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Abstract: We experimentally demonstrate that when two spin-orbit coupled orbital angular11

momentum (OAM) modes of opposite topological charge co-propagate in the Kerr nonlinear12

regime in a hollow ring-core optical fiber, the vectorial mode superposition exhibits a unique13

power-dependent rotation effect. This effect is analogous to nonlinear polarization rotation in14

single-mode fibers, however, the added spatial dimension produces a visually observable rotation15

of the spatial pattern emerging from the fiber when imaged through a linear polarizer. A dielectric16

metasurface q-plate was designed and fabricated to excite the desired mode combination in a17

hollow ring-core fiber that supports stable propagation of OAM modes. The observed spatial18

patterns show strong agreement with numerical simulations of the vector coupled nonlinear19

Schrödinger equations. These results constitute the first measurements of what can be described20

as the spin-orbit coupled generalization of the nonlinear polarization rotation effect.21

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement22

1. Introduction23

Vortex beams or modes carrying orbital angular momentum (OAM) have a characteristic spiral24

phase distribution 48;q, where ; is an integer and is referred to as the topological charge of the25

beam. Each photon in such a beam possesses an orbital angular momentum equal to ;ℏ [1].26

Vortex beams have recently gained significant attention due to their wide-ranging applications27

in areas such as optical tweezers and particle trapping [2–4], classical [5–8], quantum [9–11]28

communication, optical metrology [12,13] and quantum optics [14–16]. In the context of optical29

fibers, driven by an interest in spatially multiplexed communication systems, novel fiber designs30

with tailored refractive index profiles have recently been demonstrated to support stable linear31

propagation of OAM-carrying modes [17, 18].32

Simultaneously, there has also been growing interest in nonlinear optical effects occurring33

in multimode fibers (MMFs). Similar to the case of single-mode fibers (SMFs), nonlinear34

impairments are expected to play an important role in MMF-based communication systems35

[19–21]. Numerous spatiotemporal nonlinear phenomena have been observed and studied in36

conventional MMFs over the past few years, including Kerr-induced beam self-cleanup [22, 23],37

the occurrence of multimode solitons [24], supercontinuum generation [25,26] and spatiotemporal38

modulation instability [27].39

Although there have been many studies of linear propagation of OAM modes in fibers, there40

have been relatively few that focus on nonlinear propagation effects [28]. As with conventional41

single- and multi- mode fibers, nonlinear effects in OAM-carrying fibers would be of fundamental42

importance from a telecommunications perspective. Given the aforementioned broad interest in43

OAM beams for applications ranging from nanoparticle manipulation in physical and biological44

systems to optical metrology and fundamental physics, nonlinear effects involving OAM-carrying45
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fiber modes could unlock novel ways of controlling the light beam for a wide variety of46

applications. For example, octave-wide supercontinuum generation has recently been reported in47

ring-core fibers where the entire supercontinuum resides in a single spin-orbit coupled mode,48

enabling applications in super-resolution nanoscopy [28, 29]. More recently, Liu et al. have49

taken advantage of conservation of OAM to demonstrate controlled parametric four-wave mixing50

(FWM), paving way for light sources capable of generating OAM-carrying nanosecond pulses at51

user-specified wavelengths [30]. Here, we report, for the first time to the best of our knowledge,52

the effects of self-phase modulation (SPM) and intermodal cross-phase modulation (XPM)53

among OAM modes in a fiber, which produces a unique power-dependent spatial mode rotation.54

In this work, we use a hollow ring-core fiber (RCF) that has a refractive index profile tailored55

to support stable linear propagation of OAM modes [18]. The large index step arising from the56

presence of a central air core results in the spin (i.e., polarization) and orbital degrees of freedom57

becoming coupled. This is the so called spin-orbit coupling effect, where propagation constants58

and group velocities of modes of the same topological charge ; depend on whether the spin59

angular momentum (SAM; i.e., polarization) and OAM are aligned [31–33]. Modes for which60

SAM and OAM are aligned are referred to as spin-orbit aligned (SOa) modes, while those for61

which SAM and OAM are of opposite helicities are referred to as the spin-orbit anti-aligned (SOaa)62

modes. In this work, we consider the nonlinear evolution of a superposition of the degenerate63

SOaa modes of topological charge |; | = 10. As we illustrate below, such a superposition consists64

of a spatially-varying elliptical state of polarization (SOP).65

There are several methods for generating free-space OAM beams, and they can be grouped into66

two broad categories. The first includes methods that utilize a phase discontinuity to generate67

OAM beams from Gaussian beams, such as spiral phase plates [34], mode converters [35] and68

forked gratings [36]. These techniques are polarization insensitive, and therefore do not couple69

the OAM of the generated beam to its SAM. The second group includes methods that couple the70

