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Abstract
Molecules with unstable isotopes often contain heavy and deformed nuclei and thus possess a high
sensitivity to parity-violating effects, such as the Schiff moments. Currently the best limits on
Schiff moments are set with diamagnetic atoms. Polar molecules with quantum-enhanced sensing
capabilities, however, can offer better sensitivity. In this work, we consider the prototypical
223Fr107Ag molecule, as the octupole deformation of the unstable 223Fr francium nucleus amplifies
the nuclear Schiff moment of the molecule by two orders of magnitude relative to that of spherical
nuclei and as the silver atom has a large electron affinity. To develop a competitive experimental
platform based on molecular quantum systems, 223Fr atoms and 107Ag atoms have to be brought
together at ultracold temperatures. That is, we explore the prospects of forming 223Fr107Ag from
laser-cooled Fr and Ag atoms. We have performed fully relativistic electronic-structure calculations
of ground and excited states of FrAg that account for the strong spin-dependent relativistic effects
of Fr and the strong ionic bond to Ag. In addition, we predict the nearest-neighbor densities of
magnetic-field Feshbach resonances in ultracold 223Fr + 107Ag collisions with coupled-channel
calculations. These resonances can be used for magneto-association into ultracold, weakly-bound
FrAg. We also determine the conditions for creating 223Fr107Ag molecules in their absolute ground
state from these weakly-bound dimers via stimulated Raman adiabatic passage using our
calculations of the relativistic transition electric dipole moments.

1. Introduction

Engineered quantum matter holds promise for quantum computation as well as the development of novel
materials and sensors. Quantum technologies based on atoms and atomic ions have partly fulfilled these
promises [1–4]. Ultracold, sub-millikelvin molecules represent a next Frontier for controlling quantum
matter. The richness of their internal states has established molecules as promising precision-measurement
tools in quantum science, assisted by long coherence times among internal states in laser-based optical traps
[5–7]. Key to these advances has been the development of cooling techniques, which sufficiently reduce the
entropy of the molecules in order to apply ever more refined quantum control techniques.

Advancing fundamental physics and related precision measurements often require the creation of
unexplored polar molecules [8]. Current efforts in this direction focus on sensors of fundamental
interactions and forces using cold and ultracold molecules [9, 10]. Here, the search for forces that violate
both time-reversal (T) and parity (P) invariance is of fundamental importance for physics beyond the
standard model. P,T-odd nuclear interactions, for example, give rise to the nuclear Schiff moment [11],
which may interact with the electrons in the molecule and lead to measurable shifts in molecular spectra
[12].

Among the candidates for measurements of the nuclear Schiff moment are molecules containing
unstable isotopes of radium (Ra) and francium (Fr), which have an octopole-deformed nucleus and thus

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac50ea
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0192-5585
https://orcid.org/0000-0003-0580-3788
mailto:skotoch@temple.edu


New J. Phys. 24 (2022) 025005 J Kłos et al

Figure 1. Beyond-standard-model quantum sensor based on FrAg molecules containing unstable Fr with deformed
non-spherical nucleus. The strong ionic bond of FrAg leads to a strong internal electric field Eeff significantly enhancing the
sensitivity to parity-violating effects.

possess a high sensitivity to parity violation [13–18]. Both heavy atom species are now routinely cooled and
trapped in magneto-optical traps despite their short lifetime by either α or β decay [19, 20]. In the search
for bonding partners for Ra and Fr two criteria must be considered: (i) bonding partners must have a large
electron affinity that leads to an ionic bond and a strongly polarized Ra or Fr atom; (ii) being amenable to
laser cooling and trapping. An ionic bond is also correlated with a large permanent molecular electronic
dipole moment and with a large effective electric field, Eeff, acting on either the unstable nucleus or the
electrons [8, 18, 21]. Among the most relevant partner for both Ra and Fr is the silver (Ag) atom [18, 22]. It
satisfies both criteria as having a large electron affinity of hc × 10 521 cm−1 [23], and having been laser
cooled [24]. Here, h is the Planck constant and c is the speed of light in vacuum.

In this paper, we consider the prototypical francium–silver molecule FrAg, shown in figure 1 for the
development of a quantum sensor in search of a nuclear Schiff moment. The idea is to assemble FrAg
molecules from laser-cooled 223Fr and 107Ag atoms [22]. Both atoms have an 2S electron-spin-1/2 electronic
ground state, while their electronic molecular ground state is well described as an electron-spin-zero, singlet
1Σ+ Hund’s case (a) state [25, 26], similar to that for the ground state of bi-alkali-metal molecules.
Alkali-metal dimers have already been assembled from ultra-cold atoms and been shown to be scientifically
relevant [27, 28].

We first assume that the ultracold atoms are prepared in their energetically lowest Zeeman, hyperfine
state and collide in the presence of an external magnetic field and from there can be bound together with a
small binding energy of order hc × 10−3 cm−1, in an electronic configuration that is predominantly of
triplet a3Σ+ character. This binding process is either achieved via a slow time-dependent sweep or ramp of
the magnetic field near a Fano-Feshbach resonance, also known as magneto-association, or via microwave
radiation near such resonances [29]. We will show that useable Feshbach resonances exist in 223Fr and 107Ag
collisions.

