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Abstract— We report a monolithic microwave integrated-
circuit (MMIC) comb generator capable of producing a repetitive
narrow pulse (7.1 ps pulse duration) with sharp edges (4.2 ps
falling time). The circuit was designed in a 250 nm indium phos-
phide (InP) heterojunction bipolar transistor (HBT) technology
using differential pairs. We characterized the output signal with
a 110 GHz sampling oscilloscope and de-embedded the band-
limited frequency spectrum of the pulse in the circuit reference
plane. We measured a pulse duration of 7.1 ps and a peak
amplitude of −0.333 V. In the frequency domain, the comb
generator provided −48.7 dBm of output power at 110 GHz
when the circuit is fed with a 1 GHz input signal.

Index Terms— Comb generator, millimeter-wave, monolithic
microwave integrated-circuit (MMIC), on-wafer calibration.

I. INTRODUCTION

ONE of the difficulties in extending the bandwidth of
large-signal network analyzers (LSNAs) lies in our

inability to perform ultrabroadband phase calibrations. The
electrical comb generators that are used to establish an
absolute phase relationship between the tones measured at
each harmonic-frequency have limited bandwidths. Increasing
the bandwidth of the comb generators will consequently
increase the measurement bandwidth of the equipment. For
instance, a 110 GHz phase reference would allow the charac-
terization of a 28 GHz waveform with three harmonics.

Diverse millimeter-wave comb generator techniques based
on nonlinear transmission lines (NLTLs) [1]–[4], step recovery
diodes (SRDs) [5]–[7], Josephson junctions (JJs) [8], and
split-signal pulse generators [9], [10] have been reported.
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Fig. 1. MMIC comb generator. (a) Photograph. (b) RF schematic.

In this letter, we present a monolithic microwave integrated-
circuit (MMIC) differential pulse generator designed in a
250 nm indium phosphide (InP) heterojunction bipolar tran-
sistor (HBT) technology. We describe the design methodology
in Section II and the time-domain measurement setup in
Section III. We finally present the pulse characterization in
the time and frequency domains.

II. COMB-GENERATOR DESIGN

We designed the MMIC comb generator using a 250 nm
InP HBT process. A full description of the technology may
be found in [11]. We simulated the comb generator in ADS,1

using a transient solver and the foundry’s nonlinear transistor
model.

We applied the concept of the split-signal pulse generator
proposed in [9] to design our circuit. A photograph of the
MMIC comb generator is shown in Fig. 1(a) with its RF elec-
trical schematic in Fig. 1(b). The comb generator is composed
of a square-wave converter, followed by a 0◦/180◦ splitter,
a passive time delay, and a comparator. We designed the active
blocks of the circuit with 12 μm-long emitter differential pairs.
The current tail is formed using a 200 � resistor. Shunt 1.8 pF
capacitors and series resistors are used to design the bias tees.

1Usage of commercial products herein is for information only; it does not
imply recommendation or endorsement by NIST.
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Fig. 2. Simulation of the output voltages of each subcircuit of the comb-
generator. (a) Square-wave converter. (b) Out-of-phase splitter. (c) Time delay.
(d) Comparator: pulse generator.

The square-wave converter has a single-ended input and a
differential output. It converts a periodic signal, such as a sine
wave, into two out-of-phase square waves.

Four differential pairs are cascaded to generate two square
waves with very sharp edges (<5 ps). A simulation of this
subcircuit is presented in Fig. 2(a). Then, we turn the two
out-of-phase square waves into two in-phase signals with
the 0◦/180◦ splitter, as illustrated in Fig. 2(b). The specific
configuration of the two differential pairs allows the generation
of two in-phase square waves. At this step, we apply a dc
offset on channel 1 to keep the voltage (V1) always higher
than the voltage of the second channel (V2). Then, using a
transmission line, we add a 3.5 ps delay on channel 2. The
voltage of channel 2 becomes consequently higher than the
voltage of channel 1 only during a very short amount time
(V2 > V1 over only 4 ps), as shown in Fig. 2(c). Finally,
we feed these two square waves into a comparator. The current
coming from the tail will flow through the second transistor
only during the short time when V2 > V1 and consequently
generates a narrow pulse. The amplitude and the duration of
the pulse are primarily dictated by the delay, the fall time of
the square waves, and the dc offset. The resulting output pulse
of the circuit is simulated in Fig. 2(d).

III. MEASUREMENT SETUP

We characterized the comb generator at room temperature
with a 110 GHz sampling oscilloscope and de-embedded
the pulse on the wafer. All the results were performed with
an averaging of 16 measurements. A rigorous calibration
method, described in [12]–[14], was applied to calibrate the
oscilloscope and move the measurement reference plane to
the circuit. This calibration procedure was performed in the
frequency domain and was defined in three steps as follows:
1) we decomposed the time-domain signal into its Fourier
components (up to 110 GHz) and accounted for the impulse
response correction of the oscilloscope; 2) we performed
a two-tier calibration to extract the S-parameter block of
the adapter (RF pad, RF probe, cables, and bias tee) and
de-embedded the complex frequency response, obtained in
the previous step, to the circuit reference plane; and 3) we
measured the reflection coefficients of the oscilloscope and the

Fig. 3. Comb generator response under different input signals. (a) Input
signals and (b) measurements of the pulses at the oscilloscope reference plane.

comb generator and applied the mismatch correction. Finally,
we transformed the Fourier components of the calibrated sig-
nal into the time domain to reconstruct the on-wafer waveform.
All the steps of this calibration were processed with the
Microwave Uncertainty Framework (MUF) software [15].

