantified over

collections of predictions using statistics measures such as the number of

true positives, true negatives, etc.. Uncertainty analysis is important for

quantifying a model’s performance, though it is commonly not included in

published research.

Focusing on most current applications of supervised learning in mate-

rial science, it is notable that one of its key strengths is its applicability

to a variety of length scales. In the case of property prediction appli-

cations, for instance, ML has often been used at the atomistic level to

substitute for high-fidelity, high-computational cost density functional the-

ory (DFT) calculations. Specifically, many groups have taken advantages

of the availability of vast and open sources DFT databases and modelled

material properties like stability, exfoliability, elastic behavior, electronic

energy gaps, and optical properties, for ideal crystalline [14], molecular,

and polymeric materials [15]. At the continuum level, it has been exten-

sively used to model fracture propagation and other failure mechanisms
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[16]. In these applications, ML has taken the place of finite element (FEM)

and Finite-Discrete Element (FDEM) modeling. Even relatively new fields,

like additive manufacturing, have made extensive use of ML techniques, of-

ten applied to the investigation of defect-related material behavior. For

instance, the effect of surface roughness or of defect location, size, and

morphology on the fatigue life of a laser melted alloys, such as those found

in additive manufacturing, have been probed using deep learning [16]. Mul-

tiscale investigations have been pursued as well, as in the case of Hsu et al.

[17], where a machine-learning approach connecting molecular simulation

into a physics-based data-driven multiscale model was utilized to predict

fracture processes and toughness values. Within the polymers domain [18],

a major challenge that continues to progress is representation of the poly-

mer. However, with correct choices, exciting advances such as determining

better materials for gas separation [19] are in the works.

Beyond property prediction, ML models have been extremely effective

in model optimization and material discovery. One example of model op-

timization is the development of neural network-based classical force fields

computations. Because of their numerically very accurate representation of

high-dimensional potential-energy surfaces, they can provide energies and

forces many orders of magnitude faster than ab-initio calculations, thus

enabling molecular dynamics simulations of large systems. Transferability

may, though, be a problem, as ML doesn’t extrapolate well. Including infor-

mation on the physical nature of the interatomic bonding into a neural net-

work potential is one possible solution to such a shortcoming, as proposed

by the developers of the Physically Informed Neural Networks (PINN) po-

tential [20]. A different example of model optimization is the use of ML

to develop exchange and correlation functionals for density functional the-

ory (DFT) [21]. DFT is the ab-initio approach most frequently used when

studying the electronic structure of materials at the atomic scale. While ex-

act in principle, various approximations are required to perform DFT simu-

lations in practice, among which the form of the exchange-correlation func-

tional is, possibly, the most important, as it captures the electron–electron

interaction. Traditionally built exchange-correlation functionals take a long

time to be developed and, occasionally, have extremely complex analytical

forms and are problematic in their accuracy and transferability for certain

classes of materials. ML-built exchange-correlation functionals have the

potentiality to improve over the traditional ones, while being effective for

solids and molecules alike.
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1.3 Application modalities

Well-curated datasets are necessary precursors to a supervised machine

learning model. In materials informatics, data often includes atomic struc-

tures and chemical formulae, images, spectra, point values, and texts such

as peer-reviewed articles as shown in Fig. 1.1. There have been numerous

efforts for organizing the datasets. A complete list of such efforts can be

found elsewhere [22–24]. In the following sections we provide a few well-

known example applications of the above modalities. Atomic structure data

Artificial Intelligence, AI
(Generic term, mimic cognitive functions)

Machine Learning, ML 
(Number of samples > 100)

Linear Regression, Random Forest, Decision Trees, Gaussian Processes, …

Deep Learning, DL
(Number of samples > 500)

Artificial Neural Network (ANN), Convolution Neural Network (CNN), Graph Neural 
Network (GNN), Variational Encoders (VAE), Generative Adversarial Network (GAN), 

Recurrent Neural Network (RNN), Deep Reinforcement Learning (DRL), … 

Chemical Formula, 
SMILES, Fragments

Atomic Structure
(Molecules, Solids, 

Proteins)
Text/Literature

XRD, XAS, Raman, NMR,
UV-vis, XANES, 

Electron/Phonon DOS
SEM, STM, STEM images

Fig. 1.1 Schematic showing an overview of Artificial Intelligence (AI), Machine Learning