The next step is to search for a route, based on stimulated Raman adiabatic passage (STIRAP) processes
[30], to coherently transfer the population from a weakly-bound rovibrational state to the strongly-bound
rovibrational ground state of the X1Σ+ state via a rovibrational state of the mixed and coupled b3Π and
A1Σ+ excited electronic states. Mixing is due to relativistic spin–orbit interactions, which requires us to
label electronic state with Hund’s case (c) labels rather than with case (a) labels [25, 26].

The two-step formation of ultracold FrAg molecules from ultracold Fr and Ag is made challenging due
to a lack of knowledge of their relativistic electronic, rovibrational, and hyperfine structure in both
electronic ground and excited states. To our knowledge, only the electronic singlet and triplet ground-state
potentials of FrAg have been calculated [31]. Here, we describe our theoretical study of potentials, electric
dipole moments, and rovibrational states of FrAg. In addition, this includes the prediction of Feshbach
resonance densities and locations, as well as the development of Raman schemes for the formation of the
absolute ground state of FrAg. Unless otherwise noted, we present results for rovibrational states of the
223Fr107Ag isotopologue.

2. Results

2.1. Electronic potentials and transition dipole moments
We begin with the determination of the adiabatic potential energy surfaces of FrAg electronic states as well
as transition electric dipole moments between these states as functions of atom–atom separation R. Here,
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Figure 2. Relevant potentials of FrAg as functions of atomic separation R. Potentials are identified by Hund’s case
(c) state labels and for large separations by atomic states. The zero of energy is at the dissociation limit or threshold of the 1(0+)
and 1(0−, 1) states. The small splitting between the 1(0−) and 1(1) states is invisible on the scale of this figure. Short black lines in
the 1(0+) and 3(0+) potentials indicate rovibrational levels of these potentials. The dashed lines with arrows connecting these
levels with near threshold bound states indicate a possible STIRAP pathway to the FrAg rovibrational ground state.

Table 1. Spectroscopic constants of 223Fr107Ag in relativistic ground and excited
states relevant to the STIRAP scheme. These include equilibrium interatomic
separation Re, dissociation energy De, harmonic spring constant k, harmonic
(angular) frequency ωe, and rotational constant Be. Data is compared to the
results of reference [31] where available.

State Re/a0 De/hc (cm−1) k/hc (cm−1/a2
0) ωe/2πc (cm−1) Be/hc (cm−1)

1(0+) 6.164 12635 4391.5 85.54 0.0219
[31] 6.190 12700 — 84.2 0.0215
1(0−) 9.422 205 68.942 10.72 0.0094
[31] 9.451 193 — 10.6 0.0093
2(0+) 9.100 4017 342.18 23.88 0.0010
3(0+) 6.740 8125 2093.2 59.06 0.0183

relativistic electronic structure calculations using the DIRAC computational suite [32] enable us to account
for spin–orbit effects on FrAg states. This includes spin–orbit coupling between the A1Σ+ and b3Π states as
well as the weaker second-order spin–orbit splitting of the a3Σ+ state.

Adiabatic potentials are uniquely labeled by n(Ωσ) within the Hund’s case (c) notation, where Ω is the
absolute value of the projection of the total electronic angular momentum on the internuclear axis and
σ = ± represents the even or odd reflection symmetry of the electron wavefunction through a plane
containing the internuclear axis when Ω = 0. Finally, n = 1, 2, . . . labels states of the same Ωσ value ordered
by increasing energy. Then, the energetically-lowest n(Ωσ) = 1(0+) state connects to the Hund’s-case-(a)
X1Σ+ state while the a3Σ+ state has 1(0−) and 1(1) components. The A1Σ+ and b3Π states mix to form
Ωσ = 0+, 0−, 1, and 2 states, but in this article we will mostly be interested in the 2(0+) and 3(0+) states.
We also determine the R-dependent transition dipole moments between n(Ωσ) ground and excited states. A
description of electron orbitals used in the DIRAC calculations and values for the long-range van-der-Waals
and other dispersion coefficients can be found in appendix A.

Figure 2 shows our results for electronic relativistic adiabatic potentials Vn(Ω±)(R) relevant for
transferring population from weakly-bound Feshbach molecular states to the absolute rovibrational ground
state of the 1(0+) potential. In the figure, atom–atom separations are expressed in units of a0 = 0.05292
nm, the Bohr radius. Spectroscopic constants for these potentials can be found in table 1, while a graph
with additional excited electronic potentials can be found in appendix A. The dissociation energy of our
1(0+) potential is only 0.5 % smaller than that of reference [31]. The corresponding fractional difference for
the shallow 1(0−) potential is about 10 %. The absolute difference, however, is only hc × 12 cm−1. There is
also a noticeable difference in the harmonic constant ωe for the 1(0+) potential, i.e. hc × 85.5 cm−1 for our
relativistic potential versus hc × 84.2 cm−1 from reference [31].

