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a b s t r a c t 

Background: Exposure to particulate air pollution is one of the greatest environmental risk factors for adverse 

human health outcomes. However, the constituents that may be responsible for such adverse health effects have 

not been fully studied. 

Methods: Total suspended particulates filters collected every 6 days in 2011 from three South Carolina locations 

were used in this case study. An inductively coupled plasma mass spectrometer interfaced with a laser ablation 

system (LA-ICP-MS) was used to directly analyze 41 inorganic elemental species on air pollution filters. Then, 

machine learning and multivariate statistical methods was employed to identify combinatorial patterns in the 

data and classify sites based on their elemental composition. 

Results: Forty-one elements were assessed and 33 were used in subsequent analysis. Correlations between United 

States Environmental Protection Agency (US EPA)’s chemical analysis dataset and data from the current study 

revealed significant associations between 7/15 elements with enough variation for comparison (r between 0.28 

to 0.66, p < 0.05). Subsequent multivariate analyses revealed four distinct patterns in the distribution of elements 

by sample location throughout the year. 

Conclusion: The different airborne elements may need to be assessed to understand combinations of elements 

which occur together over space and/or time. Such information can be helpful in planning effective counter 

measures and strategies to control particulate air pollution. 
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Evidence for the adverse health impacts of air pollution has been

ounting for decades [1 , 2] . Exposure to ambient air pollutants is asso-

iated with both acute and chronic health effects and the impacts are

elt on both global and local scales [3] . A recent review on the human

ealth impact of airborne particulate matter highlighted the dramatic

rowth in studies that have shown strong associations between exposure

o particulate matter (PM) and various health outcomes including pre-

ature death, cardiovascular disease, asthma, decreased lung function,

nd increased adverse respiratory symptoms such as breathing difficul-

ies [4] . PM is currently regulated on its total mass concentrations in

ir (μg/m 

3 ), yet these adverse health effects have been observed even

t very low levels of PM [5] . It is unclear whether a threshold concen-
ration exists below which little or no effects on health are observed 
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6] , and knowledge on the differential toxicities of airborne particulate

atter (PM) constituents remains a crucial research gap [7] . 

Regulatory control of PM can be improved with a better under-

tanding of the nature of the various constituents of the PM mix-

ure and their sources [8] . Mounting evidence from studies through-

ut the United States shows that there are significant associations be-

ween exposures to PM constituents and adverse health, both in the

hort term and, although limited, in the long term [7] . However, due

o differences in study design, statistical analyses and specific PM

onstituents, further research is needed. Such elemental composition

ata are available through the United States Environmental Protec-

ion Agency (US EPA)’s PM 2.5 National Chemical Speciation Network

CSN), as well as the Interagency Monitoring of Protected Visual En-

ironments (IMPROVE) Network [9 , 10] . The choices in existing mea-

urement and analytical tools were made based on funding, and avail-
-MS, Laser ablationInductively coupled plasma mass spectrometry; TSP, total 
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Fig. 1. Map of the state of South Carolina, USA showing the three air sampling locations, from which filter media were used for this case study. The only United 

States Environmental Protection Agency Chemical Speciation Network (CSN) site in the state is also shown with the asterisk, and is at the middle site. 
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ble technology [11] . A shift towards time- and cost-effective analyti-

al technologies will be necessary to rapidly examine a more compre-

ensive mix of airborne PM to improve its regulatory control [12] . In

act, as far back as 1999, Chin et al. [13] demonstrated the feasibil-

ty of a multi-element analysis of airborne particulate matter collected

n PTFE-membrane filters. However, the current standard of practice is

till in use for obtaining particle constituent or chemical composition

ata. 

Historically, accepted filter-based approaches and wet-chemistry

ethods are used to acquire elemental composition data [14] . The US

PA measures over 50 chemical constituents; analyzing all available

onstituents presents problems with multiple comparisons, and most

esearchers typically select the constituents that are the largest con-

ributors to PM total mass [15] . However, different monitors are used

o measure PM total mass and chemical constituents, and this creates

ata alignment problems. Furthermore, the CSN are more sparsely dis-

ributed compared to the mass concentrations monitoring network and

his introduces measurement and prediction errors in exposure assess-

ent. As such, understanding the local air quality at locations with no

ir monitoring can be challenging. 

