Density changes in amorphous silicon induced by swift heavy ions

Sjoerd Roorda, Stéphanie Codsi, and Amélie Lacroix
Département de physique, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal (Québec), H2V 0B3 Canada

Gabrielle G. Long
X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

Fan Zhang
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

Steven J. Weigand
DuPont-Northwestern-Dow Collaborative Access Team Synchrotron Research Center, Northwestern University, Argonne National Laboratory, Argonne, Illinois 60439, USA

Christina Trautmann
GSI Helmholtzzentrum, Materials Research, Planckstrasse 1, 64291 Darmstadt, Germany
and Technical University of Darmstadt, 64289 Darmstadt, Germany

(Received 7 February 2022; revised 13 April 2022; accepted 19 September 2022; published 4 October 2022)

Pure and gold-doped amorphous silicon membranes were irradiated with swift heavy ions (75 MeV Ag or 1.1 GeV Au ions) and studied using small-angle x-ray scattering. The samples that were irradiated with 1.1 GeV Au ions produced a scattering pattern consistent with core-shell-type ion tracks of 2.0 ± 0.1 nm (core) and 7.0 ± 0.3 nm (total) radius irrespective of gold doping, consistent with radii previously observed [9]. The density in the core is nearly 4% different from that of the surrounding material. The entire track (core + shell) is slightly less dense than the surrounding material, yielding an expansion or hammering constant $A = 0.036 ± 0.003$ nm2 per ion track, consistent with the macroscopic “hammering” deformation. No tracks were found in samples irradiated with 75 MeV Ag ions, and no signature specific to the gold impurity doping could be observed.

DOI: 10.1103/PhysRevB.106.144101

I. INTRODUCTION: ION TRACKS

The irradiation of materials with swift heavy ions can lead to effects such as macroscopic deformation (lateral growth) [1], mass transport [2], nanoparticle reshaping [3,4], and ion track formation [5]. Ion tracks can commonly be observed in insulators but are rare in metals and semiconductors [6]. Ion tracks can take the form of a long narrow cylinder consisting of a core surrounded by a cylindrical shell, with core and shell radii ranging from less than 1 to 20 nm [6]. The core is considered less dense than the matrix, and the shell is a strained, overdense region surrounding the core. The lower density in the core is inferred from the softness seen in “hollovs” by atomic force microscopy of ion tracks in mica [7] and has been directly observed in plan view transmission electron microscopy of tracks in amorphous Si$_3$N$_4$ [8]. One of the few (if not the only) materials in which an inverted contrast (i.e., a high density core surrounded by a low density shell) is reported is amorphous silicon (a-Si) [9], even though in a very similar material (amorphous germanium) the regular contrast was reported [10].

Understanding track formation in a-Si is made more difficult by the curious behavior of silicon. In crystalline silicon (c-Si), even 3.4 GeV Kr ions do not leave ion tracks [11]; liquid silicon ($ℓ$-Si) is more dense than both the crystalline and amorphous solid types, but anisotropic deformation [12] and mass transport [13] imply track expansion, and a low-density liquid phase of silicon has been invoked to explain such plastic deformation of a-Si under irradiation with swift heavy ions [14].

Theory and modeling have provided significant insight into the mechanism of swift heavy ion track formation, and the most widely accepted scenario is that of a thermal spike [15], in which the energy deposited by the decelerating ion into the electronic system is so rapidly transferred to thermal atomic motion that most of the process can be viewed as a purely thermal phenomenon even though early in the process, essentially all bonds are broken. Other effects such as Coulomb heating (mutual ionic repulsion near the center of the ion track because the target atoms have been temporarily ionized) have not been completely ruled out [16,17]. Because the deposition of energy density (stopping power) is so high and localized (more than 1 keV/nm), the thermal spike model predicts that in some materials melting and even evaporation can occur [18]. Since $ℓ$-Si has a higher density than solid silicon, three
possible stopping power thresholds might exist: the energy deposition required to melt, the energy required to melt and also reach the temperature where the liquid has expanded to achieve a density lower than the surrounding solid, and, finally, the energy deposition required to melt and evaporate (boil) the core.

Recent measurements on ion tracks in amorphous silicon oxide and amorphous silicon nitride confirmed the normal density changes, exceeding 8% for expansion of the core and 2% for compaction in the shell [19,20]. This raises the question of what the density distribution would be for ion tracks in pure a-Si: The amorphous phase of silicon is always less dense than the crystalline phase, and the density deficit can be as little as 1.8 ± 0.1 at.% for a-Si made by self-implantation [21]. After thermal annealing at 500 °C the density remains virtually unchanged, even if at intermediate temperatures a 0.1% expansion and subsequent compaction take place [22].