At first glance, there is a similarity with the potential surfaces for heavy di-atomic alkali-metal
molecules. This is due to the single active open valence orbital of alkali-metal and silver atoms. Thus we
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Figure 3. The total electron density of the ground state FrAg molecule (blue transparent surface) at its equilibrium separation.
The red and blue contours correspond to positive and negative values of the electrostatic potential felt if a positive test charge is
placed on the contour, respectively. The arrow indicates the permanent dipole moment vector &µ. The calculation has been
conducted using the Gaussian computational suite with the small SDD basis [36].

find a deep 1(0+) ground state and shallow nearly-degenerate 1(0−) and 1(1) excited states that correlate to
the non-relativistic Hund’s case (a)-like X1Σ+ and a3Σ+ states, respectively. These states dissociate to two
2S ground-state atoms. Next, we observe the avoided crossings between the 2(0+) and 3(0+) levels that
dissociate to an excited 2Pj=1/2 or 2Pj=3/2 Fr atom and a ground-state Ag atom. For alkali-metal dimers
these states also exist. The two states are the result of spin–orbit mixing of the non-relativistic A1Σ+ and
b3Π states. Near avoided crossings the potentials for these non-relativistic states cross.

There are significant differences between the potentials of FrAg and alkali-metal dimers as well. First, the
ground 1(0+) potential for FrAg is more than twice as deep at its equilibrium separation as the
corresponding potential of KRb [27], RbCs [33, 34], and Cs2 [35]. Second, the bond in FrAg is strongly
ionic as demonstrated in figure 3. This figure shows contours of the electrostatic potential of FrAg at its
equilibrium separation. The electrostatic potential is positive near the Fr atom and negative near Ag
implying that the electron density will localize near the Ag atom.

On the other hand, the depths of the shallow 1(0−, 1) states are very similar. Second, the shape of the
excited 2(0+) and 3(0+) potentials differ in two important ways. The extended, flat minimum of the 2(0+)
state between R = 8a0 and 11a0 is seen to avoid with the 1(0+) state. In alkali-metal dimers, the harmonic
(spring) constant near the equivalent minimum of the 2(0+) state is significantly larger and the avoided
crossing with the X1Σ+ potential much less pronounced. Finally, for FrAg the 2(0+) and 3(0+) potentials
have an avoided crossing on their inner walls, where the slope of the potentials with respect to R is negative.
For alkali-metal dimers this avoided crossing occurs for separations, where the slope of 2(0+) potential is
already positive.

We have also determined electric transition dipole moments between ground and excited electronic
states. Computational details can be found in appendix A. Three of these dipole moments as functions of
internuclear separation R are shown in figure 4. First, we observe that dipole moments undergo rapid
changes near 6a0 and 19a0 corresponding to the avoided crossings between the 2(0+) and 3(0+) potentials
in figure 2. Second, we will mostly pay attention to the two transition dipole moments to the 3(0+) state.
The dipole moments are large, of order ea0, and are non-zero for most R. Here, e is the elementary charge.
Especially noticeable is the large dipole moment at the asymptotic limit due to spin–orbit mixing of the
7p1/2 and 7p3/2 excited levels of Fr. As we will show, this promises efficient transfer from a weakly-bound
1(1) molecule to the strongly-bound 1(0+) molecule.

For a precise description of ultra-cold Fr and Ag collisions, we need the splitting between the 1(0−) and
1(1) components of the a3Σ+ potential. This is the second-order spin–orbit interaction and is shown in
figure 5. Its behavior is determined by the overlap of electron wavefunctions from each atom and, thus,
decreases exponentially with increasing separation R. For later use, the data has been fit to

V1(1)(R) − V1(0−)(R) = A1e−B1(R−R1) + A2e−B2(R−R2), (1)

where A1/hc = 2.358 24 cm−1, B1 = 1.017 01a−1
0 , R1 = 8a0 and A2/hc = 0.022 cm−1, B2 = 0.37a−1

0 ,
R2 = 14a0. For later use we define the singlet X1Σ+ potential VX(R) ≡ V1(0+)(R) and triplet a3Σ+ potential
Va(R) = (V1(0−)(R) + 2V1(1)(R))/3 (See also appendix A.)

A comparison of the 2nd-order spin–orbit interaction of FrAg with that of heavy alkali-metal dimers,
such as RbCs [34], shows that the former is almost ten times stronger at the inner-turning point of the
a3Σ+ potential near 8a0 when the potential energy is that of the dissociation limit or atom–atom threshold.
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Figure 4. Relevant electric transition dipole moments d of FrAg as functions of separation R. The moments have been found
from relativistic calculations. The purple, turquoise, and orange curves are for the 1(0+) → 2(0+), 1(0+) → 3(0+), and
1(1) → 3(0+) transitions, respectively.

Figure 5. The second-order spin–orbit splitting (filled blue circles) of FrAg, defined as the potential energy of the Ω = 1
component minus that of the Ω = 0− component of the a3Σ+ state, as a function of interatomic separation R based on
relativistic electronic-structure calculations. The blue curve is a fit to this data using the functional form given in the text. The
purple curve shows minus the corresponding splitting from the magnetic dipole–dipole interaction due to the magnetic
moments of the electrons.

