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Abstract
Magnetic Particle Imaging (MPI) has in recent years been established as a powerful imaging tool that measures the
non-linear magnetic response of magnetic particles to an applied field. Obtaining quantitative information from
these images in the form of a discretized version of the particle distribution in space requires the solution of an
inverse problem that can be addressed by linear regression. We demonstrate how the linear regression can also be
used to estimate the uncertainty of the reconstructed particle distribution.

I. Introduction
The quantitative analysis of data obtained through Mag-
netic Particle Imaging (MPI)[1–3] usually requires the
solution of an inverse problem; the directly measured
voltage signal in time is first translated into image data
before it is further analyzed to yield the number of par-
ticles at a given position in space as a discretized repre-
sentation of the particle distribution.

This second step in quantitative analysis of the par-
ticle concentration distribution requires deconvoluting
the image data in order to remove the blur introduced by
the Point Spread Function (PSF) of the imaging system,
which at its core can be expressed as a linear regression
problem as shown in [4]. However, this approach only
yields a point estimate of the number of particles at a
given spatial position without saying anything about its
uncertainties.

In this work, we demonstrate how the linear regres-
sion formulation of the inverse imaging problem can
easily be used to report uncertainties in a compliant way
with the Guide to the Expression of Uncertainty in Mea-

surement [5] adding to a recently submitted paper [6]
in which we presented an approach to the uncertainty
quantification based on the bootstrap method [7].

II. Methods

We recapitulate the basic methods for simulation and
reconstruction, which are similar to those developed in
[4].

II.I. Forward Model

If we denote by ρ (x) the particle distribution, by R0 the
nominal sensitivity of the receiver coils, by G the gradient
of the applied gradient field, by m = 1

6πMs d 3 the mag-
netic moment of a single particle, by T the temperature
in Kelvin, by kB and µ0 the Boltzmann constant and the
vacuum permeability respectively, and by r = r (t ) the
trajectory of the field free point (FFP), we can calculate
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the resulting MPI signal with the equation

s (t ) =µ0mR0
d

d t

∫

R3

ρ (x)L [k ||G (r−x) ||]
G (r−x)
||G (r−x) ||

d x,

(1)
whereL [·] is the Langevin function and k = µ0m

kB T .

II.II. Reconstruction
The reconstruction makes use of the fact that we can spa-
tially fit the time signal data s(t ) to obtain the so-called
trace data u(x), and, once we populate a convolution
matrix K based on the system’s PSF, can determine the
particle distribution by minimizing the regularized [8]
function

χ2
�

ρ
�

= ‖Kρ −u‖2+λ‖ρ‖2. (2)

II.III. Uncertainty Quantification
If we have information on the measurement error on u,
such as an estimate for the covariance matrixΣu, that we
will call V, we can replace Eq. 2 with a weighted version

χ2
V

�

ρ
�

= ‖Kρ −u‖2
V+λV‖ρ‖2 (3)

=
�

Kρ −u
�ᵀ

V−1
�

Kρ −u
�

+λV‖ρ‖2,

with λV = λ · ‖V−1‖F , and ‖ · ‖F denoting the Frobenius
norm of a matrix. Once we determine the optimal con-
centration profile ρ̂, i.e., the profile that minimizes the
χ2

V function in Eq. 3, we can give an estimate of the pro-
file’s uncertainties by calculating the covariance matrix

Σρ̂ =
�

KᵀV−1K+λVE
�−1

, (4)

where E is the identity matrix of size n = dim (u). Since
the matrix V is close to singular, we apply a truncated
singular value decomposition to calculate its inverse [9].

The uncertainty on an individual point ρ̂ i is then
given by the square root of the diagonal elements of Σρ̂ .

III. Simulation Setup
We use the forward model from Section II.I with experi-
mental parameters given in Table 1 and the particle distri-
bution shown in Figures 1 a) and b) to generate the input
data. The FFPs Lissajous trajectory r (t ) is generated by
the drive field

HD (t ) =
�

µ0Bx sin
�

2π fx t
�

,µ0By sin
�

2π fy t
�

, 0
�ᵀ

. (5)

We add white noise with zero mean and a standard
deviation of one percent of the maximum value of the
signal vector s. We divide the resulting field-of-view into
51× 51 pixels, which leads to the following sizes of the
vectors u ,ρ ∈ R2601, and matrices K, V ∈ R2601×2601, in-
volved.

Table 1: Simulation Parameters.

Particle Diameter d 2 ·10−8 m
Saturation Magnetization Ms 4.5 ·105 A/m
Temperature T 293 K
Gradient Field Amplitudes Gx 8 T/m

Gy -4 T/m
Drive Field Amplitudes Bx 4 ·10−2 T

By 2 ·10−2 T
Excitation Field Frequencies fx 25.5 kHz

fy 25.25 kHz
Coil Sensitivity R0 8.38 ·10−4 T/A
Regularization Parameter λ 108

Figure 1: a) Phantom used in simulations, b) top-down view of
phantom, c) reconstructed particle distribution ρ̂ d) top-down
view of reconstructed particle distribution, note the different
resolution in x and y directions, particularly for the small cen-
tral cone, due to different gradient fields.

IV. Results

We now apply the reconstruction and uncertainty estima-
tion algorithms to the noisy simulation data introduced
in the previous Section.

IV.I. Error Analysis

As we have seen in Section II.III, to determine the un-
certainty in the reconstructed particle distribution we
need an estimate of the measurement uncertainty for
the trace data u, which is a function of the time signal
data (see Figure 2 for the comparison between s(t ) and u).
Since there is no direct way to determine how the noise
propagates, we perform a Monte Carlo (MC) [10] anal-
ysis, i.e., we generate multiple noisy realizations of the
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time signal data, calculate the corresponding trace data
and determine the sample variance from these. Since
the spatial fitting is less time-consuming than solving
the regression problem, there is a notable time advan-
tage compared to the bootstrap method. Note, that in the
case of real measured data we can compute the trace data
from multiple noisy measurements and then determine
the sample variance.

The results in the form of the reconstructed particle
distributions, along with the calculated 95% confidence
intervals are shown in Figure 3. As expected, the error
bars cover the ground truth, showing the reconstruction’s
reliability and the estimated parameter uncertainties.

Figure 2: a) Raw signal data s, b) trace data u after spatial
fitting

Figure 3: a) Reconstruction with expanded 95% confidence
intervals, as required we see good coverage of the ground truth.
b) Location of line scans for the reconstruction in a) are shown
overlaid on the top-down view of the reconstruction that is
itself overlaid with a transparent top-down view of the ground
truth schematic

V. Discussion and Conclusion
In this presentation, we have shown how to improve the
quantitative analysis of MPI data by calculating the asso-
ciated uncertainties of the reconstructed particle distri-
bution. This improvement can be achieved by using the
linear regression formulation of the underlying inverse
problem, which establishes a relation between the un-
certainties in the measurement and the uncertainties in
the reconstructed parameters.

However, in the case of MPI, the raw input data (the
time signal data) is first fitted to a spatial grid before be-
ing used for the reconstruction. In order to estimate the
magnitude of the error on the spatially fitted data, we per-
formed a MC simulation and used the sample variance as
weights for our estimation. With these adjustments, we
were able to recover the ground truth distribution within
the error bars of the reconstruction. Future work might
circumvent the MC simulation by using a maximum like-
lihood estimation [11] that determines the noise from
the spatially fit data itself.
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