In this work, we measure the absolute density of ion tracks in a-Si, and we establish a threshold in stopping power required for track formation which is higher than that for some other swift heavy ion track effects. We argue that the ion track is less dense in the core, not more dense as concluded from molecular dynamics simulations [9]. The overall density of the track (core + shell) is lower than that of the a-Si matrix, corresponding to a positive hammering constant consistent with the anisotropic deformation seen when multiple ion tracks overlap [12–14].

II. SAMPLE PREPARATION AND CHARACTERIZATION

Amorphous silicon samples were prepared by self-ion implantation into crystalline silicon. Silicon membranes, nominally 2 μm thick, were held at liquid nitrogen temperature and self-implanted on both sides with 0.5, 2, 4, and 5 MeV Si ions to a fluence of 5 × 10¹⁵ ions/cm² at each energy. Some samples were also implanted (on both sides) with gold ions to achieve low and high doping levels of 0.005 and 0.125 at.,. An approximately uniform gold concentration profile was aimed for by using a range of energies (0.3, 0.8, 1.5, 2.4, 3.6, 5.1, and 7 MeV) and fluences (ranging from 1.2 × 10¹³ to 2 × 10¹⁵ ions/cm²). The gold concentration was verified by Rutherford backscattering spectrometry and x-ray fluorescence. The intentional contamination with gold was verified by Fourier transform infrared spectroscopy and x-ray scattering from our samples were measured at the Advanced Photon Source (APS) in vacuum with 11.4 keV x rays in transmission geometry with detectors placed at 8502 and 1017 mm; the angle between incident x rays and sample normal was set at nominal values of −20°, 0°, 8°, and 45°. For a detailed description of the SAXS instrumentation, see Ref. [26]. The x-ray scattering intensity data were corrected for the detector dark field, sample absorption, and the x-ray polarization factor and were placed on an absolute scale by means of comparison with a glassy-carbon secondary standard [27].

III. RESULTS

An example of a SAXS image of ion tracks made by 1.1 GeV Au ions incident on 50 ppm Au-doped a-Si is shown in Fig. 1. The image from the detector at 8502 mm is shown, where an image from unirradiated (i.e., track free) a-Si has been subtracted. For this image, the x rays were incident on the sample at a nearly normal angle, but since the tracks are a few degrees off the surface normal, a streak pattern is observed characteristic of tilted long narrow cylinders. Because we used edge-supported irradiated membranes and subtracted the image from an unirradiated one, the pattern visible in the
image is due to only ion tracks; it does not need to be corrected for absorption, and its intensity is proportional to the areal density of ion tracks in the sample and to the electron density contrast in each track.

Similar streaks were observed in a-Si membranes irradiated with 1.1 GeV Au ions, independent of impurity content. By taking images at four different angles, the orientation of the ion tracks within the membranes could be deduced, and the intensity as a function of \(Q \) along an axis perpendicular to the symmetry axis could be extracted. This intensity can be described by a sum of Bessel functions \([28,29]\); an arbitrary radial density profile can be described as a series of concentric cylindrical shells of, within each shell, constant electron density. We used a density profile consisting of a core with low density (compared to the matrix) surrounded by a slightly compacted shell, with smooth error function transitions between the density of the core and shell and between shell and the surrounding matrix:

\[
\rho(r) = \rho_c \left(\frac{\text{erf} \left(\frac{r-R_c}{w_c} \right) - 1}{2} \right) + \rho_s \left(1 - \text{erf} \left(\frac{r-R_s}{w_s} \right) \right)
\]

where \(\rho(r) \) is the density difference from the a-Si matrix at distance \(r \) from the track center and \(\rho_c, \rho_s, R_c, R_s, w_c, \) and \(w_s \) are the core and shell maximum density differences, radii, and transition widths, respectively. We used 200 concentric shells of 0.75 Å thickness to create a smooth profile, and the widths of the transition regions were 2.5 and 0.8 nm; varying these widths only slightly improved the quality of the fits without significantly affecting the extracted values for radii and densities. The form factor is then calculated using an expression similar to Eq. (9) from Ref. \([29]\), generalized to \(N \) concentric shells \(R_i \) and with \(J_1 \) being the Bessel function of the first kind:

\[
F(q, \rho) \sim \sum_{i=1}^{N} 2\rho(R_i) \left(\frac{R_i}{q} J_1(qR_i) - \frac{R_{i-1}}{q} J_1(qR_{i-1}) \right)
\]

