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Next generation communications are inspiring entirely new
applications in education, healthcare, and transportation. These appli-
cations are only possible because of improvements in latency, data
rates, and connectivity in the latest generation. Behind these improve-
ments are new materials and devices that operate at much higher fre-
quencies than ever before, a trend that is likely to continue.

Beyond these exciting applications, higher frequency millimeter
waves (mmWaves) may also address a growing problem with capacity1,2

[Fig. 1(a)]. Today, most capacity problems occur when large numbers
of wireless connections or applications access the network at the same
time at any single location. As wireless internet connections far surpass
wired connections and wireless data usage has grown exponentially for
more than 10 years,3 many believe that capacity problems will spread
without access to new bandwidth.

Seeing both an opportunity to spur innovation and a chance to
tackle a serious problem, regulators around the world auctioned new
mmWave bands for the development of domestic cellular telecommuni-
cations. In the United States of America, the Federal Communications
Commission (FCC) held spectrum auctions,4 creating licensed bands at
24, 28, 37, 39, and 47GHz that raised over $10B USD4 for new research
and infrastructure. Likewise, regulators in Europe, Asia, Australia, held
similar auctions, also raising billions of dollars to spark innovation,
commerce, and industry.

In this editorial, we group these bands collectively as 5G
mmWaves [Fig. 1(b)], but mmWaves technically covers the band-
width from 30 to 300GHz.

Unlike prior generations, new mmWave communications are a
major change to hardware rather than just software. That is because
new mmWave hardware must operate at frequencies that are more
than ten times higher than conventional 3G and 4G technologies.

Changing hardware is no small feat. Industry’s push to mmWaves
required improvements in the underlying materials, architectures,
models, and even measurement science.

For example, materials integration and new transistor structures
are currently being explored in new transistor topologies for higher
frequency and power.5–8 Thin film magnetic materials are currently
being developed for integrated circulators on wide bandgap semicon-
ductors, allowing for simultaneously transmitting and receiving data.9

When designing high-speed interconnects, antennas, and inte-
grated passive devices, several performance factors can be improved
with low-loss dielectric materials with tailored permittivity. Low per-
mittivity shortens propagation delay and mitigates signal loss; it also
can leverage larger device geometries that decrease sensitivity to fabri-
cation tolerances. Glass and glass ceramics are ideal candidate dielec-
tric materials for low loss substrates because of their low loss and
smooth surfaces for metallization, which is important to reduce metal
loss in a transmission line structure.10,11 Higher permittivity ceramics
and glass ceramics with low dielectric loss and temperature stability
are important for mmWave resonators and filters.12,13 Dielectric mate-
rials must also be integrated with conductors to achieve transmission
lines with low attenuation, electromagnetic shields, and antennas with
wide operating range.14–16 Replacing metals with dielectrics has also
been proposed to reduce transmission loss and increase antenna per-
formance.17,18 Accurate electromagnetic property assessment is impor-
tant for understanding the fundamental polarization contributions to
permittivity, permittivity, and loss in the mmWave frequency
range.19,20

As 5G mmWaves handsets rollout, demand will push technology
to high frequencies and more complex device architectures. As
frequencies advance into the THz region, the frontier of the
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electromagnetic spectrum will be expanded beyond 5G and new scien-
tific and technological challenges will need to be surmounted.
Propagation loss through free space becomes more important with
increasing frequency and is a major strain on battery life of mobile
telecommunication devices. To make up for propagation loss, phased
array antennas, based on tunable materials and devices, will be devel-
oped to narrowly focused beams, created through phased array anten-
nas, which will reduce the overall power requirements.21 Alternative
device solutions remove the power source.22 Arrays and lenses have
been proposed to create highly directed mmWave beams.23 Antenna
arrays will require tunable dielectric materials where the permittivity
changes with the applied electric field.24 Ultimately, the benefits of
advanced materials and devices must be demonstrated at the system
level, where electromagnetic concepts, such as beam forming and
doppler, are important for multiple input multiple output (MIMO)
and mobile communication platforms.25

Our special thanks to Lesley Cohen, Editor-in-Chief, Susan
Trolier-McKinstry, Associate Editor, and Jessica Trudeau and
Emma Nicholson Van Burns for their technical assistance with
publishing.
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