Challenges with filter sample analysis also exist, and include ap-

roaches such as thermal optical analysis (for carbon), ion chromatogra-

hy (for nitrates and sulfates) and X-ray fluorescence (for metals) [16] .

dditionally, three different filter media are required: Teflon, nylon,

nd quartz-fiber filters [14] . While this supports the EPA’s goal in un-

erstanding the spatial and temporal composition of fine particles in

mbient air, several issues remain. First, ambient monitors dedicated

or PM constituent analysis are sparsely located across the US and are

ot measured on a daily basis. Secondly, for trace elements, the energy-

ispersive X-ray fluorescence method is not sufficiently sensitive to de-

ect a majority of the elements; precision results are usually 20% to 40%

or ion/carbon/trace elements, and poorer for lighter elements [14] .

hile several approaches have been taken to compare CSN analytical

rotocols [17 , 18] , we would like to focus on a case study from one state

o highlight how data can be obtained at locations that may have need

f but are currently without elemental composition data. 
2 
The motivating hypothesis for this work is that the patternicity of

lements on the PM filters will exhibit variability in terms of location

nd/or time in South Carolina and that one site would not adequately

epresent all sites. To address this hypothesis, we sought to answer the

ollowing questions. First what types of different elements occur on the PM

lter media and what are their mass fractions? Secondly how do these el-

ments compare with those measured in the Chemical Speciation Network?

hirdly, are there combinations (or mixtures) of elements that occur together

ver space and/or time? Such information will be extremely helpful to

lan effective counter measures and strategies to control particulate air

ollution. 

aterials and methods 

ample collection and information 

Archived high volume sampler filters collected by the South Car-

lina Department of Health and Environmental Control were available

or the research team’s use. We used filters from three sites for the initial

ethod development of this constituent analysis. These archived filters

epresent total suspended particulates (TSP) samples collected every 6

ays in 2011. We used the lab blanks and loaded filters from the same

atches, and we do not expect much impact on our results after blank

ubtractions. They were from three locations in the state of South Car-

lina representing the northern ( n = 56), middle ( n = 56) and southern

egions ( n = 53) [ Fig. 1 ]. 

ample preparation 

Minimal sample preparation steps included cutting and mounting the

SP filter samples and fixing them onto 3 mm thick by 38 mm diame-

er glass discs with double sided tape. The glass substrate supported the

hin TSP filter samples and prevented the samples from sticking to the

aser cell o-ring or falling away during sample interchange. National

nstitute of Standards and Technology (NIST) calibration and control

aterials were pressed into 13 mm diameter pellets using a sample
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ress, with application of approximately 36 MN of force. The pelletized

amples were centered in the carousel sample slots using custom nylon

ounts that allowed for sealing against the 18 mm laser cell o-ring. A

riple quadrupole inductively coupled plasma mass spectrometer (Agi-

ent Technologies 8800, Palo Alto, CA) interfaced with a laser ablation

ystem (LA-ICP-MS) was used to analyze samples. 

alibration and quality assurance/quality control (QA/QC) 

First, storage blank filters were used to establish background levels

f elements present within the filter substrate – these filters that came

rom the same or a similar batch as the loaded air sample filters used

n the study. Second, pressed pellets of NIST SRM 2584 Trace Elements

n Indoor Dust (Nominal Mass Fraction of 1% Lead) served as the cali-

ration material (single calibrant). NIST SRM 1649a Urban Dust served

s the control (Supplementary Fig. 1). Filter blank samples were placed

etween five loaded air sample filters from each site during ablation,

ith the calibrant run at the beginning of the sequence and the control

t the end. Signals from the ICP-MS were converted to elemental mass

ractions using SRM 2584. 

A-ICP-MS procedures 

The specifications and operating conditions used for LA-ICP-MS are

rovided in Supplementary Table 1. For each filter, an area represent-

ng approximate 0.002% of the total filter area was ablated via raster

canning to measure the elements present in the filter. Each sample

as independently sealed against the laser cell, and the cell was purged

ith helium gas in between each sample analysis. Additionally, a pre-

blation cleaning run was performed before the main run was executed.

ogether, these procedures eliminated sample cross contamination. The

ignals were detected with the triple quadrupole ICP-MS. LabVIEW soft-

are was used for data reduction and quantification. 