Naively, the relative densities of the core and shell would be governed by the requirement that the total number of atoms within the outermost track radius be conserved, and if that occurs, the shell density would be determined by the core density and the ratio of the core and shell radii. However, the best fits were obtained by making the shell density an additional fitting parameter. This core-shell structure is similar to the one used by \([9,19]\) to fit their data, except that in our case the absolute scattering intensity is known so that from the fits combined with the number of ion tracks per unit surface area, the electron density in the core and shell could be determined.

Example fits are shown in Fig. 2. The solid red line shows the best fit, obtained after releasing the constraint that mass per unit volume be conserved. The best fit is much better than the dashed blue line, which is the best fit that could be obtained with mass conservation, in which any atoms missing from (or added to) the core must be added to (or taken from) the shell, with an unchanged total volume. The inset shows the radial density profiles deduced from the fits, in percent deviation from the a-Si density, assuming a low-density core and a compressed shell and showing the smooth core-shell and shell-matrix transitions. Similar fits were performed for the streaks seen in the same sample but at different incident angles and for the other (pure and higher Au concentration) samples. The core and total radii from all fits are reported in Table I. Because the ion tracks in this study extended over the entire (known) thickness of the irradiated membranes, the differential scattering cross section and therefore \([30]\) the absolute densities of the core-shell structure in a-Si could also be determined; these values are shown in Fig. 3 and are also reported in Table I.

We have also considered density profiles that have an additional feature, namely, a narrow spike of increased density near the cylinder axis, representing the segregated gold impurities. The differences between \(I(Q) \) intensities calculated with and without such a spike are negligibly small compared to the noise in the data.

The SAXS images of samples irradiated with 75 MeV Ag ions showed no signal attributable to ion tracks, either in normal incidence or when the samples were tilted with respect to the incident x rays. We also inspected images taken on these samples with cameras at 1017 and 200 mm (low- and wide-angle ranges), but no signature signal of tilted cylindrical structures could be seen in any image. We also evaluated samples with slightly lower ion energy (70 MeV), higher dose \((3 \times 10^{10} \text{ ions/cm}^2)\), and geometry (a-Si on a substrate or edge-supported membranes) but failed to find any trace of ion tracks in these samples. Therefore, we must conclude that irradiation of a-Si with swift heavy ions with a stopping power of 9.5 keV/nm or less does not leave tracks observable in SAXS.

Figure 3 shows the core and shell densities for each of the samples and at each x-ray incident angle, compared to the absolute densities of c- and a-Si. Since SAXS determines only the numerical value of the density contrast but not its sign, there are two possibilities: (1) a high-density core, shown by solid symbols and solid lines, and low-density shell (not
TABLE I. Ion track properties deduced from the best fits to the SAXS data; the density is expressed as a percentage change relative to a-Si density. Uncertainties in radii are only due to fitting; uncertainties in densities include the error in areal track density (ion fluence). Errors in the mean are standard deviations.

<table>
<thead>
<tr>
<th>Sample</th>
<th>R_{core} (nm)</th>
<th>R_{total} (nm)</th>
<th>Core density (%)</th>
<th>Shell density (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure a-Si</td>
<td>2.01 ± 0.04</td>
<td>7.24 ± 0.16</td>
<td>-3.3 ± 0.4</td>
<td>0.26 ± 0.03</td>
</tr>
<tr>
<td>Low gold doped a-Si</td>
<td>2.04 ± 0.08</td>
<td>7.02 ± 0.18</td>
<td>-4.1 ± 0.5</td>
<td>0.35 ± 0.04</td>
</tr>
<tr>
<td>High gold doped a-Si</td>
<td>1.95 ± 0.06</td>
<td>6.69 ± 0.18</td>
<td>-4.5 ± 0.5</td>
<td>0.39 ± 0.04</td>
</tr>
<tr>
<td>Mean</td>
<td>2.0 ± 0.1</td>
<td>7.0 ± 0.3</td>
<td>-4.0 ± 0.7</td>
<td>0.33 ± 0.08</td>
</tr>
</tbody>
</table>

