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Abstract 

Data analytics (DA) and artificial intelligence (AI) have been chosen as the technologies for extracting new knowledge and making better 
decisions in additive manufacturing (AM) processes. They have been chosen because accurate and complete physics-based, process-simulation 
or mathematical models do not exist. DA and AI models should be based on measurable data collected by part and process sensors. This paper 
is focused on how to organize the data collected from such sensors. An example is also provided to show how to store AM-related data in a 
hierarchical data structure that is consistent with the data from multiple sensors. The data provides functions and properties at various stages in 
a product lifecycle. The associated metadata for both functions and properties are organized in the same hierarchical structure according to the 
relationships of machine, build, melting laser beams, process planning, in-situ monitoring, ex-situ inspection, material microstructure imaging, 
and mechanical testing. Sample data with metadata are stored in a file in the format of Hierarchical Data Format 5 (HDF5). The paper provides 
an organization of complex AM data that can support AM software tools for a variety of product lifecycle activities. 
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1. Introduction 

A report on additive manufacturing (AM) measurement-
science needs [1] supported the notion that controlling AM 
processes requires an integrated suite of data analytics (DA), 
artificial intelligence (AI), and physics-based simulation-based 
software tools [2, 3]. For instance, there is a software tool that 
uses sensor data and models to make predictions about the 
stabilities and variations in laser-based powder bed fusion of 
metals (PBF-LB/M). Addressing these needs [4] is necessary 
for AM technology users to ensure that they can fulfill quality 
requirements based on data. These needs are based on the 
PBF-LB/M process [5]. Data organization capabilities [6] 
have been identified to improve the ability to meet those 
requirements. Requirements include (1) defect 
characterization and rectification [7-9], (2) laser-powder 
interactions and material transformation during the build [3], 
(3) the knowledge of microstructure evolution during the melt-
pool cooling process [10], and (4) the prediction of 
mechanical properties of fabricated parts [11]. 

Characterizing defects, such as pores, cracks, unmelted 
powders, soot, dimensional inaccuracies, poor surface finish, 
and deleterious microstructures is difficult because of the 
inconsistencies in the PBF/LB-M process.  These 
inconsistencies are due to variations in the material properties, 
the process parameters, and the build environment [12]. 
Research efforts to understand their impacts focus on (1) 
discovering the process-structure-property (PSP) relationships 
and (2) using those relationships to improve the process 
control for the consistent part quality [13]. Successful 
implementation of these tasks needs data, which relies on a 
variety of in-situ and ex-situ measurement devices such as 
imaging sensors, thermal sensors, video cameras, acoustic 

sensors, ultrasonic sensors, vibration sensors, and X-ray 
Computed Tomography (XCT). Important features of the 
dataset can be characterized as 4Vs: volume, variety, velocity, 
and veracity [14]. Handling and analyzing these 4V data can 
help identify the instabilities and inconsistencies that occur 
during the PBF processes. 

A significant amount of experimental research has been 
directed towards using 4V to understand the Process-
Structure-Property relationships and to use them to optimize 
the process parameters [15, 16]. Other research studies have 
also focused on physics-based, numerical models to predict 
the properties of the manufactured parts and to prevent defects 
from occurring [17]. Both experimental and numerical efforts 
have laid a good foundation for enhancing the understanding 
of the process; however, they are costly and time consuming. 
Therefore, there is a need for developing a multi-sensor, 
monitoring strategy to collect data and analyze data in real 
time. These data will be organized and used as inputs to a 
machine learning algorithm that allows users to understand 
and predict the PSP relationships for every new material. 

Before using machine learning, a systematic organization 
of data is needed. The benefits of organization are associated 
with the FAIR principles for data management and 
stewardship [18]. FAIR stands for (1) Finding data with 
unambiguous identifiers, (2) Accessing that data with defined 
protocols, (3) Interoperability to support shared terminology, 
and (4) Reusing existing data in new applications. For the AM 
technology, the FAIR principles can improve data registration, 
defect tracing, and simulation validation.  

In this paper, the “data”, which is collected by several 
different types of Laser-based Powder Bed Fusion of Metals 
(PBF-LB/M) sensor data, include images [19]. The traditional, 
relational database structure or the eXtensible Markup 



 

Language (XML) structure do not fully support AM image 
data. Hierarchical data formats use attributes to save metadata, 
which requires an additional validation mechanism for data 
curation [20]. HDF5 (Hierarchical Data Format version 5) has 
“group”, which is like a directory in the computer file 
structure, for storing related images [21]. A group can have 
one or more subgroups for organizing different subcategories 
of data. Each subgroup may have attributes for storing meta 
data for its datasets. The metadata associated with each dataset 
provides important information about that dataset. Because of 
the data structures available in HDF5, we used them to 
organize AM data in this work. 