(ML) and Deep Learning (DL) methods and its applications in materials science and
engineering (Reprinted according to the terms of the CC-BY license [ [23]]).

is usually obtained from quantum and classical mechanical methods such as

density functional theory and molecular dynamics simulations. Recently,

there has been a huge upsurge in specialty DFT based datasets due to

growing computational power. The physio-chemical information in atom-

istic structure data have been used in machine learning tasks through the

use of Euclidean hand-crafted descriptors and non-Euclidean graph neu-

ral network frameworks. An example of converting atomic structure into

graph is shown in Fig. 1.2. Some of the common material property models

generated using atomistic data are that for formation energy, total energy,

bandgap, modulus of elasticity and so on. Such developed models have

been used for materials screening purposes such as for alloy, energy and

quantum materials design. More details about such applications can be
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found elsewhere [23,25].

χi φi єi δi … … …

R1 R2 R3 … … … Rn

Node features: νi

Edge features

Ө𝑖𝑗𝑘

Line graph

Nodes are bonds

Edges are bond pairs

𝑟𝑖𝑗

𝑖

𝑗

𝑘

T1 T2 T3 … … … Tm

triplet features: tijk

𝒆𝑖𝑗 = RBF(||𝑟𝑖𝑗 − 𝑹||)

𝒕𝑖𝑗𝑘 = RBF(||Ө𝑖𝑗𝑘 − 𝑻||)

𝑖

𝑘
𝑗

𝑖j, jk

Nodes are atoms

Edges are bonds

Fig. 1.2 Schematic representations of an atomic structure as a graph using Atomistic

Line Graph Neural Network (ALIGNN) (Reprinted according to the terms of the CC-BY
license [ [26]]).

Some of the numerous, common imaging techniques (microscopy) for

materials science include optical microscopy (OM), scanning electron mi-

croscopy (SEM), scanning probe microscopy (SPM), which includes scan-

ning tunneling microscopy (STM) or atomic force microscopy (AFM), and

transmission electron microscopy (TEM) and its variants, such as scanning

transmission electron microscopy (STEM). As applications of imaging tech-

niques have become widespread, there is often a large amount of generated

data which can be difficult to analyze manually. ML techniques are useful

for automating and aiding manual work in tasks such as image classifica-

tion of lattices, detecting defects, resolution enhancement, microstructure

learning, image reconstruction and making physics based models using im-

age data. A detailed review of ML for materials image data can be found

elsewhere [23, 27]. To give a few example works, in ref. [28] the authors

developed datasets, and machine models for analyzing defects in graphene

and FeTe systems. In ref. [29], the authors developed semantic segmenta-

tion models for steel that can be used for accurately detecting damages.

In ref. [30] a computational STM image dataset was developed along with

ML models to classify 2D materials lattice with up to 90 % accuracy. In

Ref. [31], the authors used a convolutional neural net (CNN) that was pre-

trained on non-scientific images to perform microstructure reconstruction.



April 25, 2023 15:6 ws-book9x6 My Book Title output page 10

10 My Book Title

Spectral data such as X-ray and neutron diffraction (XRD, ND), X-ray

absorption near edge structure (XANES), electron energy loss (EELS), in-

frared and Raman (IR/Raman), ultraviolet and visible (UV-VIS) provide

great insight into structural, composition and dynamic behavior of mate-

rials. XRD is one of the widely used method for developing large datasets

for materials and training machine learning models. A detailed overview

on such a topic can be found in refs. such as [23, 32]. To give a few ex-

ample applications, Park et al. [33] used CNN for predicting structural

properties of materials with up to 95 % accuracy. Dong et al. introduced

parameter quantification network (PQ-Net) to extract physio-chemical in-

formation from XRD data. Timoshenko et al. [34] used a neural network

for XANES to predict coordination number of metal clusters. Liu et al [35]

used SVM and CNN methods to predict Raman spectra using a Raman

spectra database. Fung et al. [36] used CNNs to predicting electronic den-

sity of states obtained from DFT.