shown; as argued by Bierschenk et al. [9]) and (2) a low-density core, shown by open symbols and solid lines, and high-density shell, shown by open symbols and dashed lines. The horizontal black line shows the atomic density of c-Si, and the gray band shows the range of densities observed in a-Si made by ion implantation and thermal annealing. The question regarding a high- or low-density core will be discussed in the next section, but a few items can be noted first: The density of the core and shell should, of course, be independent of measurement angle, and this is, indeed, the case except for two of the data points at near-normal incidence. In that case the relative error in the tilt angle between x rays and the ion track is the largest; therefore, it is not surprising that the largest variations occur at a 0° nominal tilt angle. There also appears to be a small gold doping effect, with slightly larger density changes provoked when gold doping is present. However, the change is small compared to the 10% sample-to-sample uniformity in terms of irradiation dose with swift heavy ions, and a firm conclusion about the doping effect would require confirmation.

IV. DISCUSSION

A. Density contrast: Expanded or compacted core?

While the SAXS measurement cannot distinguish between a positive and negative contrast, in other words between an overdense core with an underdense shell and an underdense core with a compacted shell, the density profile of the single ion track must be consistent with the macroscopic effects seen when multiple tracks overlap, such as a-Si anisotropic deformation [12] and a-Si mass transport [13,14]. From the absolute values of radii and densities reported in Table I, we can compare the total track radius with the radius of a cylinder containing the same number of atoms with the original a-Si density and determine the net expansion in terms of a surface gain (in a plane perpendicular to the track axis); this amounts to 0.036 ± 0.003 nm². This gain corresponds to a positive hammering constant A, for which values have been reported over a range of stopping powers.

Figure 4 reproduces those values for the hammering constant as open symbols and in addition shows, as a red circle, the hammering constant for a single ion track deduced from our data. Clearly, the single-track expansion agrees well, both qualitatively and quantitatively, with the macroscopic deformation observed earlier. Since Bierschenk et al. [9] did not report absolute values for the core and shell densities, one cannot calculate a hammering constant from their data; however,
the hammering constant deduced for a compacted-core track must be negative, which is clearly in qualitative disagreement with the experimental data from macroscopic deformation, although there is one caveat: The stopping powers used in Ref. [9], 10.6 and 15.6 keV/nm, fall just below the lowest stopping power of 15.8 keV/nm used in Ref. [14] and well above that of 6 keV/nm used in Ref. [12]. It cannot be ruled out that the hammering constant changes from positive to negative between 6 and 10 keV/nm and then back from negative to positive between 15.6 and 15.8 keV/nm.

The scenario for track formation resulting in a low-density core and compacted shell is therefore along the following lines: A narrow cylinder melts and expands (either by thermal expansion of metallic ℓ-Si or by passing directly to a low-density liquid phase as proposed in Ref. [14]), and the expanding cylinder compresses and compacts a cold and solid region around it, the shell. When the center cools down, there is now slightly more space to fill than before, and the core ends up with a somewhat reduced density. This scenario is strongly supported by the recent report of significant asymmetry in the elastic properties of a-Si when comparing tension and compression [31]. Namely, under tension a-Si remains fully elastic until catastrophic failure, but under compaction, when the stress exceeds 4.5 GPa, a-Si deforms through flow and irreversibly compacts, exactly the behavior required for a compacted shell, implying that the stopping power threshold for permanent track formation corresponds to the situation where the stress caused by the expanding core exceeds the yield strength of a-Si under compression. Conversely, the asymmetry leaves no pathway for an underdense shell caused by core compaction because under tension the shell either behaves fully elastically or physically separates from the compacted core.

In Ref. [9], the argument for an overdense core was deduced solely from molecular dynamics simulations of the track immediately after the energy deposition. These simulations used the Tersoff potential [32], but while this potential was, indeed, optimized to describe both liquid and solid silicon, it may not be optimal for the simulation of ion track formation. Namely, the simulated melting temperature of about 3000 K is nearly twice as high as the experimental one [33]. Moreover, the simulated melting is accompanied by a compaction (ℓ-Si is, indeed, denser than solid Si); however, real ℓ-Si undergoes thermal expansion [34] larger than that of c-Si [35] when heated from its real melting temperature to 3000 K to the extent that it is now less dense than solid Si (crossover temperatures near 2770 and 2920 K for c-Si and a-Si, respectively). Consequently, the density of ℓ-Si just above 3000 K is considerably overestimated in simulations using the Tersoff potential. Indeed, recent density functional theory calculations found a track core either more or less dense than its surroundings depending on the stopping power [36].