The main purpose of this paper is, therefore, to provide a 
feasible method to organize and store AM metadata, images, 
numbers, tables, and text. Based on this method, this paper 
describes a HDF5 file structure for storing data from an AM 
product lifecycle including the design, stock material, the 
process, the microstructure, and the mechanical property. 
There are three major contributions of this paper.  First, there 
is a novel data structure to organize AM data - from machine 
to mechanical property - as input to DA and AI software 
applications. Second, there is metadata in tables that associate 
with sensor, instrument, machine, images, and tests necessary 
for data analytics. Third, there is an implementation of that 
data structure using HDF5 format. 

This paper has six sections. Section 2 reviews related 
publications in AM data organization and file structures. 
Section 3 describes a general hierarchical data model to 
handle big data from a variety of sensors commonly used in 
PBF-LB/M process monitoring and microstructure/structure 
inspections. This section also describes an implementation 
with metadata elements and sensor data in HDF5 as an 
example to store the data. Section 4 discusses the proposed 
procedure. Section 5 concludes the paper and identifies the 
future work. 

2. Review of data and meta data 

To develop a file structure for storing different types of 
AM sensor data, we first need to understand their current uses 
in in-situ monitoring, ex-situ inspection, and part prediction. 
This section provides a review of the different types of 
sensors, including their characteristics, categorization, and 
uses from the open literature. In data organization, the section 
describes structures in available databases including Additive 
Manufacturing Material Database * (AMMD), Material Data 
Curation System †  (MDCS), and Common Data Dictionary 
(CDD). Two major issues associated with that data: 
organization in a file and pilot implementation. The section 
discusses the technical barriers and the needs for research and 
development. 

Several different types of sensors have been designed for 
in-process monitoring and post-process, nondestructive 
inspections. Co-axial and off-axis cameras collect images that 
are used for in-situ monitoring. Co-axial cameras capture 

 
 
*  h ttps ://am m d.n is t.gov 
† h ttps ://m dcs .n is t.gov 

images of the melt-pool. The different images are used to 
measure melt-pool dimensions over a specified time period. 
Other coaxial sensors, such as (1) pyrometer and photodiode, 
can provide discrete, point-wise measurements and (2) 
spectrometer can be used to analyze energy peaks and spatters 
[22]. Off-axis sensors, such as Digital Single Lens Reflex 
(DSLR) cameras are used to take images of the powder bed 
each time it is recoated. A combination of flashlights from 
different illuminations can detect anomalies on each scanned 
layer [23].  

High-speed cameras can record the melt-pool creation 
process including melting and solidification. In addition, the 
size, shape, count, and cooling rate of spatter particles can be 
measured using a combination of infrared pyrometer and 
high-speed infrared thermography [24, 25]. In post-process 
inspection, X-ray Computed Tomography (XCT) instruments 
are commonly used to quantify internal defects, e.g., to 
identify locations and size distribution of the pores, which 
form in several ways, e.g., lack-of-fusion pores, gas pores, 
keyhole-induced pores, and near-surface pores [26]. These 
two types of sensors record the AM processing history, which 
is used to discover the processing-microstructure relationships 
and the root-cause of the variation of the material 
performance. 

Once parts are fabricated, conventional techniques 
including SEM, Electron Backscattering Diffraction (EBSD) 
microscopy, Energy Dispersive Spectroscopy (EDS) are used 
to study the location- specific, microstructural features.  These 
features include microstructural segregations, morphology, 
and texture [27]. Zitelli et al. [28] described the 
microstructures and process-related defects in 3D printed 
stainless-steel parts. Optical micrographs show distinct grain 
sizes, crystal orientations, and shapes in different laser 
scanning directions. These microstructure features are related 
to different laser scanning strategies. Another work by Pham 
et al. [29] investigated the role of side branching during grain 
growth in the solidification process. The direction and length 
in side-branching play an important role in determining the 
grain shape and size.  