This LA-ICP-MS analytical technique was used to assess TSP filter

amples from January 3rd 2011, through December 29th 2011 from

hree different air monitoring sites in South Carolina. Data from January

011 are omitted from the final data analysis because the He gas setting

as too low to push the samples to the ICP-MS. As such, data are sum-

arized from February 2011 to December 2011. There were 165 TSP

lter samples and 33 filter blanks. Each analytical batch of 20 samples,

consisting of calibrants, blanks, unknowns and controls) was completed

n approximately 60 min. This translates to a total filter analysis time of

pproximately three minutes, including sample interchange, laser cell

ashout, and acquisition time. A single laser acquisition is performed

n approximately 30 s to complete a 900 μm sample transect. The laser

ystem has the flexibility to perform multiple transects over a finite area,

f desired. 

S EPA chemical speciation network (CSN) data 

CSN data for January through December 2011 were measured from a

tationary air monitor in Columbia, South Carolina, from EPA’s only Na-

ional Core (NCore) Monitoring Network site in the state and operated

y the South Carolina Department of Health and Environmental Control.

he speciation monitor at this NCore site is a SuperSass sampler which

ses two different filter types (Teflon and Nylon), with each filter an-

lyzed for different PM species (organic and elemental carbon, major

ons and trace metals). Data were retrieved online from the US EPA’s

ortal for air quality data collected from outdoor monitors across the

S ( https://www.epa.gov/outdoor-air-quality-data ). For the purposes

f the current study, only trace metal data obtained from Teflon filters

ere used for comparison. 

tatistical analyses 

Filter data were blank subtracted using the average filter blank in

ach run before employing descriptive statistics. Nonparametric univari-
3 
te analyses were conducted with the Kruskal Wallis test to compare

ifferences for each element between sites, since the raw data did not

eet the assumptions of normal distribution. Pairwise correlations us-

ng Spearman’s rank correlation coefficients between elements obtained

rom this LA-ICP-MS method were also examined. Furthermore, Spear-

an’s rank correlation coefficients were assessed between the US EPA

SN data and data from the current study. Correlations between mass

raction (mg/kg) and mass concentrations (μg/m 

3 ) were conducted.

hen, with the assumption there was a pressure of 1 atmosphere and

 temperature of 25 °Celsius, we converted CSN mass concentrations to

ass fractions with the following equation: 

𝐶𝑆𝑁 ( 𝑚𝑔∕ 𝑘𝑔 ) 
= 

(
24 . 45 × 𝑐 𝑜𝑛𝑐 𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

[
𝜇𝑔∕ 𝑚 

3 ] ÷ 𝑚𝑜𝑙𝑒𝑐 𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 
)
× 1000 

After preliminary analysis, all data were centered around the mean

nd dividing by the standard deviation so that their relative magnitudes

ould be similar. Heat maps were used to identify possible patterns

y location. Finally, three multivariate approaches were employed to

dentify possible patterns of elemental mass fractions by location and/or

ime. The first approach, hierarchical cluster analysis, was used to assess

he similarities and differences between elements. The second approach

as self-organizing maps (SOMs). The SOM algorithm is an efficient

eans of interpreting and visualizing complex data sets; the ‘map’ facil-

tates understanding of between-class relationships [19] . Thirdly, par-

ial least-squares discriminant analysis (PLS-DA) was used to identify

otential patterns in element composition between the sites. Statistical

nalyses were conducted with R [20] and MetaboAnalyst 4.0 [21] . 

esults 

roof-of-concept 

In answer to the initial question: Which elements are detectable on

he PM filter media and what are their mass fractions? A total of 44 ele-

ent isotopes were assessed. These include: 7 Li, 9 Be, 11 B, 24 Mg, 27 Al,
9 Si, 31 P, 34 S, 43 Ca, 44 Ca, 47 Ti, 51 V, 52 Cr, 55 Mn, 56 Fe, 59 Co, 60 Ni, 63 Cu,
4 Zn, 66 Zn, 75 As, 78 Se, 79 Br, 85 Rb, 88 Sr, 90 Zr, 95 Mo, 101 Ru, 103 Rh, 105 Pd,
11 Cd, 118 Sn, 121 Sb, 127 I, 133 Cs, 137 Ba, 138 Ba, 195 Pt, 202 Hg, 205 Tl, 208 Pb,
09 Bi, 232 Th, and 238 U. However, 11 B, 90 Zr, 101 Ru, 103 Rh, 105 Pd, 127 I,
95 Pt, and 205 Tl were excluded from the final data analyses; those ele-

ents were not quantified in the NIST calibrant SRM 2584. Data are pre-

ented as mass fractions with units in mg/kg (Supplementary Table 2). 