The text data for materials is obtained from academic journal arti-

cles, preprint repositories such as arXiv, and crowd-sourced resources like

Wikipedia etc. Compared to other applications, datasets for NLP are often

scarce due to copyright restrictions and paywalls. Nevertheless, there have

been substantial research in this field due to rapid developments in the field

of sequence modeling. Such techniques are being used for automatically ex-

tracting relevant material property data from text to guide theoretical and

experimental work such as material synthesis, magnetic phase transition

temperature calibration, designing batteries and solar-cells etc. [37–39].

1.4 Autonomous science

Advances in technology often require the discovery and development of

novel advanced materials. As a result, the search for advanced materials

continually expands to materials of greater and greater complexity in both

number of chemical components and processing steps. However, with each

new element or processing step, the number of potential materials to inves-

tigate grows exponentially (e.g., if 10 experiments are used to investigate

the impact of one variable, 10N experiments will be required to investigate

the impact of N variables). Manual investigations rapidly become infeasi-

ble. High-throughput techniques [40] provide a short-term solution, making

it possible to synthesize thousands of unique materials in a few hours and

characterize these materials in rapid succession. Machine learning can then

be used to reduce data analysis from weeks and months to seconds. Nev-
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ertheless, high-throughput methods do not provide the exponential scaling

needed.

The last few years have seen the rise of autonomous materials research

systems [41] – where machine learning controls experiment design, execu-

tion (both physical and in silico), and analysis in a closed loop. These

systems use active learning – the machine learning field focused on optimal

experiment design, to ensure that each subsequent experiment maximizes

knowledge gained toward user defined goals. Active learning allows users

to balance two high-level goals: exploration and exploitation. Exploration

seeks to gain global knowledge of the target material system, while ex-

ploitation uses past knowledge to hone-in on possible optimal materials.

Active learning on its own has been used to build research recommenda-

tion engines to advise scientists in the lab and in silico [42]. Autonomous

systems combine the automated experiment and simulation tools of high-

throughput science with active learning, guiding each study in the lab or

in silico through the vast materials search space, accelerating the discovery

and study of advanced materials.

The advent of autonomous systems does not mean that prior physical

knowledge is thrown out. In fact, autonomous system performance im-

proves by incorporating prior physical knowledge found in laws, heuristics,

and databases. Scientific machine learning [2] is the AI subfield that fo-

cuses on incorporating prior physical knowledge into AI and ML. The goal

is to design models and learning algorithms so that their inductive bias

reflects physical principles. This promotes physically realistic predictions

and provides opportunities for physically meaningful model interpretations.

For instance, the Gibbs phase rule, along with more general rules such as a

material can only be composed of a positive amount of constituent phases,

and materials of similar synthesis are more likely to have similar properties,

have been used to improve phase map data analysis and prediction [43].

Autonomous measurement systems take the first step toward au-

tonomous materials exploration and discovery. These systems guide each

subsequent measurement experiment to obtain maximal information for the

target sample. Parameters that are optimized include where on the sample

to measure next, the temperature of the material, and measurement spe-

cific parameters such as beam wavelength. For example, autonomous X-ray

measurements were used to guide beam location to accelerate nano-particle

density determination [44] and autonomous X-ray measurements were used

to select subsequent sample compositions in the search for novel materials,

resulting in a 10x acceleration toward the discovery of the new, best-in-class
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phase change memory material [45].

Success in autonomous chemistry preceded materials science, with sys-

tems that optimize molecular mixtures for applications such as chemical

reaction optimization [46]. Accordingly, the majority of autonomous ma-

terials systems focus on ‘wet’ synthesis such as optimizing quantum dots

for emission energy [47]. More recently, closed-loop ‘dry’ materials synthe-

sis and characterization was exemplified for thin-film resistance optimiza-

tion [48].

While active learning can be used to guide a researcher in which mate-

rial to investigate next across a large design space, often the lab systems

are limited in the number of variables that can be automated and ma-

chine learning controlled. For instance sputtering systems are limited in

the number of components that can be deposited at a time and control

over measurement beam path may be locked out for the users. Advances

in autonomous physical science will require innovations in physical systems

that will allow for greater autonomous control of experiments in the lab.