IV. COMB GENERATOR CHARACTERIZATION

A. Oscilloscope Reference Plane

We first measured the time-domain response of the comb
generator with the four input signals illustrated in Fig. 3(a).
The objective was to verify that the circuit provides identical
pulses under different input excitations and over a wide range
of frequency. We successively applied a 2.5 GHz sine wave
and three different approximately square waves, generated by
frequency dividers, at 50 MHz and 1.0 GHz. The measured
responses of the comb generator, plotted in Fig. 3(b), are quasi-
identical.

B. On-Wafer Reference Plane

In this section, we applied the calibration process described
in Section III to calibrate and transfer the measured pulses in
the circuit reference plane. All the following measurements
were performed with a 1 GHz square wave excitation [input
3 plotted in red in Fig. 3(a)], but we varied the amplitude of
the input signal and bias conditions applied to the circuit.

Fig. 4(a) shows a comparison between the pulse measured
in the oscilloscope reference plane and the calibrated pulse de-
embedded on chip. The peak amplitude of the on-wafer pulse
reaches a voltage of −0.251 V (at bias 1). The waveform
artifacts (sinc wiggles) observed on each side of the pulse are
the results of the 110 GHz truncation that we applied during
the Fourier transform. Then, we applied different (OFF-chip)
attenuations at the input of the comb generator to determine the
minimum input amplitude required by the circuit. We found
that the comb generator requires an amplitude of at least
30 mVpp to correctly operate. This amplitude corresponds to
an attenuation of 30 dB of the original input-signal amplitude
(0.880 Vpp). These results are plotted in Fig. 4(b). We also
evaluated the measurement repeatability of the pulse over
time, as shown in Fig. 4(c). We realized six measurements
of the pulse (1 min interval) and measured it a final time after
45 min. We observed minor differences. Finally, we varied
the bias point of the differential pairs to optimize the pulse
duration and amplitude. The results are presented in Fig. 4(d).
We first optimized the bias points (bias 2) to obtain the
sharpest and narrowest pulse. The pulse duration is defined at
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Fig. 4. On-wafer comb generator measurement results in the time domain.
(a) Comparison between a pulse measured in the oscilloscope reference plane
and a calibrated pulse transferred on-wafer. (b) Pulse measurements under
two different input-signal amplitudes. (c) Pulse measurement repeatability.
(d) Pulse measurements under different bias points.

Fig. 5. Amplitude of the frequency spectrum of the on-wafer calibrated pulse
(bias 2).

50% of the pulse amplitude, and the falling time corresponds
to the time required by the circuit to go from 10% to 90%
of the pulse amplitude. We measured a pulse duration of
7.1 ps, a falling time of 4.2 ps, and a peak amplitude of
−0.333 V. Then, we tuned the dc supplies and targeted the
maximum pulse amplitude. Although we measured a larger
peak voltage (−0.435 V with bias 3), the time characteristics
of the pulse increased, reducing the frequency bandwidth. The
comb-generator bias conditions change the characteristic of the
generated pulse, but the dc bias (dc offsets + current tails) of
two differential pairs that form the splitter are the most critical
and must be carefully adjusted to obtain the best performance.

The pulse (bias 2) presented in Fig. 4(d) offers the widest
bandwidth in the frequency domain. We plot the band-limited
frequency spectrum of the calibrated pulse in Fig. 5. Although
the energy of the harmonics slightly decreases with increas-
ing frequency, we measured a reasonable amount of power
at 110 GHz (−48.7 dBm), which is above the power easily
detected by nonlinear vector network analyzers (−100 dBm).

Fig. 6. Amplitude and phase stability of the frequency spectrum over time
of the on-wafer comb generator (bias 1).

TABLE I

ON-WAFER CHARACTERISTICS OF THE COMB GENERATOR

Finally, we studied the amplitude and phase stability of the
frequency spectrum of the comb generator. We converted the
data acquired over time [presented in Fig. 4(c)] into the fre-
quency domain and plotted the amplitude and phase difference
on Fig. 6. The first measurement taken a t = 0 min is used
as the reference. The drift over the span of an hour is less
than 100 fs and has been corrected. We obtained an excellent
amplitude and phase stability, with maximum amplitude and
phase error of 0.69 dB and 5.63◦, respectively, at 110 GHz.

The main characteristics of the proposed comb generator
are summarized in Table I. Note that we measure only a
band-limited frequency spectrum of the pulse. The bandwidth
of the comb generator, defined by frequency at which the
comb-generator output first falls below the noise floor of
the output signal, is well above 110 GHz and appears to
exceed the 67 GHz bandwidth of commercial split-signal pulse
generators [10]. Compared with NLTL [3], [4], SRD [6], [7],
and JJ [8] comb generators previously published, we also
demonstrate a wider bandwidth, a finer frequency spacing, and
an output signal insensitive to a variety of input excitations.
We will pursue our investigation to determine the exact cutoff
frequency of the proposed comb generator.
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