ilter homogeneity 

One important aspect of this LA-ICP-MS technique is the fact that

he laser line (sampled from the center of the filter) represents approx-

mately 0.002% of the filter area (Supplementary Fig. 2). Hence it is

mportant to assess heterogeneity across the large (2 cm x 2 cm) filter

amples used. Subtle differences in the particle loading across specific

reas of the filters or hotspots of unique particles might influence sample

omogeneity, thus eight other locations on loaded and blank filters were

ssessed (total n = 9 for each type of filter sample). We then assessed

he signal-to-background (S/B) ratios and mass fraction variability (Sup-

lementary Fig. 3). Ideal elements with high S/B and low spatial mass

raction variation (under 30% relative at 95% confidence level) were

u, P, Mo, Th, Ti, Sb, Mn, I, Tl, S, Co, Br, Be and Bi. Some elements

ere more challenging to measure due to low S/B and also due to the

ature/composition of the blank filters. Such elements included Ca, Ba,

, Mg, Se, Si, As, and Zn. Nevertheless, this assessment ensured that the

ampling area was standardized close to the center of the filters. 

ummary statistics 

Daily air pollution summaries generated by federal reference method

FRM) air monitoring techniques suggest that regional air quality was

https://www.epa.gov/outdoor-air-quality-data
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Fig. 2. Spearman ranked correlations between Chemical Speciation Network (CSN) elements with elements assessed in the current study. LA-ICP-MS data are on the 

y axis and CSN data are on the x axis. 
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enerally good at the three sites during the study year. Over the course

f 2011, the average ± standard deviation (sd) reported for PM 2.5 were

1.2 μg/m 

3 ± 5.7 μg/m 

3 and 11.7 μg/m 

3 ± 5.5 μg/m 

3 for the North and

iddle regions, respectively. PM 2.5 mass concentrations are not mea-

ured at the Southern site. PM 10 mass concentrations were 15.9 μg/m 

3 

 6.5 μg/m 

3 , 17.1 μg/m 

3 ± 7.7 μg/m 

3 , and 18.2 μg/m 

3 ± 7.6 μg/m 

3 

or the North, Middle and Southern regions respectively. High levels of

alcium were consistent across all three sites. Mean ± sd 44 Ca mass frac-

ions were 304.7 mg/kg ± 244.7 mg/kg, 242.2 mg/kg ± 365.7 mg/kg

nd 251.8 mg/kg ± 244.5 mg/kg at the Northern, Middle and Southern

ites respectively (Supplementary Table 2). Beryllium had the lowest

ass fractions at all three sites, and the 99th percentile was 0.01 mg/kg.
02 Hg, 232 Th and 121 Sb were detected in 100% of all samples. 

omparison with CSN data 

The middle site is the only location with CSN data for the whole

f South Carolina. As such, to answer the second question of interest

 how do these elements compare with those measured in the Chemical Speci-

tion Network? ), data from the middle site only are compared with the

SN data for 2011. While there are about 50 inorganic elements as-

essed in the CSN, the current study had 28 elements in common. As

his was a case study, the elements characterized were selected a pri-

ri to show proof of concept in identifying inorganic element mixtures

n TSP filters (Supplementary Table 3, 5 elements were novel, while

1 elements routinely measured for the CSN were not assessed in this

tudy). A total of 15 elements had enough variation for subsequent com-

arisons (Supplementary Table 3) and seven correlation analysis were

tatistically significant ( p < 0.05, Fig. 2 ). Silicon was marginally signifi-

ant ( p = 0.24, p = 0.085, Fig. 2 G), as were calcium (both isotopes) and

trontium ( p < 0.1, data not shown). Additionally, results for Spearman

anked correlation coefficients between CSN data (mg/kg) and LA-ICP

S data (mg/kg) and their statistical significance remained unchanged.
4 
reliminary data analysis and correlations 