OAM with the beam’s SAM, and are usually based on the Pancharatnam-Berry (PB) geometric71

phase. Examples of such devices include the q-plate [37], J-plate [38] and p-plate [39]. Exciting72

a mode combination in the fiber that consists of a spatially-varying elliptical SOP requires a73

beam-shaping technique that is capable of coupling SAM and OAM. Because the modes of74

interest have the same |; | value, the q-plate is an ideal choice.75

Q-plates are commonly fabricated using liquid crystals (LCs), which are spatially oriented76

using the photo-alignment method, self-assembly or circular rubbing [40]. More recently, q-plates77

based on dielectric nanostructured metasurfaces have been demonstrated [41]. In contrast to LC78

devices, metasurface devices offer the capability to structure a light beam at the sub-wavelength79

scale, and are capable of simultaneous polarization and phase control. Furthermore, LC devices80

are prone to damage under high intensity illumination that is often required in nonlinear optical81

experiments. In this work, we design and fabricate a metasurface q-plate that is capable of82

exciting a controllable combination of the |; | = 10 SOaa modes.83

In the following, by employing the metasurface q-plate, we first demonstrate tunable excitation84

of the ; = ±10 SOaa modes of a hollow ring-core fiber. We tune the relative amplitudes of the85

two modes by simply varying the polarization of the input free-space Gaussian beam using a86

quarter-wave plate. For the general case of unequal amplitudes of the two modes, because the two87

modes have opposite signs of topological charges as well as opposite helicities of polarization,88

the mode superposition consists of a spatially-varying elliptical SOP. The intensity profile of this89

mode composition remains a doughnut, however, upon imaging the fiber output through a linear90

polarizer, the spatially-varying SOP is evident by the appearance of 2|; | = 20 lobes.91

When the two modes have unequal amplitudes, as the input power is increased, they acquire92

different nonlinear phase shifts arising from SPM and XPM. This results in a spatial interference93

pattern that is power-dependent. We demonstrate using experimental observations, numerical94

simulation and theoretical analysis that this spin-orbit coupled mode superposition exhibits a95



power-dependent rotation of its vectorial spatial pattern analogous to the nonlinear polarization96

rotation (NPR) effect occurring in SMFs.97

2. Theory and Modeling98

2.1. Spin-orbit coupled modes99

The large index step encountered by the electromagnetic field at the air-glass interface within the100

core layer leads to a coupling of the polarization and phase properties. This spin-orbit coupling101

results in the linear propagation properties of a mode with a given OAM order ; to depend on102

its SOP. Put differently, the degeneracy between the SOa and SOaa mode groups is lifted [33].103

Note that the term “spin-orbit coupled state” describes any superposition of modes in such fibers.104

Here, we consider a general superposition of the degenerate SOaa modes for |; | = 10. We will105

denote these modes as SOaa
+10 and SOaa

−10, where the superscript ±10 denotes the topological106

charge of the modes. The OAM modes can be expressed in terms of the hybrid EH fiber modes107

as follows: SOaa
±; = (EH4

;−1 ± 8EH>
;−1)/
√

2, where the superscripts 4 and > refer to the even and108

odd modes.109

Fig. 1(a) shows an optical micrograph of the hollow RCF used in this work alongside its110

refractive index (RI) profile. The intensity, phase and polarization profiles of the two SOaa modes111

are also shown. Note that each of the modes consists of spatially uniform circular states of112

polarization, and that the helicities of the polarization and OAM are opposite to each other.113
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Fig. 1. Modes of a hollow ring-core fiber. (a) Optical micrograph of the cross-section
of hollow RCF, overlaid with the refractive index profile. The intensity, polarization
and phase profiles of the ; = ±10 SOaa modes are shown. Note that the modes have
opposite helicities of polarization and phase. (b) A superposition of the two modes with
U ≠ 1 results in a spatially varying elliptical state of polarization. The ellipticity at each
point is the same, and is determined by the relative amplitudes, while the orientation of
the ellipses rotates 2c every 360°/(2|; |) = 18°.



Fig. 1(b) shows a general superposition of the two modes. For U ≠ 1, the superposition114

produces a spatially non-uniform elliptical SOP. The orientation of the local polarization ellipse115

undergoes a 2|; | = 20-fold rotation along the azimuthal direction.116

2.2. Analogy with nonlinear polarization rotation in SMFs117

Nonlinear evolution of this spin-orbit coupled state can be studied by using the coupled nonlinear118

Schrödinger equations (NLSEs). It is instructive to first write down the NLSEs in the hybrid119

mode basis. Denoting �1 and �2 as the slowly-varying complex pulse envelopes of the EH4 and120

EH> modes, the NLSEs in the hybrid mode basis are given by [42]:121
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where W denotes the SPM coefficient. Upon transforming Eqs. (1a) and (1b) from the hybrid122

mode basis to the OAM mode basis, we obtain:123
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where+± denote the slowly-varying complex pulse envelopes of the SOaa
±10 modes respectively.124