Additionally, machine learning for autonomous systems could also gain

great advantage from the large amount of prior knowledge of expert users.

This requires the development of human-in-the-loop systems where the au-

tonomous system is able to interact with and learn from expert users. This

is also an ongoing area of research.

1.5 Challenges

At the time of writing, a robust discourse spanning the materials and chem-

istry fields has developed around constructing and deploying creative ap-

plications of ML methods to enable more efficient and scalable research

and development. The value proposition and validity of ML-enabled sci-

entific methodologies have been demonstrated many times over, and the

education and training ecosystem in this subfield is rapidly maturing. Ad-

vancement of transformational ML applications in science now depends on

addressing specific challenges in the scalability and generalization ability of

ML systems, as well as their ease of integration into higher-level scientific

workflows.

Availability of sufficiently large datasets for training ML systems is

widely acknowledged as a challenge in the physical sciences, particularly

where sample fabrication and characterization are time and cost intensive.

Three general strategies are currently being pursued: investing in mas-

sive datasets though high throughput experimentation and computation,
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deploying active learning and autonomous systems for targeted collection

of high-value data, and improving the sample complexity of ML systems

through algorithmic improvements. The preceding sections of this chapter

outline current progress along each of these axes. Continued innovation

critically depends on the fields’ ability to quantify, communicate, and mit-

igate dataset and annotation bias.

Progress in ML is historically enabled by clearly defined tasks, with ro-

bust performance measures that guide innovation. Failing to account for

dataset bias can lead to benchmarks that reward memorization [49], making

clear assessments of methodological innovation difficult. At present, many

of the large materials datasets used in applied ML research have been re-

purposed from materials discovery efforts not directly motivated by ML

applications. The resulting forms of dataset bias are acknowledged in the

materials literature, but further detailed quantification and research into

mitigation strategies will enable the community to develop more produc-

tive ML systems. This bias assessment covers not only the data themselves,

but extends to the framing of the ML task in the context of ultimate sci-

entific goals. For example DFT formation energy is a popular atomistic

prediction target used throughout the literature to benchmark model qual-

ity, but thermodynamic stability is a much more relevant (and challeng-

ing) target for materials discovery and design applications [50]. This kind

of investment into clearly defined ML tasks and well-designed benchmark

datasets will help the materials community engage more effectively around

concrete problems with the broader AI community. The Open Catalyst

Challenge [51] provides an excellent example of this kind of clear problem

framing and effective coordination of the general ML community.

High-quality and well-characterized datasets provide a foundation for

the field to develop model introspection and interrogation tools that build

and preserve confidence for ML-based decision making in the sciences.

These are of critical importance because scientific progress and discovery is

often fundamentally at odds with a central assumption relied on by most

ML systems: that data for which predictions are made is identically dis-

tributed to the training data. Machine learning systems, especially the

overparameterized deep learning models popular in current research, can

perform notoriously poorly when extrapolating with high confidence. The

importance of principled uncertainty quantification for machine learning

predictions is increasingly being emphasized in materials research, espe-

cially as more researchers adopt active learning methodologies that rely

on well-calibrated measures of model confidence. More research is needed
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to decompose predictive uncertainty across multiple model and training

components, and to be able to propagate uncertainties of the underlying

training data through the modeling pipeline as well.

Similarly, general-purpose ML model introspection and interpretability

tools [52] are helping materials researchers to identify and explain trends

in ML model behavior. Materials-specific adaptation of these methods,

such as an additive modeling strategy to decompose the contribution of

individual atoms in a crystal to a target property [53], can provide new

ways of studying materials phenomena, and for understanding how ML

models form predictions. Progress in this direction will depend on greater

adoption of standard model introspection tools in the materials community,

and an ongoing discourse of developing creative methods for critiquing ML

models and predictions. These tools will be most effective in combination

with ML systems designed from the ground up to incorporate and reflect

physical principles, so that ML models and their predictions can directly

be interpreted in terms of physical insight. [2]

Finally, there are important areas in which methodological innovation

will substantially boost scientific progress. The subfield of scientific machine

learning is rapidly developing creative modeling approaches that tailor the

inductive biases of ML systems to reflect physical principles. For example,

graph neural network architectures reflect well the local structure and per-

mutation invariance in atomistic systems, and neural differential equations

are enabling data-driven discovery of mechanistic models in mechanical and

pharmacokinetic systems. There is a rich diversity of theoretical modeling

approaches in materials science, and developing generalizable approaches

for incorporating them into ML systems is an important and challenging

task.