Non-parametric (Kruskal–Wallis) analysis was employed to test for

ifferences in median elemental mass fractions at the three sampling

ites. Results (chi square statistic and p value) reveal that 20/36 el-

ments were significantly different between sites. Specifically, 63 Cu

X 

2 = 43.8 p < 0.0001), 95 Mo (X 

2 = 16.1 p = 0.0003), 79 Br (X 

2 = 38.2 p <

.0001), 202 Hg (X 

2 = 13.3p = 0.001), 47 Ti (X 

2 = 21.3 p < 0.0001), 137 Ba

X 

2 = 20.8 p < 0.0001), 138 Ba (X 

2 = 19.9 p < 0.0001), 85 Rb (X 

2 = 17.5

 = 0.0002), 121 Sb (X 

2 = 16.3 p = 0.0002), 118 Sn (X 

2 = 12.6 p = 0.002),
11 Cd (X 

2 = 11.7 p = 0.003), 29 Si (X 

2 = 9.4 p = 0.009), 59 Co (X 

2 = 7.6

 = 0.02), 7 Li (X 

2 = 10.9 p = 0.004), 51 V(X 

2 = 24.1 p < 0.0001), 60 Ni

X 

2 = 10.9 p = 0.004) did not have identically shaped distributions when

he ranked scores were examined per site. The median mass fractions

f the aforementioned elements differed significantly at the three loca-

ions. 

Correlation analysis revealed strong relationships between some

airs of elements in terms of their mass fractions. Strong correlations

merged between Ni–V ( r = 0.82), Mn–Fe ( r = 0.80), Fe–V ( r = 0.82),

e–Cr ( r = 0.82), V–P ( r = 0.92), V–Cr ( r = 0.94), P–Cr (0.96), Zn–Rb

 r = 0.85) and Rb–Sr ( r = 0.94). These were all significant at p < 0.0001.

ther notable correlations occurred between Co–Ti, Cd–Br, Ca–Cs, Zn–

n, K–Zn, Al–V, Si–Cr, Pb–Bi, U–Li, and Bi–Ca. These were also signifi-

ant at p < 0.05. 

achine learning approaches 

To address the third question of interest ( Are there combinations (or

ixtures) of elements that occur together over space and/or time? ), three

pproaches were employed. The first was hierarchical clustering, and

he result of this approach is seen in Fig. 3 . This first approach points

o four distinct clusters of elements by sample location throughout the

ear. Cluster 1 contains 29 Si, 24 Mg, 43 Ca, 44 Ca, 209 Bi, 238 U, 232 Th, 34 S,
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Fig. 3. Heat map with cluster analysis of particulate matter species at three 

locations in South Carolina. Lighter colors in heatmap represents high relative 

mass fractions while darker colors are lower relative mass fractions. 
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u  
 Be, and 133 Cs which are significantly lower at the middle site. Cluster 2

ontains 55 Mn, 59 Co, 75 As, 27 Al, 85 Rb, 78 Se, and 111 Cd which had rela-

ively similar mass fractions across all three sites. Cluster 2 also contains
0 Ni which was highest at the Southern site, as well as 52 Cr, 208 Pb, 31 P,
6 Fe, 66 Zn, 88 Sr, 51 V and 64 Zn which were lowest at the Northern sites

ompared to the two other sites. Cluster 3 contains 63 Cu, 202 Hg and
9 Br which were highest at the Middle site. Cluster 4 contains 138 Ba,
 Li, 47 Ti, 95 Mo, 118 Sn, 121 Sb and 137 Ba which were lowest at the South-

rn site and higher at the Northern site. This first approach takes all

easured elements into consideration. 

In the second approach to addressing Q3 (Are there combinations

or mixtures) of isotopes that occur together over space and/or time?),

 2 × 2 self-organizing map (SOM) was applied to identify categories that

apture the primary temporal ‘patterns’ observed in the data ( Fig. 4 A).

or each SOM category, patterns are presented as profiles depicted with

ine graphs that reflect the median element mass fraction on a scaled y-

xis. The SOM coordinates are on the top and right panels, shaded gray

x,y]. 

Profile [0,0; orange] in the upper left of the map included 27% of

bservations. This profile identifies ambient PM conditions during this

tudy when all element levels were relatively low (close to their median

ass fractions). This mostly occurred at the Southern site (45% of the

ime, compared to 16% and 21% at the Northern and Middle sites re-

pectively (data not shown)). Profile [1,0; blue] in the upper right of the

ap, with a relatively low frequency of occurrence (23% of the time),
5 
dentifies ambient PM conditions with relatively high measurements for

ost of the elements. Profile [1,0] was more prevalent at the Middle

ite (54%) compared to the Northern (30%) or the Southern (26%) sites.

he bottom right profile [1,1; purple] occurred about 37% of the time

nd was the most common profile. It represents ambient PM conditions

here less than half of the elements had relatively high measurements

ompared to median values. The final profile [0,1; green], in the bottom

eft corner, captures the lowest (12.1%) occurrence of ambient PM con-

itions where only some element levels were slightly higher than their

edian mass fractions. Both profile [0,1] and [1,1] were more common

t the Northern site. Collectively, these profiles characterize the range

f ambient PM element conditions experienced at the three sites within

he same state. 