To accommodate these different and complex datasets, the 
Additive Manufacturing Materials Database (AMMD) defines 
data schemas and meaningful relationships for users to query 
the database [30]. The schemas include data models for 
material, process, and post-process properties. Several unique 
types are also designed to represent metadata about sensors. 
AMMD is developed based on the Material Data Curation 
System (MDCS) with specific AM build data as an extension 
[31]. MDCS is another NIST database, which provides a 
means for capturing, sharing, and transforming unstructured 
data into a structured format based on the Extensible Markup 
Language (XML) [32]. XML is extensible for future 
development and transformable for other specific 
applications. The Common Data Dictionary (CDD) [33] is a 
working item on standardizing terminology and concepts for 
PBF-LB/M AM. CDD can be used to organize AM data in 
file structure or database schema. 

There are two gaps in the preceding review. The first gap is 
that images from photogrammetry or thermometry and signals 
from pyrometry are not well suited for using XML. XML is 



 

primarily for organizing textual data. The second gap is in 
handling a large quantity of image and graphical data. XML is 
not designed to handle such data. We attempt to address these 
gaps in this paper. 

3. A hierarchical structure for AM data organization 

This section describes the AM file structure based on the 
HDF5 format. This data model is designed to accommodate 
the information of the processing-structure-property 
relationship including metadata for AM machine, build, 
design, powder material, melting laser beam, part, coaxial 
camera, staring (layer-wise) camera, X-ray Computed 
Tomography (XCT) machine, coordinate measuring machine 
(CMM), surface roughness measuring instrument, optical 
microscope, scanning electron microscope (SEM), electron 
backscattering diffraction (EBSD) SEM, powder X-ray 
diffraction (PXRD), ultrasmall-angle X-ray spectroscopy, 
energy dispersive spectroscope (EDS), and mechanical 
property test machine. The use of this data model is 
demonstrated in figures in some of the following subsections. 
An overview of the data groups and their relationships in an 
HDF5 file are shown in Fig. 1. It is a hierarchical structure. In 
this example, the Machine data group can have multiple Build 
subgroups, labeled as Build-1, Build-2, etc., and each 
subgroup can have multiple entries for Melting Laser Beam 
since each laser beam may scan a different part in the same 
build. The Part group is under the Melting Laser Beam to 
record the information about the fabricated parts. These 
subgroups include the data about Part Design, Powder 
Material, Process-oriented, In-situ Measurement, Ex-situ 
Measurement, Microstructure, and Mechanical Property Test. 
They will be described in the following subsections. 
 

 

Fig. 1. Data structure overview. 

3.1. Machine 

The group “Machine” is used to model a laser, powder-
bed, fusion machine that fabricates metal parts. The machine 
data structure comprises many elements; required data 
elements are shown in Table 1.  

Table 1. AM machine data elements. 

Data element Description Data type 

Machine ID unique identification of the AM machine String 

Manufacturer name of the manufacturer String 

Machine model model name and number  String 

Machine 
capability 

description of machine capabilities 
including maximum power, maximum 
scanning speed, powder spreader type, 
etc. 

String 

Size the maximum build size on the build 
platform 

Unit of 
Volume 

Number of 
melting laser 
beams 

the total number of melting laser beams in 
the machine 

Integer 

Number of 
builds 

the number of builds in a specific period 
of time 

Integer 

3.2. Build 

Build refers to a process to fabricate metal part(s). The 
build data structure consists of data elements concerning 
many aspects of the operation. An overall build data structure 
in HDF5 can be found in Fig. 1. The required data elements 
are shown in Table 2.  

Table 2. AM build data elements. 

Data element Description Data type 

Build ID unique identification of an operation to 
fabricate parts from a bare plate 

String 

Number of parts an integer number Integer 

Part model(s) CAD model name and serial number  CAD Model 

Number of 
melting laser 
beams 

Number laser beams used in the build Integer 

Powder material Material name, manufacturer, chemical 
composition 

Material 
type 

Date and time Starting and finish dates and times Multiple 
entries of 
date-time 
type 

Inert gas type a description (e.g., Nitrogen, Argon) String 

Oxygen level 
range limit 

a percentage (e.g., 0.5%) Double 

Operator ID Operator identification String 

3.3. Powder material 

The powder-material data model includes the size 
distribution and the physical/chemical/mechanical properties. 
The details of powder material data elements can be found in 



 

many AM material databases (e.g., NIST AMMD) and are 
thus out of scope of this paper [30].  

3.4. Melting laser beam 

Melting-laser-beam data model is used to describe the 
properties of a melting laser beam in a build. Required data 
elements are shown in Table 3. The entry “fundamental type” 
means the full description of a measured value. This type 
includes the value, unit, and uncertainty quantification.  