In figure 5, we also show minus the splitting between 1(1) and 1(0−) due to the magnetic dipole–dipole
interaction between the magnetic moments of electron spins of Fr and Ag. This dipole–dipole interaction is
of order Eha3

0α
2/R3, where Eh is the Hartree energy and α is the fine-structure constant. It is small for the

separations shown in the figure, but will dominate for R > 20a0.

2.2. Magnetic Feshbach resonances in ultracold Fr + Ag collisions
We can now describe results for ultra-cold, µK collisions of 223Fr and 107 Ag in their 2S electronic ground
state as well as the near-threshold, weakly-bound ro-vibrational states of 223Fr107 Ag. Specifically, we
describe collisional magnetic Feshbach resonances when these atoms are prepared in their
energetically-lowest electronic, hyperfine, and Zeeman states in the presence of an external magnetic field
with strength B. These resonances are due to mixing of the R-dependent molecular interactions by the
Zeeman and hyperfine or Fermi-contact interactions of the 2S atoms.

The Hamiltonian H for the relative motion of 223Fr and 107Ag is similar to that of interacting
ground-state hydrogen atoms or alkali-metal atoms. Following references [34, 37], the atoms are assumed to
be point-like with a mass equal to that of the atoms. Each atom has an electron spin (quantum number)
equal to 1/2 and a non-zero nuclear spin, whose value is unique to the actual isotope. Here, 223Fr has
nuclear spin 3/2 and 107Ag has nuclear spin 1/2. Electron and nuclear spin of each atom are coupled by the
Fermi-contact and Zeeman interactions. Relevant hyperfine constants, g factors, and masses, are taken from
references [38–42], where 107Ag has an ‘inverted’ hyperfine structure. The Fermi-contact coefficient of 223Fr
is many times larger than the absolute value of that of 107Ag.

The Hamiltonian also contains the relative kinetic energy operator, which is an operator in the
separation between the two atoms R and the orientation of their interatomic axis R̂. Eigenfunctions of the
orientation-dependent part of the kinetic energy operator are spherical harmonic functions in R̂ labeled by
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Figure 6. Scattering length, a, (top panel) for colliding 223Fr and 107Ag atoms in their energetically-lowest hyperfine state and
their near-threshold bound-state energies, E, (bottom panel) as functions of magnetic field B up to 100 G. Blue and red curves
correspond to calculations including channels with only ' = 0 (s-) and ' = 0, 2 (s-, d-) partial waves, respectively.

orbital angular momentum or partial wave ' and its projection m' along the magnetic field direction. In
addition, H includes isotropic molecular interactions that only depend on separation R. The isotropic
potential for total molecular electron spin zero is VX(R), while that for total electron spin one is Va(R) as
defined in the previous subsection. Neither, the Fermi-contact, Zeeman, VX(R), nor Va(R) interactions can
change the partial wave quantum number ' during the collision. Finally, the Hamiltonian contains the weak
2nd-order spin–orbit and magnetic dipole–dipole interactions. They are anisotropic, depend on the
orientation of the total electron spin relative to R̂, and lift the 1(0−) and 1(1) degeneracy. These weaker
interactions mix molecular states with even ' (that is the s, d, . . . partial waves for ' = 0, 2, . . .) or odd '
(that is the p, f, . . . partial waves).

We have computed the s-wave scattering length, a, as a function of magnetic field, a Feshbach resonance
spectrum [29], for ultracold 223Fr + 107Ag collisions. For the calculations, we rely on the coupled-channels
method using our potential energy surfaces. The scattering length is determined from elastic s-wave
scattering amplitudes at a collision energy of k × 1 µK with entrance channel where 223Fr and 107Ag are in
their energetically-lowest mFr = +1 and mAg = −1 hyperfine state, respectively. Here, mX with X = Fr and
Ag are projections of the atomic angular momentum along the B-field direction and k is the Boltzmann
constant. For the calculations allowed molecular coupled channels have conserved projection
Mtot = mFr + mAg + m' = 0 along the B-field direction and even values of '. For 223Fr + 107Ag with
Mtot = 0, there are eight ' = 0 channels and thirty ' = 2 channels. In addition, we have determined the
Zeeman, hyperfine, rotation and vibration resolved near-threshold bound states with Mtot = 0.

Figures 6 and 7 show our computed scattering lengths a(B) and threshold bound-state energies E(B)
relative to the entrance channel energy as function of magnetic field strength B up to 1500 G, where 1 G
equals 0.1 mT. The figures show results from calculations that include only ' = 0 channels as well as those
that include all ' = 0 and 2 channels. In both cases the scattering length has resonances, where its value
rapidly goes through ±∞ with B. The values for a are mostly identical away from resonances for the two
cases. In fact, the positions and (magnetic) widths of those resonances found in both s-wave channel and
s, d-wave channel calculations agree to a fraction of a Gauss. These resonances are s-wave Feshbach
resonances, while the remaining resonances are d-wave resonances. Between 0 and 1500 G, we find seven
s-wave and just over 30 d-wave Feshbach resonances.