As one can see from the right hand side of Eqs. (2a) and (2b), SPM and intermodal XPM are the125

only surviving nonlinear products in the coupled NLSEs in the OAM mode basis.126

Note that the NLSEs (1a), (1b) and (2a), (2b) are identical to the well-known coupled NLSEs127

in the polarization basis in isotropic SMFs [43]. NLSEs in the hybrid mode basis resemble those128

written in the G-H polarization basis in SMFs, while the NLSEs in OAM mode basis resemble129

those in the circular polarization basis. This makes for an effective analogy with which to better130

visualize the nonlinear evolution of the spin-orbit coupled state described above in RCFs.131

Recall that in the case of nonlinearly interacting polarization modes in isotropic SMFs, for an132

input elliptical SOP, NLSEs expressed in the circular polarization basis point to a dependence133

of the phase difference between the left and right circular polarizations (LCP and RCP) on the134

input power and fiber length. For a fixed fiber length, as a result of this power-dependent phase135

difference between LCP and RCP, the orientation of the resulting elliptical SOP also acquires a136

power dependence. Equivalently, in the Poincaré sphere representation, the Stokes vector rotates137

about the (3-axis with an angular velocity that is proportional to the nonlinear coupling between138

the optical fields in the left and right circular polarizations. This is the well-known self-induced139

ellipse rotation, also often referred to as nonlinear polarization rotation (NPR) [43], which is now140

widely employed in femtosecond mode-locked fiber lasers.141

In the case of spin-orbit coupled modes, a similar power-dependent evolution is expected to142

occur. As shown in Fig. 1(b), a general superposition of the degenerate SOaa modes with unequal143

mode amplitudes leads to a spatially-varying elliptical SOP. The ellipticity of the polarization144

ellipse at each spatial location is determined by the relative amplitudes of the modes, whereas the145

orientation of the local ellipse varies along the azimuthal direction. The overall orientation of146

the pattern is determined by the phase difference between the overlapping OAM modes. In the147

presence of SPM and intermodal XPM as described in Eqs. (2a), (2b), the two modes acquire a148

power-dependent phase difference. This leads to a power-dependent rotation of the overall spatial149



polarization pattern. Equivalently, the polarization ellipse at one spatial location rotates as a150

function of input power.151

While nonlinear polarization rotation is a useful analogy, it is not directly equivalent to the152

effect reported here, which depends upon the existence of a spatially varying phase provided153

by the OAM modes. Furthermore, on a practical level, occurrence of this phenomenon relies154

upon the spin-orbit coupling effect, in the absence of which the SOa and SOaa mode groups155

would become degenerate with each other. As a result, attempting to couple into one of the mode156

groups would inevitably also excite the other mode group, which would then alter the dynamics157

of the nonlinear interaction. As a result, this phenomenon is to be interpreted as a generalization158

of SMF-based nonlinear polarization rotation to the multimoded, spin-orbit coupled context in159

OAM fibers.160

2.3. Numerical simulation161

We verify the analytical arguments made above using numerical simulations. The spatial modes162

of the fiber were computed using an open source finite element mode solver reported in [44].163

The nonlinear evolution of the mode superposition of interest was studied by numerically solving164

the coupled NLSEs Eqs. (2a), (2b) using the split-step Fourier method (SSFM).165

The images on the left hand side of Supplementary Video 1 show the numerically simulated166

spatiotemporal evolution of a Gaussian (in time) pulse coupled into the mode superposition167

described above, for a sufficiently high input peak power. Because the instantaneous power168

varies as a function of time within one pulse duration, the instantaneous orientation of the spatial169

polarization pattern also rotates about the fiber axis as a function of time. Equivalently, the local170

polarization ellipse at each point in space rotates as a function of time.171

This effect is more easily observable experimentally upon imaging it through a linear polarizer.172

The insertion of a linear polarizer causes the appearance of 2|; | = 20 lobes in the intensity pattern.173

Because of the temporal rotation of the spatial polarization pattern, the resulting lobe pattern also174

rotates as a function of time. This is shown on the right hand side of Supplementary Video 1.175

Furthermore, upon increasing the input peak power, the net rotation attained by the instantaneous176

lobe pattern at the pulse peak also increases. The change in net rotation at the pulse peak as a177

function of input peak power can be characterized by simply measuring the rotation, as a function178

of input peak power, of the time-averaged intensity pattern imaged using a slow camera. Although179

the instantaneous orientation of the lobe pattern varies within one pulse duration, the orientation180

at the pulse peak is easily visible even in a time-averaged image as it is the brightest part of the181

pulse. Simulation results of this are shown in Supplementary Video 2. As the input peak power182

is increased, the time-averaged lobe intensity pattern exhibits a power-dependent rotation. The183

blurring of the pattern observed at higher input powers in the simulated time-averaged images184

is a result of the fact that the instantaneous orientation of the lobe pattern changes within the185

duration of the pulse. It is worth noting that the blurring, i.e., a reduction in the “contrast” of the186

lobes with an increase in input power, is analogous to the apparent nonlinear depolarization effect187

observed as a result of temporal averaging of non-square pulses in the case of NPR in SMFs.188