With respect to automated materials discovery and design, deep gen-

erative models have shown encouraging progress for molecular [54] and

crystalline [55] systems. Important research directions include developing

methods that go beyond structural prototype search, methods for using

generative models for reaction engineering and synthesis planning, and de-

veloping a framework for connecting generative models to higher-level ma-

terials structures and models.

Curation of structured knowledge and, crucially, metadata will enable

novel forms of ML application in materials science, such as semantic search,

which incorporates specific domain knowledge into information retrieval.

Automated literature mining to extract and link information to construct

knowledge graphs is an active topic of research in the ML community. Spe-
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cific materials science emphasis is needed to build on early work in chemical

named entity recognition, information extraction from common graphical

representations of measured materials properties, and extraction of mate-

rial properties and synthesis protocols [56]. These tools and the resulting

scientific knowledge graph and related infrastructure will create opportuni-

ties for integrating structured concepts into information retrieval, predictive

modeling tools, and ML model interrogation and interpretability tools.

A final challenge area is seamless integration of ML into larger materials

design systems. This covers both multiple interacting ML-based systems

as well as conventional computational materials science infrastructure. The

long-standing multiscale modeling challenge provides many opportunities,

for example end-to-end learning in neural networks that parameterize phys-

ical simulations or perform coarse-graining to connect classical modeling

components. Finally, rigorous incorporation of scientific domain knowledge

may require going beyond machine learning to identify opportunities for

applications of broader artificial intelligence methodology, such as search-

based techniques and symbolic reasoning [57].

1.6 Conclusions and outlook

In this chapter, we have outlined the many ways that AI has the power

to catalyze transformational advances in materials R&D. We have detailed

the myriad ways that AI is, and will continue to, impact materials research,

including in the predictions of materials properties, the influence of defects

and dopants, and how materials fail. AI techniques can markedly accelerate

the hunt for new materials with desirable properties, allowing for inverse

design techniques that can zero in on the optimal processing techniques

needed to obtain the desired materials performance.

Additionally, AI approaches can accelerate the characterization of ma-

terials systems, using the powerful image analysis/processing techniques

that drove many of the notable breakthroughs in AI. Since materials can

be characterized not just by images of their internal structure, but also by

patterns resulting from techniques such as X-ray and electron scattering,

image processing techniques are especially potent.

It was noted that with the maturation of data gathering and improved

data infrastructures, the raw materials for AI will be in increasingly greater

and greater supply. This positive development is compounded by the ad-

vent of AI-driven, autonomous laboratory setups, where closed loop ex-

perimental designs will enable the exploration of far wider processing and
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compositional parameter variations than we previously practical, creating

a virtuous feedback loop that could yield truly paradigm shifting levels of

data and, ultimately, knowledge, about the existing and sought for materi-

als.

We also spent some time addressing the challenges that must be over-

come to realize the full potential of AI approaches. The required data (and

metadata) infrastructures are still not there, and those that exist don’t

interoperate especially well. AI approaches have definite risks, and bench-

marking efforts are needed to provide trust in these methods, and, where

possible, uncertainty bounds provided. It is also desirable that AI methods

incorporate the best available physical knowledge and insights, ensuring the

algorithms respect known science and underlying symmetries.