Our analysis also implies that the anisotropic interactions, coupling s- and d-wave channels, are weak
compared to the Fermi-contact, Zeeman and isotropic molecular interactions. With some exceptions, the
magnetic widths of d-wave resonances are therefore smaller or narrower than those for s-wave resonances in
figures 6 and 7. Adding larger partial-wave channels, that is ' = 4, 6, . . . , to the calculations will create
even-narrower resonances.

A comparison of the top and bottom panels in figures 6 and 7 shows that a resonance in a(B) always
corresponds to a threshold bound state with zero binding energy. Each of these zero-energy bound states
can be followed back to a bound state at zero magnetic field, where a resonance that occurs at larger B has a
larger binding energy at 0 G. For example, zero-energy bound states that occur around B = 1000 G have a
zero-field binding energy of ≈ h × 5 GHz, outside the range of energies shown in figure 7. Moreover, the
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Figure 7. Scattering length, a, (top panel) and near-threshold bound-state energies, E, (bottom panel) of 223Fr +107 Ag as
functions of magnetic field B up to 1500 G. Other conditions, parameters, and definitions of line styles are as in figure 6.

magnetic moments of the bound states, −dE/dB, are related to the magnetic moments of closed channels,
i.e. atom-pair channels with energies that are larger than that of the entrance channel. These closed
channels have magnetic moments of up to a few times the Bohr magneton µB with µB/h ≈ 1.40 MHz/G
relative to that of the entrance channel.

Further analysis of the near-threshold bound state wavefunctions has shown that they originate from
coupling among the last three s- and d-wave bound states, labeled v = −1, −2, −3, respectively, of the
VX(R)and Va(R) potentials. In fact, bound states with −0.2 GHz < E/h < 0 GHz have at least 80% of their
wavefunctions combined in the 1(0−) and 1(1) states. These observations are consistent with the
energy-level density expected from the identical attractive long-range −C6/R6 van-der-Waals tail of the two
potentials. Analytical analysis of bound state energies of a van-der-Waals potential by Gao in reference [43]
shows that for the C6 coefficient of FrAg the relations
−5.1 GHz ! Ev=−3/h ! −1.6 GHz ! Ev=−2/h ! −0.23 GHz ! Ev=−1/h < 0 GHz hold, where
Ev=−3,−2,−1 are the energies of the last three bound states. For a d-wave channel the energy intervals satisfy
−7.7 GHz ! Ev=−3/h ! −2.8 GHz ! Ev=−2/h ! −0.60 GHz ! Ev=−1/h < 0 GHz. Combined with the
number of closed s- and d-wave channels and their threshold energies this leads to the energy level density
seen in figures 6 and 7.

Finally, we note that our calculations of our relativistic potentials are not exact. In fact, based on
electronic-structure calculations using smaller basis sets, we conclude that the number of bound states has
an uncertainty of at least two and one for VX(R) and Va(R), respectively. This implies that figures 6 and 7
only show a typical Feshbach spectrum. The resonance density in a(B), however, will remain the same for
any potential pair VX(R) and Va(R) as the C6 coefficient for FrAg is sufficiently accurate. In fact, the density
is 0.005 G−1 for s-wave resonances and 0.02 G−1 for d-wave resonances. The precise locations of Feshbach
resonances are unknown. Finally, for the Feshbach spectrum in figures 6 and 7 the background scattering
length away from resonances is negative. Changing the shape of the potentials can lead to a positive value
for a. Reference [44] showed that for a van-der-Waals potential there is a 75% chance of a positive scattering
length a. Joint experimental and theoretical studies of FrAg are required for determining the exact locations
of magnetic Feshbach resonances.

2.3. Formation of ultracold FrAg molecules by STIRAP
In this subsection, we derive initial guidelines for the formation of ultracold ground-state FrAg molecules
by analyzing transition dipole moments between the initial, intermediate, and final molecular rovibrational
states in stimulated Raman or STIRAP processes based on the pathway shown in figure 2. We can assume
that FrAg molecules are first created in a weakly-bound near-threshold s-wave vibrational state by a slow
ramp of the magnetic field through one of the s-wave Feshbach resonances found in the previous
subsection. Such ramps are nearly 100% efficient [29].

For our initial analysis of the stimulated Raman or STIRAP process we make several simplifying
assumptions. First, we do not include the hyperfine and magnetic Zeeman interactions in the description of
the weakly-bound s-wave vibrational states. Based on the realization that the wavefunctions of these bound
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Figure 8. Squared vibrationally averaged transition dipole moments of 223Fr107Ag as functions of J
′
= 1 vibrational binding

energies Ev′ J′ of the 3(0+) excited state from the weakly bound s-wave v = −1, −2, or −3 levels of the 1(1) state (panel (a)) and
from the most-deeply-bound s-wave vibrational level of the 1(0+) electronic ground state (panel (b)). These two types of
transitions correspond to the upward and downward steps of the stimulated Raman process, respectively. Filled colored circles
correspond to bound states v

′
in the 3(0+) state. The v = −1 data in panel (a) (cyan colored curve) are barely visible on the scale

of the figure. The zero of energy for the x axis is at the Fr(7p3/2) + Ag(5s) dissociation limit defined in figure 2, ea0 is the atomic
unit for electric dipole moments, and e is the elementary charge.

states have at least an 80% character in the a3Σ+ state, it is reasonable to assume that the Raman process
starts in either the v = −1, −2, or −3s-wave vibrational level of the 1(1) component of the a3Σ+ state.