3. Experiment189

The nonlinear effect described above was verified experimentally by first demonstrating tunable190

excitation of the ; = ±10 SOaa modes using a transmissive dielectric metasurface q-plate. Fig.191

2(a) shows a schematic of the working of a q-plate of a given order @. For a Gaussian (i.e.,192

; = 0) input beam with an elliptical SOP, the output produced consists of a mixture of ; = +2@,193

; = −2@ and ; = 0 beams. Fig. 2(b) shows an illustration of each unit cell, consisting of a high194

aspect-ratio amorphous Si (a-Si) nanofin structure of rectangular cross-section that functions as a195

half-wave plate (HWP) at _0 = 1064 nm [45]. The fast axis orientation of the nanofin HWP is196

determined by the design equation Θ = 2|@ |q = |; |q, where q is the angular coordinate of the197



unit cell relative to the center of the metasurface. Fig. 2(c) illustrates the spatial arrangement of198

these nanofin HWP unit cells. Each nanofin is nominally of length: 272 nm, width: 104 nm,199

and height: 760 nm. The nominal separation between adjacent unit cells is 400 nm. The q-plate200

phase profile imparted on an incoming optical beam by the nanofin pattern is expressed in polar201

coordinates as U(A, q) = Θ(A, q)/2 = |@ |q, according to the geometric Pancharatnam-Berry202

(PB) phase [46]. The metasurface design based on the PB phase naturally provides opposite203

topological charge numbers for orthogonal circular polarization states.204
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Fig. 2. Tunable excitation of ; = ±10 modes using a metasurface q-plate. (a) Schematic
of a q-plate of order @ = |; |/2 = 10/2. For an input Gaussian beam for some elliptical
state of polarization, the output consists of a mixture of the ; = ±10 free-space OAM
beams as well as an unconverted Gaussian remnant. (b) Illustration showing a unit-cell
of the metasurface q-plate, consisting of an amorphous Si nanofin that acts as a half-
wave plate, with fast-axis orientation \8, 9 and spatial position (G8, 9 , H8, 9 ) on the spatial
grid. The separation between adjacent unit cells is 400 nm. (c) Colormap overlaid
with a quiver plot showing the 2-dimensional spatial distribution of unit cell fast axes
orientations on the metasurface. The orientation of the fast axes is given by Θ = |; |q
for |; | = 10, where q is the angular coordinate. (d) Scanning electron micrograph of
the fabricated metasurface q-plate showing individual nanofins

The metasurface optics is fabricated by depositing a layer of 760 nm thick a-Si on a 500 `m205

thick fused silica wafer using plasma enhanced chemical vapor deposition (PECVD). A 300 nm206

thick layer of high-resolution positive tone electron beam resist followed by a 20 nm thick layer207

of anti-charging conductive polymer are spin-coated onto the a-Si film. A 100 keV electron beam208

lithography system is used to expose the nanopillar pattern, followed by conductive polymer209

removal with deionized water at room temperature, and resist development with hexyl acetate at210

4°C. The developed pattern in the resist layer is transferred to an electron-beam-evaporated 70211

nm thick Al2O3 layer using the lift-off technique. By using the patterned Al2O3 layer as an etch212

mask, inductively-coupled-plasma reactive ion etching (ICP-RIE, gas mixture: SF6 and C4F8;213

ICP power: 1750 W; radio frequency power: 15 W) is performed to etch the underlying a-Si214

layer at 15 ◦C, to create high-aspect-ratio a-Si nanopillars. The metasurface optics fabrication215

is finalized by soaking the wafer in a mixture of hydrogen peroxide and ammonium hydroxide216

solutions (80 °C for 30 min) to remove the Al2O3 etch mask and any etch residue.217



Fig. 3 shows the experimental schematic used to characterize nonlinear rotation of the mode218

superposition described above. The Nd:YAG microchip laser used in this work produces optical219

pulses with a temporal full-width-at-half-maximum (FWHM) duration of 720 ps at _ = 1064220

nm with a repetition rate of 1 kHz. The beam has a Gaussian spatial profile and is linearly221

polarized. A combination of a HWP and a polarization beam splitter (PBS) is employed to222

adjust the power transmitted through to the metasurface q-plate. A quarter-wave plate (QWP)223

is used to tune the SOP of the Gaussian beam before it is incident on the metasurface q-plate224

described above. The free-space output beam consists of a combination of ; = ±10 and ; = 0225

beams. The conversion efficiency of the q-plate, i.e., the ratio of power in the ; ≠ 0 and ; = 0226

parts of the beam, is measured to be ≈ 20 %. Higher spin-to-orbital conversion efficiencies of227

the metasurfaces exceeding that achieved in the experiments presented here is expected through228

further design and nanofabrication improvements [47]. The relative powers in the ; = +10 and229