B. Stopping power considerations

We now compare our data for track radii to the results obtained by Bierschenk et al. [9] using 89 and 185 MeV gold ions, as shown as a function of stopping power in Fig. 5. The comparison should be made with the as-implanted data since our a-Si membranes were not annealed. The conditions for the preparation of a-Si were slightly different: We used self-irradiation at 80 K, whereas Bierschenk et al. used room-temperature Ge ion implantation. In view of the significant difference between track radii in as-implanted and annealed a-Si [9], some adjustment factor should, perhaps, be applied when comparing track radii. In addition, there are a few minor differences in the track fitting procedure we used compared to that employed by Bierschenk et al.: We used a smoothly varying density profile and did not include the transition region in the total track radius, whereas Bierschenk et al. used a box profile and a Gaussian broadening to account for interface roughness and track-to-track variations. Because of the smooth transition region we employed, the density profile extends beyond the nominal value of the total track radius. Nevertheless, our datum seems to confirm that both the core and total radius appear to be largely independent of the stopping power, and the lack of variation in track radii with stopping power is quite surprising, although a similar very weak dependence on stopping power was reported in Si$_3$N$_4$ [37,38]. Since the hammering constant does exhibit a strong linear dependence on stopping power (see Fig. 4), the weak dependence for the track radii implies that the core density should vary with stopping power.

For a stopping power somewhere between 9.5 and 10.6 keV/nm a sudden threshold appears, and below it, the linear dependence between the stopping power and track radius is no longer valid, and no tracks are visible in SAXS. The absence of visible ion tracks for ions with a stopping power of 9.5 keV/nm is puzzling because at even lower stopping powers, phenomena associated with swift heavy ion irradiation have been observed, namely, macroscopic deformation at 5.8 keV/nm [12] and macroscopic transport at 5.5 keV/nm [13].

Conceptually, one can identify multiple thresholds involved in ion track formation in a-Si: the stopping power where the material melts, the stopping power where the metallic liquid (initially more dense than the solid) becomes less dense than the surrounding matrix, the stopping power where...
thermal expansion creates a stress exceeding the a-Si yield strength, and the stopping power where the liquid boils. Indeed, the experimental data show at least one hard threshold (near 9.5 keV/nm for permanent track formation visible in SAXS) as well as a clear discontinuity (near 14 keV/nm; see Fig. 4). The temperatures required for each threshold would be $T = 1200 \, ^\circ\mathrm{C}$ (melting of a-Si), 2700 $\, ^\circ\mathrm{C}$–2900 $\, ^\circ\mathrm{C}$ (where, through thermal expansion, the ℓ-Si density equals that of a-Si), and 3265 $\, ^\circ\mathrm{C}$ (boiling of ℓ-Si). To estimate the liquid-solid density crossover, we used for a-Si its room-temperature atomic density [21] and a thermal expansion coefficient that is 6.5% less [22] than that of c-Si [39,40]. For liquid silicon, we linearly extrapolated the recommended values [34,35].

The heat of melting of a-Si is 50.55 (latent heat of c-Si) + 13.7 (heat of crystallization of a-Si) kJ/mol, or 0.67 eV/atom, and the heat of vaporization of Si is nearly 4 eV/atom. The heat capacity changes somewhat over the temperature of interest, but for a rough estimate we can use a constant value of 0.7 J/gK. Thus, the energies required to respectively melt, melt and heat to equal densities, and melt and boil a 1 nm section of a 2 nm radius a-Si cylinder would be 0.56, 0.76, and 3.3 keV. Assuming that only 33% of the energy deposited by the ion effectively heats the ion track (the rest being carried away by energetic electrons or thermal diffusion), this would correspond to stopping power thresholds of 1.7 keV/nm (for only melting), 2.3 keV/nm (to reach equal densities between hot ℓ-Si and a-Si), and 9.9 keV/nm (for melting and evaporation or exceeding the yield strength). If the observed threshold for track formation (between 9.5 and 10.5 keV/nm) corresponded to only melting, 95% of the deposited energy would have to be lost to the track surroundings. Thus, the conclusion that there are two or three thresholds involving melting, melting and thermal expansion, and thermal expansion exceeding yield strength seems reasonable.

V. CONCLUSIONS

In conclusion, we have used SAXS to study ion tracks in pure and gold-doped amorphous silicon membranes. Irradia-