In the STIRAP-based formation of ultracold alkali-metal dimers [27, 28], the intermediate states were
deeply-bound v

′
, J′ = 1 ro-vibrational levels of n(Ωσ) = n(0+) excited states with n = 2 and 3. We will do

so for FrAg as well, but introduce one additional approximation. We ignore non-adiabatic mixing near
avoided crossings between the 2(0+) and 3(0+) states. We then focus on the 3(0+) state as the location of
its minimum and its harmonic frequency are similar to those of the 1(0+) electronic ground-state potential.
The final state in the STIRAP process is the energetically lowest v = 0, s-wave level of the 1(0+) state. (As an
aside, note that the electric dipole moments between the 1(0−) component of the a3Σ+ state and n(0+)
states are strictly zero.)

The relevant quantities that are needed to evaluate the effectiveness of the upward and downward
transitions in the STIRAP process are the vibrationally averaged dipole moments

d(α,β)
v′,v =

∫ ∞

0
dRφ(α)∗

v′ ,J′=1(R) dαβ(R)φ(β)
v,'=0(R) (2)

between electronic states α = 3(0+) and β = 1(0+) or 1(1). Here, dαβ(R) are the electric transition dipole
moments shown in figure 4. The radial rovibrational wavefunctions φ(α)

v′,J′(R) and φ(β)
v,' (R) are

unit-normalized and v = 0 for β = 1(0+) and v = −1, −2, −3 for β = 1(1). In principle, equation (2)
must be multiplied by a dimensionless factor containing the photon polarization dependence [45]. They are
always of the order of one and in view of our other approximations can be omitted.

The results of our calculation for the upward and downward transition dipole moments as functions of
3(0+)J

′
= 1 vibrational levels are shown in figures 8(a) and (b), respectively. For the upward transition in

panel (a), we observe that the dipole moments are on the order of 0.1ea0 for many of the vibrational levels
v′ of the 3(0+) state in the bottom half of the potential. For 3(0+) vibrational levels with energies near the
Fr(7p1/2) + Ag(5s) and Fr(7p3/2) + Ag(5s) limits and thus with large, up to 20a0, radial extent the dipole
moments are significantly larger. That is, the overlap of 3(0+) levels with the even-larger extended initial
state is largest. Finally, we note that the size of the dipole moments increase with the binding energy of the
initial s-wave vibrational state v. Figure 8(b) shows the transition dipole moments for the downward step.
Significant transition amplitudes only occur for 3(0+) vibrational levels with an energy around
hc × 5000 cm−1 below the Fr(7p3/2) + Ag(5s) limit.

The transition amplitude for resonant two-photon, two color Raman transitions is proportional to
(d1E1)(d2E2)/(∆v′,J′=1 + iγv′ ,J′=1), where di and Ei with i = 1 or 2 are the vibrationally averaged dipole
moments and electric field strengths of the lasers for the upward and downward transitions, respectively.
The frequencies ∆v′,J′=1 and γv′,J′=1 are the detuning from and linewidth of rovibrational level v′, J′ = 1 of
the intermediate 3(0+) state, respectively. Figure 9 shows d1d2 for the last three 1(1)s-wave bound states as
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Figure 9. Vibrationally averaged two-photon transition dipole moments of 223Fr107Ag for the stimulated Raman transition from
weakly bound s-wave 1(1) vibrational levels v = −1, −2, and −3 to the most-deeply-bound s-wave vibrational level of the 1(0+)
electronic ground state as functions of J

′
= 1 vibrational binding energies Ev′J′=1 of the intermediate 3(0+) electronic state. The

zero of energy for the x axis is at the Fr(7p3/2) + Ag(5s) dissociation limit defined in figure 2. The data are derived from figure 8.

functions of vibrational energies of the 3(0+) potential. We see that the best candidates for intermediate
state are vibrational levels v

′
= 14 and v′ = 15, about hc × 1600 cm−1 above the minimum energy of the

3(0+) potential. Starting from the v = −3 vibrational level of the 1(0+) state leads to the largest
two-photon rates.

3. Conclusion

Molecules with unstable isotopes often contain heavy and deformed nuclei and thus possess a high
sensitivity to various parity-violating effects. In this paper, we theoretically studied the molecular properties
of 223Fr107Ag, a molecule with exceptional promise in quantum sensing and precision measurements of
parity-violating effects. Experimental efforts will likely use molecules formed or associated from ultracold
laser-cooled Fr and Ag atoms. We therefore determined adiabatic relativistic electronic energies of ground
and excited molecular states as well as electric transition dipole moments between them and showed that it
is feasible to create 223Fr107Ag molecules by two-color photo-association or STIRAP to its energetically
lowest rotational, vibrational state from ultracold 223Fr and 107Ag atoms.