; = −10 parts of the beam are tuned by adjusting the input SOP using the QWP. This beam is230

then focused down onto the input end face of a cleaved hollow RCF (Fig. 1). It is important to231

note that the non-guiding air core of the RCF acts as an effective spatial filter for the ; = 0 part of232

the q-plate output, thereby only coupling into the ; = ±10 modes in the fiber. This is because of233

the well-known property of Laguerre-Gaussian (LG) free-space beams that for a given lens of234

focal length 5 , beams of different ; values focus to different spot sizes [48]. The focal length 5 of235

the lens used was chosen such that the resulting spot size of the ; = ±10 part of the beam ≈17236

`m, roughly matching the guiding core diameter of the hollow RCF, whereas the spot size of237

the ; = 0 beam was < 3 `m, much smaller than the diameter of the air core. Characterization238

measurements described below show that the power coupled into other modes is negligible, and239

that tunable excitation of the SOaa
±10 modes is achieved.240
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Fig. 3. Schematic of the experimental setup constructed to study nonlinear rotation of
spin-orbit coupled states in hollow RCFs.

The beam emerging from the fiber is magnified using a infinity-corrected microscope objective241

of 40x magnification and a numerical aperture (NA) of 0.75 before it is imaged through242

polarization and mode-converting optics. We employ a linear polarizer to image the output beam243

to observe the 2|; | = 20 lobe pattern, and a cylindrical lens to convert the Laguerre-Gaussian244

beam, corresponding to the fiber OAM modes, to Hermite-Gaussian (HG) beam that makes245

it possible to examine the OAM mode content in the fiber [35]. For the imaging mechanism,246

although we previously demonstrated a method to resolve the near field output intensity of MMFs247

with a sub-nanosecond temporal resolution [49], such a near field method does not allow for the248

insertion of free-space polarization optics. Other similar techniques [50] could be viable, but249

time-averaged methods such as using a slow imaging camera prove sufficient for characterizing250

the phenomenon of interest here. The time-averaged images acquired are then processed and251

analyzed, and the results are compared with numerical simulations described above.252



4. Results and Discussion253

4.1. Tunable excitation of ; = ±10 SOaa modes254

As the SOP of the Gaussian beam incident on the q-plate is varied, the relative amplitudes of the255

; = ±10 LG beams also vary; this is the essential functionality of a q-plate. The metasurface256

design based on the PB phase provides opposite signed topological charges for orthogonal257

circular polarization states, thereby exciting only the SOaa modes in the fiber. Furthermore, the258

aforementioned spin-orbit coupling effect occurring in these fibers provide a sufficient effective259

index separation between the SOaa and SOa mode groups, which prevents unintentional excitation260

of the SOa modes via linear coupling in the fiber.261

Fig. 4 shows how different linear combinations of the ; = ±10 SOaa modes of the fiber can be262

excited depending on the orientation of the input QWP. The OAM mode content in the fiber is263

revealed by imaging the fiber output through a cylindrical lens that acts as a mode converter. For264

an input SOP that is LCP(RCP), the q-plate produces an output OAM beam that is LCP (RCP)265

and has a topological charge of ; = +10 (; = −10), thereby exciting only the ; = +10 (; = −10)266

SOaa mode in the fiber. This is evidenced by the appearance of a Hermite-Gaussian mode pattern267

that has a positive (negative) slope when imaged using a cylindrical lens, as shown in the top268

left (right) image in Fig. 4. The |; | value of this beam is confirmed to be 10 by counting the269

number of dark fringes in the pattern. For an input SOP that is elliptical or linear, the q-plate270

output contains a mixture of both ; = ±10 beams, each with polarization helicities opposite to271

their OAM phase helicities. Such a beam excites an admixture of the two ; = ±10 SOaa modes in272

the fiber, producing orthogonal HG mode patterns indicating the presence of topological charges273

of opposite signs. The number of dark fringes in each of the orthogonal arms is verified to be 10.274

The special case of a linear input SOP excites the two SOaa modes with equal amplitudes, which275

can be equivalently described as the excitation of a pure EH mode.276
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Fig. 4. Demonstration of tunable excitation of ; = ±10 SOaa modes in a hollow RCF
using a metasurface q-plate: experimental images. The beam exiting the fiber is imaged
at different input SOPs. (Top) A cylindrical lens is used to convert the LG beam
emerging from the fiber to the HG basis, to reveal the OAM mode content in the fiber.
(Middle) Polarization-insensitive measurement of the intenstity pattern of the output
beam. (Bottom) When imaged through a linear polarizer, 2|; | = 20 lobes appear for all
input SOPs except for LCP and RCP, each of which excite purely one OAM mode.