To assess how these identified SOM profiles occurred across the year

011 in the state of South Carolina, we examined the frequency of each

OM profile by time ( Fig. 4 B-D). Here we used histograms to illustrate

ow often a particular profile persisted in time at the three locations. All

our profile types were seen at each site, however, there was pronounced

easonal dependence. During certain months we see greater distinctions

mong locations. For example, we see that profile [0,1] most often oc-

urred at the Middle site throughout the year, but this was not the case at

he other two sites. Profile [0,0], however, occurred more at the South-

rn site throughout the year. In fact, the Southern site was the only site

ith profile [0,0] between the months of October [10] and December

12] , compared to the Northern or Middle sites. These findings suggest

ariability in PM may be more complex than what is traditionally pre-

ented using measured PM 2.5 mass concentrations only. 

The final approach uses partial least-squares discriminant analysis

PLS-DA) to create ‘fingerprints’ for each site. The PLS-DA uses the infor-

ation from all elements to discriminate between the three sites, reduc-

ng the high-dimensional data across elements into a selection of com-

osite scores to be used as elemental “fingerprints ” ( Fig. 5 ). The variable

mportance in projection (VIP) scores generated by PLS-DA provide in-

ormation about which elements contribute most to discriminating be-

ween sites as well as site differences. This approach identifies elements

hat are relatively high at one site compared to the other two sites for

asy pattern recognition. 

One potential avenue through which these elemental fingerprint data

an inform the public is through the US EPA’s Air Quality Index (AQI).

n Fig. 6 , we compare our LA-ICP-MS derived data with the EPA AQI

alues for year 2011 in South Carolina. Data from this study had 3

ategories/colors ranging from good (green), moderate (yellow) and

nhealthy for sensitive groups (orange). A tri-element model, termed

A-ICP-MS AQI (green) with strontium (Sr), barium (Ba) and thorium

Th), had a similar trend as the federally reported EPA AQI (purple) for

he Northern site in SC. These three elements were used to display the

otential usability of the LA-ICP-MS technique for understanding local

ir quality since CSN data are available for only one site (middle site)

nd not for all other air quality monitoring sites in South Carolina. The

quation at the top of the graph depicts the model used to calculate the

LA-ICP-MS AQI’. This suggests that local ambient air quality could po-

entially be predicted using element mass fraction data obtained with

he LA-ICP-MS technique. 

iscussion 

In this study, we aimed to improve understanding of how an auto-

ated LA-ICP-MS technique can be used to assess elements on airborne

SP filters from three sites in South Carolina. To achieve our objective,

e sought to answer three questions: (Q1) What types of different ele-

ents occur on the PM media and what are their mass fractions? (Q2) how

o these elements compare with those measured in the Chemical Speciation

etwork (Q3) Are there combinations (or mixtures) of isotopes that occur

ogether over space and/or time? 

In answer to Q1, we identified a total of 44 isotopes, and 36 were

sed in subsequent statistical analysis. A few elements, (e.g. Beryllium)
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Fig. 4. Panel A is a 2 × 2 self-organizing maps (SOM) depicting element mass fraction profiles observed for the state of South Carolina in 2011. For each profile 

type, the plots reflect the standardized elemental mass fraction on a percentage scale with zero reflecting the median on the y-axis. Darker lines represent median 

intensities of each cluster. The SOM coordinates are in brackets [x,y]. Panels B, C and D show when the SOM profiles, identified in panel A, occur throughout the 

year and by location. Profile 0,0 for instance occurred more at the Southern site throughout the year (particularly between the months of October [10] and December 

[12] , compared to the Northern or Middle sites). 
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ad low mass fractions at all three sites, while, most had median mass

ractions as low as 0.01 mg/kg and as high as 652 mg/kg. This sug-

ests the ability to assess multiple elements over a wide range of limits

f detection (LOD) is a potential capability of this LA-ICP-MS tool that

an prove useful when trying to identify differences in particle compo-

itions beyond PM mass concentrations. Compared to other techniques

uch as X-Ray Fluorescence (XRF), far lower limits of detection in the

ange of 0.01 μg/ g − 1 μg/g can be reached with the LA-ICP-MS, and

 broader range of elements can be quantified for elemental signature

dentification purposes [22] . 