To reach this conclusion, we set up hyperfine- and Zeeman-resolved quantum coupled-channels
scattering calculations for µK ground-state 223Fr and 107Ag atoms. From these calculations, we showed that
many magnetic Feshbach resonances exist as a function of applied magnetic field up to 1500 G. We
estimated that the nearest-neighbor level density of these resonances is 0.005 G−1 for s-wave resonances and
0.02 G−1 for d-wave resonances. We also found that the resonances are due to mixing of the last three, most
weakly bound vibrational levels of the 1(0+) and 1(0−, 1) potentials. The accuracy of these potentials,
however, is insufficient to predict the number of molecular bound states and thus of the exact location of
Feshbach resonances. Joint experimental and theoretical efforts are required to determine these quantities.

Secondly, we computed rovibrationally averaged one- and two-photon transition dipole moments from
one of the weakly bound 1(1)s-wave vibrational levels to the v = 0, s-wave rovibrational level of the 1(0+)
ground electronic state. We chose vibrational levels of the adiabatic 3(0+) state as intermediate levels and
suggest that vibrational levels about hc × 1600 cm−1 above the minimum energy of the 3(0+) potential are
the most favorable for FrAg formation. This suggestion also implies the need for very different laser
frequencies for the STIRAP process.

In the future we hope to improve the quality of our predictions of the stimulated Raman and STIRAP
transition strengths. In this article, we made several approximations to find initial order of magnitude
estimates. The most problematic one might be the adiabatic approximation of the intermediate 3(0+) state.
Non-adiabatic mixing near avoided crossings between the 2(0+) and 3(0+) states can be important.
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Appendix A. Electronic structure computations

We have performed Kramers unrestricted relativistic coupled-cluster calculations with single, double, and
perturbative triple excitations (CCSD(T)) [46] using DIRAC program [32] for the ground n(Ωσ) = 1(0+)
and 1(0−) states of FrAg corresponding to the Hund’s case (a) singlet X1Σ+ state and the energetically
lower of the two relativistic components of the triplet a3Σ+ state, respectively. The small-core relativistic
effective core potential, designed for the aug-cc-pwCV5Z-PP basis sets, from reference [47] has been used.
In particular, we use the ECP78MDF and ECP28MDF core potentials for Fr and Ag, respectively. Reference
molecular orbitals and determinants are obtained from relativistic Dirac–Coulomb Hartree–Fock
calculations and only electrons in the outermost 6s26p67s1 shells of Fr and 4s24p64d105s1 shells of Ag are
correlated in the calculations. Molecular interaction energies are found by subtracting the ground-state
monomer energies of Fr and Ag calculated with the same Kramers unrestricted CCSD(T) method and basis
sets.

We find that the 1(0+) ground state is well described by a single determinant near the repulsive wall and
global minimum up to interatomic separations of RX = 11a0. For separations between 13a0 and 14a0 the
ground state energy has an unphysical maximum. Here, the 1(0+) potential is closest to that of the 2(0+) or
A1Σ+ state and its electronic wavefunction is multi-reference in nature. Consequently, the 1(0+) potential
can only be used for R ! RX. DIRAC calculations of the energies of the 1(0−) state do not suffer from
unphysical maxima and we are able use the results for R up to Ra = 19a0.

Potential energies of other electronic states have been calculated within the generalized active space
(GAS) approach of relativistic four-component all-electron the Kramers-restricted configuration interaction
(KRCI) calculations [48–51]. Reference orbitals or spinors have been obtained from open-shell
Dirac–Coulomb Hartree Fock calculations with two open shell orbitals, namely the 7s orbital of Fr and the
5s orbital of Ag. The remaining less-extended orbitals are kept doubly occupied. In the end the GAS
approach has 58 inactive and 38 active spinor orbitals. Virtual unoccupied orbitals are built up from the
atomic basis set.

Our choice of GAS allows for single excitations from the 6p shell of Fr, single excitations from the 4d
shell of Ag, two excitations from the 6p7s shell pair of Fr, as well as two excitations from the 4d5s shell pair
of Ag. To avoid so-called accidental root flipping, we request convergence of 10 roots or eigenstates for each
Ω.

The KRCI calculations have been used to determine both potentials and R-dependent transition dipole
moments. All Ω = 0+, 0−, 1 and 2 potentials dissociate to either the excited Fr(7p1/2) or Fr(7p3/2) limits
while Ag remains in its ground state are shown in figure 10. In the main part of this paper a subset of these
potentials, those relevant for STIRAP-based formation of the FrAg molecule, as well as relevant transition
dipole moments have already been shown.