For all input SOPs, the intensity profile of the output beam always has a ring shape, characteristic277



of OAM-carrying modes and their superpositions. When imaged through a linear polarizer,278

however, only the cases of LCP and RCP retain the ring shape in their intensity profiles. This279

once again demonstrates in both of these cases, only one OAM mode with a spatially uniform280

SOP is excited. For an input SOP that is elliptical, we observe 2|; | = 20 lobes in the measured281

intensity pattern. This arises from the fact that the mode superposition for such an input consists282

of a spatially-varying elliptical SOP, as indicated in Fig. 1(b). For the case of a linear input SOP,283

the excited EH mode has a spatially-varying linear SOP, which also results in the appearance of284

the lobe pattern. This demonstrates that by tuning the SOP of the Gaussian beam incident on the285

metasurface q-plate, the SOaa
±10 mode content in the fiber can be adjusted.286

It is also worth noting that the absence of any HG mode pattern corresponding to ; = 0, as can287

be seen from the top row of Fig. 4, shows that the unconverted ; = 0 part of the beam exiting the288

metasurface q-plate is not guided in the fiber, as predicted.289

4.2. Power-dependent rotation of time-averaged lobe intensity patterns290

As described in Section 2, for an unequal mixture of the two modes, as the input power is291

increased, the modes undergo SPM and intermodal XPM, leading to a time-varying orientation of292

the lobe pattern within the duration of a pulse when imaged through a linear polarizer. However,293

this power-dependent rotation is also readily verified by observing the change in the time-averaged294

intensity pattern as the input power is increased. Fig. 5 shows numerically simulated and295

experimentally measured time-averaged images for two configurations of the input QWP. The296

first QWP configuration results in a right elliptical SOP of the Gaussian beam incident on the297

q-plate, and excites a mode combination with the ; = −10 SOaa mode being the dominant one.298

The second QWP configuration excites a dominant ; = +10 SOaa mode combination.299

Fig. 5 also shows numerically simulated and experimentally measured images of the time-300

averaged intensity pattern imaged through a linear polarizer at various input peak powers. The301

radial tick marks overlaid on the images show the location of the intensity lobes at low power and302

the degree (and direction) of power-dependent rotation. For the experimental images, the pattern303

rotation was calculated using Fourier image processing, as described below. As the input power304

is increased, the lobe patterns are no longer aligned with that at low input power, and the amount305

of rotation increases with an increase in input power, indicating the nonlinear origin of this effect.306

The sense of rotation depends on the handedness of the input polarization: the dominant307

; = −10 case is counter-clockwise, whereas the dominant ; = +10 case rotates clockwise, as308

the input power increases. This effect is explained by observing from Eqs. (2a), (2b) that the309

nonlinear phases acquired by each of the modes depends upon the power distribution in the two310

modes. For a dominant ; = −10 configuration, the ; = +10 mode acquires more nonlinear phase311

than the ; = −10 mode due to intermodal XPM, and vice versa. Because the orientation of the312

resulting lobes is determined by the phase difference between the two modes, the two cases result313

in opposite senses of rotation.314

Fig. 5 also shows a blurring of the lobe pattern with power, i.e., a reduction in the contrast at315

higher input powers, for both simulations and experimental images. This a result of the time316

averaging process, and confirms indirectly that the lobe pattern undergoes a time-dependent317

rotation within one pulse duration, as predicted by numerical simulations shown in Supplementary318

Video 1.319

The rotation and blurring of these lobe patterns is strikingly apparent when the time-averaged320

images recorded at various input power levels are played in succession as a movie. Supplementary321

Video 2 shows numerically simulated time-averaged images for the case of dominant ; = −10322

mode. Supplementary Video 3(4) shows experimentally obtained images for the dominant323

; = −10(; = +10) case. Notice from Supplementary Videos 3 and 4 the increase in rotation as324

well as reduction in lobe contrast with an increase in input peak power. Notice also that the325

dominant ; = −10 and dominant ; = +10 cases show opposite senses of rotation. This is in326
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Fig. 5. Nonlinear rotation of unequal superpositions of the ; = ±10 SOaa modes:
numerical simulation and experimental images of the time-averaged output intensity
pattern imaged through a linear polarizer, at various input peak powers, for two values
of mode power ratios %+ +/%+−. For visual aid, a wheel pattern is aligned with the
lobes and overlaid on top of the images. Notice that the wheel patterns at the different
power levels are not aligned with each other, indicating a power-dependent rotation.
Also note the opposite sense of rotation in the dominant ; = −10 case vs the dominant
; = +10 case.

