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Abstract: We present passive absorption-based ranging using long-wave infrared hy-
perspectral measurements of an outdoor scene. Regularization and parametric modeling of
transmittance enable good accuracy without knowing temperatures or emissivities of scene
objects, as validated with lidar. © 2022 The Author(s)

Introduction. Conventional depth estimation techniques in autonomous navigation use time-of-flight or stereo
image pairs to infer depth. Ranging techniques such as lidar have been extensively studied [1]; however, when
stealthiness is important, active ranging methods are limited to nearby objects and passive methods are preferred.
In passive ranging, stereo-based techniques are commonly used. These require pixel matching between the camera
pair, which may be problematic for low-textured scenes. Although not typically used, spectrally resolved measure-
ments at atmospheric absorption bands provide depth cues that can be exploited for ranging [2]. Compared to
conventional depth estimation techniques, absorption-based ranging is stealthy and does not rely on scene texture,
thus making it an alternative for challenging navigation conditions.

Although mostly transparent, the long-wave infrared (LWIR) window (8-14 µm) provides information about
depth, mainly due to water vapor absorption, and intrinsic object properties. Compared to other spectral bands,
most of the ambient black-body radiation is concentrated in the LWIR band. In remote sensing applications, at-
mospheric absorption effects are typically removed from the measurements by atmospheric correction techniques,
extracting information about intrinsic object properties such as temperature and emissivity profile [3]. In contrast
to such techniques, we exploit the atmospheric absorption in the measurements to estimate depth.

Method and Results. An object with emissivity profile ε(λ ) and temperature T emits light with radiance
ε(λ )B(λ ;T ), where B(λ ;T ) is the ideal black-body spectrum. The emitted light is attenuated by the atmospheric
transmittance function τ(λ ;d) = 10−α(λ )d , where α(λ ) represents the atmospheric attenuation (dB/m) upon trav-
elling through d meters of air, resulting in τ(λ ;d)ε(λ )B(λ ;T ). Air at temperature Tair also emits light while
absorbing it, contributing (1− τ(d;λ ))B(λ ;Tair) to the measurement. Thus, the light arriving at the sensor can be
modeled as

LS(λ ) = τ(λ ;d)ε(λ )B(λ ;T )+(1− τ(λ ;d))B(λ ;Tair). (1)

We assume that Tair and the atmospheric parameters to calculate the attenuation profile are known. For a K-long
spectrally resolved measurement, the inversion of Eq. (1) is ill-conditioned; it has K +2 unknowns, including T ,
d and K-dimensional ε .

Following the ideas proposed in [4], we formulate the inversion as a minimization problem on a group of pixels
that correspond to a single object (same emissivity and distance) with varying temperature per pixel. We use an
emissivity-smoothing regularizer, exploiting the fact that emissivity profiles of solid objects are smooth compared
to the sharp transitions in the attenuation profile. The function we minimize is

L(d,T,ε) =
N

∑
i=1

K

∑
k=1

(ŷi,k(d,T,ε)− yi,k)
2 +ρ

K−1

∑
k=1

(εk+1− εk)
2, (2)

where i∈ {1, . . . ,N} is the pixel index inside the group, k ∈ {1, . . . ,K} is the wavelength index, yi,k is the measure-
ment at pixel i and wavelength k, ŷ is the light generated by the parameterized forward model following (1), and
ρ is a parameter that controls the extent of the smoothing regularizer. We use gradient descent to minimize the
function L(d,T,ε). The optimization is completed separately on disjoint 5× 5 pixel patches that tile the field of
view of the hyperspectral camera.

Figure 1 shows the results of our method performed on an LWIR hyperspectral image acquired just after sunset
for a scene with rolling, grassy terrain with a small grove of trees in the foreground and a forest in the background.
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(a) Measurement of a grass pixel at around 100 m
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(b) Measurement of a grass pixel at around 8 m

(c) Estimated depth map (left) and reference depth map from high-resolution lidar sensor (right).

Fig. 1: Results of our algorithm on a LWIR hyperspectral image. (a) and (b) show the measurements and the fit
at the convergence points for a far grass and near grass pixel, respectively. The solid red lines correspond to the
measurement, the solid blue lines represent the estimated object emission (ε(λ )B(λ ,T )), and the dashed black
lines represent the forward model with the estimated parameters. In (c) we show the absorption-based estimated
depth map on the left and the depth map measured with a high-resolution lidar system on the right. Black represents
missing lidar data.

Figures 1a and 1b show two measurements from pixels containing far and near grassy areas. The intrinsic param-
eters of these objects are very similar to each other, as can be verified from the blue solid lines. The differences
between the measurements are mostly due to distance. If we concentrate on the 8–9 µm range, the far measurement
contains more atmospheric effects as it travels a longer distance through air. Comparing the estimated depth map
in Fig. 1c with the lidar map, our method is quite successful at capturing the gradient in distance from foreground
to background for the grassy terrain. The method fails for the calibration targets (bright yellow spots) and the
background forest. The target distances are overestimated due to reflected sky light, which is not accounted for in
our current model. The forest distance is underestimated, possibly because of variations in air temperature, which
our model assumes is constant over the whole scene. In the near future, which we hope to address these problems
by separating the reflected light from the emitted light in the forward modeling and by conducting per-pixel air
temperature estimation from mid-wave infrared (MWIR) spectra, where atmospheric attenuation is stronger.

Given the low contrast in the grassy regions of the image, we believe this is a difficult scenario for a stereo-
matching algorithm to succeed. We emphasize that no prior information about the objects’ temperatures or emis-
sivity spectra was assumed, except for smoothness of the emissivity profiles.
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