For the coupled-channels calculations we need as input potentials VX(R) and Va(R) for the Hund’s case
(a) non-relativistic singlet X1Σ+ and triplet a3Σ+ states, respectively. We can use VX(R) ≡ V1(0+)(R) for the
X1Σ+ state from the CCSD(T) calculations. For potential of the triplet a3Σ+ state, we must combine the
data from the coupled-cluster and KRCI calculations. Our CCSD(T) data are more accurate than those
from KRCI calculations. On the other hand coupled-cluster calculations and their extensions could not be
used to determine the 1(1) component of the a3Σ+ state. Instead we construct a V1(1)(R) potential by
adding the small positive splitting V1(1)(R) − V1(0−)(R) between the 1(1) and 1(0−) states from the KRCI
calculations to the CCSD(T) V1(0−)(R) potential It is worth noting that the small splitting is due to
second-order spin–orbit effects with distant excited electronic states. Finally, we use that
Va(R) ≡ (V1(0−)(R) + 2V1(1)(R))/3, a weighted mean or barycenter of the potentials for the two
components of the a3Σ+ state, based on an effective dipolar rank-2 spin–spin Hamiltonian between the
electron spins of each of the atoms.

We realize that for separations where the electron wavefunctions of the atoms barely overlap, i.e.
R > Rdisp ≈ 22a0, both VX(R) and Va(R) approach the dispersion potential Vdisp(R) = −C6/R6 − C8/R8

omitting smaller contributions. The van-der-Waals dispersion coefficient C6 = 1116Eha6
0 was already

computed in reference [31]. Currently, no value for the C8 dispersion coefficient is available. We chose
C8 = 746 685Eha8

0 inline with typical values for alkali-metal dimers and leading to a reasonable connection
to the DIRAC results for the short-range potentials. We then connect each short-range DIRAC potential to
the long-range dispersion potential using extrapolations of VX,a(R) and Vdisp(R) to intermediate-range
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Figure 10. Some relativistic electronic excited-state potentials of FrAg as functions of separation R. Potentials are identified by
Hund’s case (c) state labels n(Ωσ) and by atomic labels for large R. The zero of energy is at the dissociation limit or threshold of
the ground electronic state.

where Ri < R < Rdisp, V tot
i (R) = [1 − s(R;&p)]Vi(R) + s(R;&p)Vdisp(R) for i = X and a and step-like

functions s(R;&p) with values between 0 and 1 for increasing R. Here, &p represents state-dependent
adjustable parameters and s(R;&p) is based on the trigonometric function tanh(x). We have verified that with
this procedure V tot

X (R) and V tot
a (R) do not cross.

ORCID iDs

Eite Tiesinga https://orcid.org/0000-0003-0192-5585
Svetlana Kotochigova https://orcid.org/0000-0003-0580-3788

References

[1] Cirac J I and Zoller P 2004 Phys. Today 57 38
[2] Weiss D S and Saffman M 2017 Phys. Today 70 44
[3] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[4] Brewer S M, Chen J-S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett.

123 033201
[5] DeMille D 2002 Phys. Rev. Lett. 88 067901
[6] Ni K-K, Rosenband T and Grimes D D 2018 Chem. Sci. 9 6830
[7] Hudson E R and Campbell W C 2018 Phys. Rev. A 98 040302
[8] Hinds E A 1997 Phys. Scr. T70 34
[9] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008

[10] Hutzler N R 2020 Quantum Sci. Technol. 5 044011
[11] Sushkov O P, Flambaum V V and Khriplovich I B 1984 JETP 60 873
[12] Skripnikov L V, Mosyagin N S, Titov A V and Flambaum V V 2020 Phys. Chem. Chem. Phys. 22 18374
[13] Isaev T A, Hoekstra S and Berger R 2010 Phys. Rev. A 82 052521
[14] Isaev T A, Zaitsevskii A V and Eliav E 2017 J. Phys. B: At. Mol. Opt. Phys. 50 225101
[15] Kudashov A D, Petrov A N, Skripnikov L V, Mosyagin N S, Isaev T A, Berger R and Titov A V 2014 Phys. Rev. A 90 052513
[16] Garcia Ruiz R F et al 2020 Nature 581 396–400
[17] Yu P and Hutzler N R 2021 Phys. Rev. Lett. 126 023003
[18] Fleig T and DeMille D 2021 arXiv:2108.02809v1
[19] Gomez E, Aubin S, Sprouse G D, Orozco L A and DeMille D P 2007 Phys. Rev. A 75 033418
[20] Tandecki M, Zhang J, Collister R, Aubin S, Behr J A, Gomez E, Gwinner G, Orozco L A and Pearson M R 2013 J. Instrum. 8

P12006
[21] Flambaum V V and Khriplovich I B 1985 JETP 62 872
[22] DeMille D P 2021 private communication
[23] Bilodeau R C, Scheer M and Haugen H K 1998 J. Phys. B: At. Mol. Opt. Phys. 31 3885
[24] Uhlenberg G, Dirscherl J and Walther H 2000 Phys. Rev. A 62 063404
[25] Herzberg G 1950 Molecular Spectra and Molecular Structure 2nd edn (Florida: Krieger Publishing Company)
[26] Nikitin E E and Zare R N 1994 Mol. Phys. 82 85
[27] Ni K-K et al 2008 Science 322 231
[28] Moses S A, Covey J P, Miecnikowski M T, Jin D S and Ye J 2017 Nat. Phys. 13 13
[29] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[30] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
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