agreement with numerical simulations shown in Fig. 5 and Supplementary Video 2.327

4.3. Image processing and Fourier analysis328

To quantitatively analyze the mode rotation from the measured spatial images, we employed329

Fourier analysis of the azimuthal intensity distributions. As Fig. 6(a) illustrates, we extract the330

azimuthal variation of intensity along a thin ring concentric within the lobe pattern. Fourier331

filtering is performed to retain only the 0th and ±20th order components, as we are interested in332

the rotation of the 2|; | lobe pattern. The plot in Fig. 6(a) shows that the filtering process retains333

most of the signal and filters out image distortions and noise caused by uneven illumination,334

imperfect alignment of imaging optics and potential power leaked into undesired modes because335

of imperfect input alignment. The rotation of the time-averaged lobe pattern, denoted by X, is336

measured using the Fourier phase Z of the azimuthal intensity signal as X = 18◦Z/(2c). A 2c337

change in azimuthal Fourier phase corresponds to the rotation of the lobe pattern by one full338

lobe, i.e. 360◦/20 = 18◦. The contrast of the lobe patterns (i.e., smearing out) is quantified as the339

ratio of magnitudes of Fourier amplitudes of the 0th and 20th order components.340

The error bars displayed in the experimental data shown in Figs. 6(b) and 6(c) correspond341

to one standard deviation of observed pattern rotation and lobe contrast based upon collecting342

10 time-averaged images for each data point. The sources of error this accounts for includes343

imaging distortions such as non-uniformity in illumination resulting from imperfect alignment of344

imaging optics, pulse-to-pulse energy fluctuations in the source laser, as well as errors from the345

image processing algorithm. These margins of error are in agreement with variation in estimated346

lobe contrast and pattern rotation upon artificially adding distortions and additive white Gaussian347

noise to simulated (i.e., otherwise clean) lobe patterns.348

The results presented in Fig. 5 are echoed by the plot of lobe pattern rotation as a function349

of input power shown in Fig. 6(b). In addition to the two cases of unequally excited modes350

presented in Fig. 5, we also show an additional case (in blue) for which the ; = −10 mode is351

dominant, only this time with a different ratio of powers. Fig. 6(b) shows that for all three cases,352

the amount of rotation experienced by the lobe pattern increases as a function of input power. It353
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Fig. 6. Fourier analysis of nonlinear rotation via image processing. (a) Illustrative
example showing the image processing routine. The intensity pattern along a thin
circular ring concentric with the lobe pattern is extracted from the recorded images, and
Fourier filtering is performed to retain only the 2|; |th and 0th order components. The
rotation of the lobes X is recovered from the change in Fourier phase Z of the azimuthal
intensity signal with a change in input peak power. The lobe contrast is defined as the
magnitude ratio of the 20th and 0th order Fourier components. (b) Rotation X of the
time-averaged lobe pattern at various input powers, for simulation (solid line plots) and
experiment (dotted line plots). The plot also shows the control cases of input SOP being
circular and linear. (c) Simulated (top; solid line plots) and experimentally measured
(bottom; dotted line plots) reduction in lobe contrast as a function of input power.

also shows that the dominant ; = ±10 cases exhibit opposite senses of rotation. Simulations are354

in agreement with experimental measurements for all three cases. We also show the control case355

of exciting an equal combination of the two OAM modes, i.e., exciting a pure EH mode. We356

observe that the lobe pattern in this case exhibits a very small rotation, albeit not perfectly zero,357

which can be explained by imperfect input coupling causing the two OAM modes to have slightly358

different powers.359

As mentioned before, the reduction in lobe contrast observed in the images of 5 and Supplemen-360

tary Videos 2, 3 and 4 is a result of temporal averaging over the pulse duration. Fig. 6(c) shows a361

plot of the lobe contrast, defined as the ratio between the magnitudes of Fourier amplitudes of362

the 0th and 20th Fourier components. The bottom (dotted line) plot in Fig. 6(c) shows that with363

an increase in input peak power, we see a reduction in lobe contrast for all three cases of unequal364

mode excitation, as expected. For the cases of %+ +/%+− ≈ 5.88 and %+ +/%+− ≈ 0.15, though365

they correspond to cases of dominant ; = +10 and ; = −10 respectively, the ratio of powers in366

the non-dominant mode to the dominant one is approximately equal (1/5.88 = 0.17 and 0.15367

respectively) in both cases. This explains the near overlap of the two lobe contrast curves in Fig.368