We began our discussion by considering the success of the AlphaFold

effort, which linked the fine structure of proteins (the amino acid sequence)

to ultimate conformation. This type of linkage is not analogous to materials

R&D, it is materials R&D, albeit for a very specific research question. Per-

haps one of the great stories of the success of AlphaFold was the CASP com-

petition, which drove the protein folding research community forward for 30

years, long before AI techniques became commonplace in either biomedical

or materials research. There is an enormous opportunity for the materi-

als R&D community to create new “grand challenge” problems that are

of the same magnitude as the protein folding problem, and could result in

materials that address many of the pressing concerns facing humanity to-

day, including energy efficiency, climate change mitigation through carbon

capture materials and cleaner energy production, enhanced recyclability

and reduction in plastics pollution, and new biocompatible medical devices

and implants. AI is poised to make these revolutions in the human con-

dition achievable with a speed and expense that was, until very recently,

unimaginable.
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Shapeev, A. P. Thompson, M. A. Wood et al., “Performance and cost assess-
ment of machine learning interatomic potentials,” The Journal of Physical
Chemistry A, vol. 124, no. 4, pp. 731–745, 2020.

[10] F. Olsson, “A literature survey of active machine learning in the context of

17

https://deepmind.com/blog/article/putting-the-power-of-alphafold-into-the-worlds-hands
https://deepmind.com/blog/article/putting-the-power-of-alphafold-into-the-worlds-hands
https://pages.nist.gov/remi/
https://pages.nist.gov/remi/


April 25, 2023 15:6 ws-book9x6 My Book Title output page 18

18 My Book Title

natural language processing,” SICS, Tech. Rep. 2009:06, 2009.
[11] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised learning,”

Machine Learning, vol. 109, no. 2, pp. 373–440, Nov. 2019.
[12] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions

on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.
[13] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review

and new perspectives,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[14] K. Choudhary, K. F. Garrity, A. C. Reid, B. DeCost, A. J. Biacchi, A. R. H.
Walker, Z. Trautt, J. Hattrick-Simpers, A. G. Kusne, A. Centrone et al.,
“The joint automated repository for various integrated simulations (jarvis)
for data-driven materials design,” npj Computational Materials, vol. 6, no. 1,
pp. 1–13, 2020.

[15] H. Doan Tran, C. Kim, L. Chen, A. Chandrasekaran, R. Batra, S. Venka-
tram, D. Kamal, J. P. Lightstone, R. Gurnani, P. Shetty et al., “Machine-
learning predictions of polymer properties with polymer genome,” Journal
of Applied Physics, vol. 128, no. 17, p. 171104, 2020.

[16] H. Bao, S. Wu, Z. Wu, G. Kang, X. Peng, and P. J. Withers, “A machine-
learning fatigue life prediction approach of additively manufactured metals,”
Engineering Fracture Mechanics, vol. 242, p. 107508, 2021.

[17] Y.-C. Hsu, C.-H. Yu, and M. J. Buehler, “Using deep learning to predict
fracture patterns in crystalline solids,” Matter, vol. 3, no. 1, pp. 197–211,
2020.

[18] L. Chen, G. Pilania, R. Batra, T. D. Huan, C. Kim, C. Kuenneth, and
R. Ramprasad, “Polymer informatics: Current status and critical next
steps,” Materials Science and Engineering: R: Reports, vol. 144, p. 100595,
2021.

[19] J. W. Barnett, C. R. Bilchak, Y. Wang, B. C. Benicewicz, L. A. Murdock,
T. Bereau, and S. K. Kumar, “Designing exceptional gas-separation polymer
membranes using machine learning,” Science advances, vol. 6, no. 20, p.
eaaz4301, 2020.

[20] G. P. P. Pun, R. Batra, R. Ramprasad, and Y. Mishin, “Physically informed
artificial neural networks for atomistic modeling of materials,” Nature Com-
munications, vol. 10, no. 1, May 2019.

[21] S. Dick and M. Fernandez-Serra, “Machine learning accurate exchange and
correlation functionals of the electronic density,” Nature communications,
vol. 11, no. 1, pp. 1–10, 2020.

[22] C. Draxl and M. Scheffler, “Nomad: The fair concept for big data-driven
materials science,” Mrs Bulletin, vol. 43, no. 9, pp. 676–682, 2018.

[23] K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza, R. Cohn,
C. WooPark, A. Choudhary, A. Agrawal, S. J. Billinge et al., “Recent
advances and applications of deep learning methods in materials science,”
arXiv preprint arXiv:2110.14820, 2021.

[24] C. W. Andersen, R. Armiento, E. Blokhin, G. J. Conduit, S. Dwarak-
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