In answer to Q2, seven of the elements assessed with LA-ICP-MS tech-

ique correlated with CSN data available at one of the sites. Lack of vari-

tion in data prevented comparisons of other elements and future studies

ill focus only on elements currently measured in the CSN. Nonethe-

ess, these results are consistent with others who have assessed a vari-

ty of elements on airborne PM filter media [23 , 24] . Our approach with

he automated laser ablation ensured that there was minimal sample

reparation and simultaneous multi-element analyses that was achieved

ithin minutes. As demonstrated in this case study, this strategy can

ignificantly enhance researchers’ ability to rapidly quantify elements,

articularly metals, that may be bound to particulate matter. 

To answer Q3, we employed three machine learning approaches –

amely hierarchical clustering, self-organizing maps (SOMs) and Partial
6 
east-Squares Discriminant Analysis (PLS-DA). We found out that these

pproaches are useful for discovering the types of profiles within our

ata, their frequency of occurrence, and their duration – all of which are

eatures of interest when characterizing exposures. Overall, the results

re consistent with knowledge of particulate matter behavior in urban

nvironments [25–28] and support the opportunity to distinguish air

uality differences beyond traditional PM mass measurements [29 , 30] .

hese results may prove useful in future assessments of potential air

uality trends within the state of South Carolina, as well as at other

ational and international sites [31] . 

The multi-element approach taken in this study has great potential

o add to the debate on shifting from single source ( “stressor ”) studies to

ultiple source identification studies [32] . This is because, methodolo-

ies that assign specific constituents to sources often face the challenge

hat any individual PM constituent could originate from a variety of

ources. A look in the scientific literature points to a variety of sources

or the elements detected in our study. Hierarchical clustering across

he sites in our study found that 29 Si, 24 Mg, 43 Ca, 44 Ca and 209 Bi, 238 U,
32 Th, 34 S, 9 Be, 133 Cs clustered together and these represent sources

uch as the earth’s crust and the industrial processes, such as cement

nd marble industries [23] . For instance Cs has been linked with the

rosion and weathering of rocks and minerals and as well as the fly ash

rom waste incinerators and coal burning power plants [33] . 
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Fig. 5. Results of partial least squares discriminate analysis (PLS-DA). PLS-DA 

uses the mass fraction information from all elements to discriminate between the 

three sites. The variable importance in projection (VIP) scores provide informa- 

tion about which elements contribute most to discriminating between sites. The 

figure shows important classifier elements, and site differences. The squares de- 

note each of the three sites. The red, yellow and blue colors in the boxes denote 

highest, average and lowest mass fractions respectively at a particular site for 

that element. Cu, Mo, Br, Hg and Se emerge as important classifier elements, 

and point to a unique ‘fingerprint’ for the Middle site due to their relatively 

high mass fractions compared to the Northern or Southern sites. Only the first 

10 isotopes from the analysis are displayed. 
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7 
Secondly, 55 Mn, 59 Co, 75 As, 27 Al, 85 Rb, 78 Se, 111 Cd, 60 Ni, 52 Cr,
08 Pb, 31 P, 56 Fe, 66 Zn, 88 Sr, 51 V and 64 Zn were clustered together

nd are mostly attributed to excavation activities, biomass burning, re-

uspended soil dust, and automobile emissions. Ni and Cr, have also

een specifically associated with crude oil combustion and metal pro-

essing activities [23] . Arsenic is associated with fossil fuel combustion

could be from traffic, power stations, refineries and chemical indus-

ries) [34] . Nickel was highest at the Southern site. Sources of nickel

nclude industry, the use of liquid and solid fuels, as well as municipal

nd industrial waste [35] . 
63 Cu, 202 Hg and 79 Br also clustered together and point to sources

uch as coal combustion and to some extent cement processing. Cu has

een reported in emissions from cement plants [33] . Hg is associated

ith coal combustion [36] . Br has been linked to coal burning in rural

ouseholds as well as the photolysis of Br 2 and BrCl with ultra-violet

ight [37] . In our study, 63 Cu was relatively high in the middle of South

arolina (Middle site; Cluster 3 on left, white in heatmap, Fig. 3 ), and

his could be mostly due to copper smelting activities near the sampling

ite. However, further studies are needed to assess whether this trend

olds from year to year and how this may impact health. 