6(c) even though the senses of rotation for the two cases are opposite, as shown in Fig. 6(b). For369

the case of %+ +/%+− ≈ 0.32, because the dominant mode in this case has approximately half370

the power as the prior two cases, the lobes are expected to have a higher contrast. This explains371

why the blue curve in Fig 6(c) lies above the curves for the two cases of approximately equal372

non-dominant to dominant mode power ratio.373

This is also in line with the general trend that for an equal excitation of the two OAM modes,374

the resulting mode in the fiber is a pure EH mode that has spatially-varying linear SOP, which375

produces the best contrast in lobes when imaged through a linear polarizer at low input powers.376

The unequal excitation cases produce lower lobe contrasts as the spatial profile in the fiber consists377

of spatially-varying elliptical (and not linear) SOP. In the other limiting case of exciting purely378



one OAM mode, because the SOP is uniformly circular across the entire spatial mode, no lobes379

are observed even upon the insertion of a linear polarizer at any input power, as shown in Fig. 4380

and in the green plots in Fig. 6(c). The trends in the experimentally observed reduction in lobe381

contrast are in agreement with the numerically simulated values, as shown in the bottom and top382

plot windows in Fig. 6(c) respectively.383

Figs. 6(b) and 6(c) together demonstrate that power-dependent rotation of a spin-orbit coupled384

state formed by the superposition of two degenerate SOaa modes occurs as a result of intermodal385

nonlinear interactions between the modes as described in Section 2. Although analogous to386

nonlinear polarization rotation, this phenomenon is reliant upon the difference in variation of387

phase across the spatial extent of the fiber modes. To demonstrate this point, consider two modes388

that have identical phase profiles but opposite helicities of circular polarization. An example of389

such a mode combination would be the ; = 0 modes in the hollow RCF used in this work. An390

unequal superposition of such modes would lead to a spatially uniform elliptical SOP. Insertion391

of a linear polarizer would not then cause the appearance of a lobe intensity pattern, and a392

power-dependent rotation of the elliptical SOP in such a case would be completely identical to393

that occurring in SMFs.394

For a mode combination consisting of |; | > 0 modes however, such as the combination of395

; = ±10 the modes considered here, the phase difference between the modes is spatially variant.396

It is this spatial variation in phase difference that causes a spatially variant elliptical SOP and397

thereby the power-dependence of lobes when imaged through a linear polarizer. The nonlinear398

effect reported here is therefore a generalization of nonlinear polarization rotation occurring in399

SMFs in the context of spatial OAM modes in fibers.400

5. Conclusions401

Spatial modes of a hollow RCF of a given topological charge and radial mode order are degenerate402

with each other depending upon the relative alignment of their OAM and SAM. This results from403

the so called spin-orbit coupling known to occur in these fibers, where the effective index of a404

mode of a given topological charge ; depends upon its SAM. When two modes of a degenerate405

group, such as the SOaa
±10 modes described in this work, are excited with unequal amplitudes,406

the resulting superposition consists of a spatially-varying elliptical SOP. The orientation of this407

spatial pattern depends upon the phase with which the two modes spatially interfere.408

In the presence of optical nonlinearity, the two modes undergo SPM and intermodal XPM.409

Because of the difference in amplitudes, the nonlinear phases acquired by the two modes are410

different, and therefore, there is a power-dependent phase difference between the modes. As a411

result, the spatially-varying elliptical SOP exhibits a power-dependent rotation. This is observed412

by imaging the lobe pattern caused by passing the beam exiting the fiber through a linear polarizer.413

This effect constitutes a generalization of the nonlinear polarization rotation effect occurring in414

SMFs in the context of spatial OAM modes in fibers, and is only observable for OAM modes415

with |; | > 0.416

The use of dielectricmetasurfaces can further enable introduction of a rich library of spin-orbital417

coupling effects in the context of nonlinear fiber optics [51], while providing a high-damage418

threshold platform required for manipulation of high-energy optical pulses. In this work, we report419

excitation of the desired combination of modes by using a transmissive dielectric metasurface420

q-plate. We observe the nonlinear rotation by imaging the time-averaged intensity through a421

linear polarizer as a function of input power. We observe a clear dependence of the orientation422

of the spatial pattern on input power. Notably, the sense of rotation is opposite for cases of423

a dominant ; = +10 and dominant ; = −10 SOaa modes, in strong agreement with analytical424

predictions and numerical simulation. At higher input powers, time-dependent nonlinear rotation425

of the lobe pattern occurs within one pulse duration, leading to a spatial blurring of the observed426

lobe pattern. In conclusion, we report the first to our knowledge observation of the spatial OAM427



generalization of the well known nonlinear polarization rotation effect.428

The measurements reported here also constitute the first observations, to our knowledge, of429

the effects of SPM and XPM on co-propagating OAM modes in fibers, which is of fundamental430

interest in applications ranging from OAM-based classical and quantum communication to431

quantum optics and particle trapping.432
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