Lastly, 138 Ba, 7 Li, 47 Ti, 95 Mo, 118 Sn, 121 Sb and 137 Ba, which are

ostly from traffic-related sources grouped together. Specifically, anti-

ony and barium are considered to be tracer elements for traffic emis-

ions sources [38] . Molybdenum is associated with the combustion of

ossil fuels and the use of Mo compounds as lubricants for vehicle main-

enance [39] . Titanium originates from a variety of industrial processes,

anufacturing and even the production and use of titanium nanoparti-

les [40] . Potential sources of Li include automobile emissions and road

ust [23] . 

Qualifying the potential contribution of various sources (among and

ithin the 4 identified clusters) adds to the novelty of our work. Multi-

lemental air pollution exposures from a variety of sources are still

oorly understood [41] . Recent evidence shows that associations be-

ween PM 2.5 exposures and respiratory hospitalizations in children can

e differentially modified by the metal content (along with sulfur con-

ent and particle oxidative potential) in airborne particulates. Specifi-

ally, data from a case-crossover study of 10,500 children across Canada

eported an odds ratio of 1.084 (95% confidence interval: 1.007–1.167)

er 10 μg/m 

3 increase in fine PM when copper was above the median

ass concentration [42] . Rule and Koehler [41] have called for the pri-
Fig. 6. One potential way to translate these data into pub- 

licly understandable measures include using LA-ICP-MS 

data to construct an Air Quality Index (AQI). Green = lin- 

ear model LA-ICP-MS AQI with Sr, Ba and Th and pur- 

ple = federally reported EPA AQI for the Northern part 

of South Carolina in 2011. 
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ritization and incorporation additional constituents in studies to better

nderstand the health effects of PM given the common sources, correla-

ions among the constituents and variations in time and space. Indeed,

he current study adds to the growing body of evidence that there is a

eed to shift from single-stressor studies to a “real-world ” approach of

ssessing different sources and types of particulate air pollution collec-

ively. 

Lastly, we used our data to evaluate the EPA’s air quality index and

ound that the LA-ICP-MS technique can potentially inform local air

uality. Living in “unmonitored ” areas, and a general quest for improved

ir quality knowledge are noted as two of the major goals for conducting

ir quality studies in communities [43] . Yet even when such goals are

chieved, interpreting and communicating the data remain challenging

44] . Presumably, the best elements predicting the AQI will be different

t each location and/or season and that could provide useful informa-

ion on which elements may be driving air quality in a locale, as opposed

o the mass of the particulates. 

Our study, like all others, is subject to limitations. One limitation is

he relatively short duration of our filter data (one year [2011] only), as

onger periods are suggested to better understand differences between

onitoring sites. As such, the differences presented here cannot be used

o infer that longer term differences exist at the monitoring sites studied.

 common challenge for these types of studies is the validity of the data

s our data were collected using total suspended particulates rather than

M 2.5 or PM 10 filters. Our reported data are generally consistent with

M 2.5 and PM 10 mass concentrations reported by EPA during this time

rame. Another limitation of our study was the lack of calibration and

eference materials. Certainly, new calibration and reference materials

re needed to better match the matrix of the filter material. Additionally,

here is a need for suitable elements that may be useful as internal stan-

ards for the filters. For example, an element like Ca could be used (e.g.

or a bone or tooth sample, where the composition is relatively constant,

ut for the filter types studied here, there seems to be significant vari-

bility for some of the elements that could potentially be investigated

or use as internal standards. Finally, the representativeness of the laser

icro sampling could be a shortcoming, but the analyses are relatively

ast and so across filter averaging could be performed. A suitable com-

arison to solution-digested filters using traditional methods needs to

e evaluated to fully assess the applicability of the technique. Future

irections of this work will aim will include extended time periods and

sing enhanced filter samples that include other sites and other pollu-

ants; and development of air pollution epidemiologic studies that can

e used to explore associations between high-resolution air pollution

ata and health outcomes. 

onclusion 

With only one air quality site with elemental composition data in

outh Carolina, there is currently an incomplete picture of ambient

M constituents across both space and time for the state. To assist, we

ought to acquire PM mixtures data by adopting an automated laser ab-

ation technology to analyze total suspended particulate matter filters

ollected at three different sites in South Carolina. The study assessed

race element mass fractions, and trends over time and space after ad-

ustments with blank filters and NIST SRMs. We found out that assessing

ifferent trace elements may provide useful information on which com-

inations (or mixtures) occur together over space and/or time. Such

nformation can be helpful in planning effective counter measures and

trategies to control particulate air pollution. 
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