Table 3. Melting laser beam data elements. 

Data element Description Data type 

Beam ID unique identification of the 
melting laser beam 

String 

Contour scan speed  m/s 

Contour laser power  W 

Infill scan speed  m/s 

Infill laser power  W 

Infill scan speed  m/s 

Infill laser power  W 

Upskin scan speed  m/s 

Upskin laser power  W 

Down skin scan speed  m/s 

Down laser power  W 

Hatch spacing  mm 

Beam diameter  mm 

Laser beam coordinate 
system 

The laser beam coordinate 
system relative to the build 
platform coordinate system 

String 

3.5. Process-oriented data 

Process-oriented data specified how the part is fabricated 
layer-by-layer. The data structure consists of data element in 
many aspects. Required data elements are shown in Table 4.  

Table 4. AM process-oriented data elements. 

Data element Description Data type 

Scanning ID unique identification of a set of 
laser location control commands  

String 

Layer number the powder layer number Integer 

Command time  the time that a position command 
is sent 

t 

Scan position the commanded location of the 
laser beam (x, y) 

mm, mm 

Laser power (P)  W 

 
An example of scanning commands in a process-oriented 

dataset is shown in Fig. 2, which includes the command line 
number, time stamp, X-location, Y-location, instant laser 
power, and camera trigger (2 = trigger, 0 = no trigger).  
 

 

Fig. 2. Laser-scan-command data structure. 

3.6. Part 

Part describes the design of a metal part. The model can be 
a Computer-Aided Design (CAD) model. Required data 
elements are shown in Table 5. 

3.7. Coaxial images 

Coaxial images are generated from a coaxial camera 
looking at the melt pool. Required data elements are shown in 
Table 6. An example of coaxial image of melt pool in the data 
structure of the HDF5 file can be found in Fig. 3. To record 
the details of the imaging process, metadata is needed so that 
the triggering time can be related to the location of the laser. 
The image files are saved along with the text data to label the 
recording instance and environment. 

Table 5. AM part data elements. 

Data element Description Data type 

Part ID unique identification of the part String 

Design model identification of the CAD model CAD file 

Design 
allowables 

restrictions and available design 
parameters    

String 

Design rules rules that a designer needs to 
follow 

String 

Setup Part setup on the build platform in 
the melting laser beam coordinate 
system 

String 

 

Table 6. Coaxial image data elements. 

Data element Description Data type 

Image Name the name of the image String 

Image ID a unique identification number of the 
image 

Integer 

Triggering 
Time 

the time when the camera is being 
triggered to take the picture based on the 
scanning program in xy2-100 

Date-time type 

Instant laser 
power 

the laser powder at the time of image 
taken 

W 

Frame Rate frame per second (fps) if it is a movie Integer 

Folder Path the directory path for locating the folder 
that this image was saved 

 

Sensor ID the identification of the image sensor String 

Sensor sensor type, purchase data, String 



 

description specifications, lens distortion 
information, etc. 

Sensor 
installation 

installed date, installer  

Sensor 
configuration 
ID 

Sensor configuration description must 
have the following tags 

String 

Original 
window size 
in pixels 

 mm x mm 

Cropped (y/n) Selection, 
yes/no 

Pixel pitch  nm/pixel 

Magnification magnification factor Double 

Threshold Threshold level for 
recognizing the melt 
pool boundary 

Double 

Bit depth the number of levels in 
grayscale or color scale 

Integer 

Shutter Speed the amount of time that 
the shutter is open for 
taking an image  

s 

Optical filter 
bandwidth 

minimum and 
maximum wavelengths 

nm 

Sensor 
calibration 
information 

The date of calibration, 
the method of 
calibration, person who 
performed the 
calibration, and the 
calibration data 

String 

 

 

Fig. 3. Co-axial-image data structure. 

3.8. Layer-wise images 

Layer-wise images are taken from a staring camera. 
Required data elements are shown in Table 7. An example of 
layer-wise image taken from a staring camera can be found in 
Fig. 4. Both the image and its metadata are modeled in HDF5. 

Table 7. Layer-wise image data elements. 

Data element Description Data type 

Image Name the name of the image String 

Image ID a unique identification (ID) number of 
the image 

String 

Time the time it was taken Date-time type 

Layer ID Identification of the layer (e.g., layer #) String 

Flash 
condition 

if flash lights are used, a description of 
the flash light angle relative to the layer 

String 

Sensor ID the identification of the image sensor String 

Sensor 
description 

sensor type (e.g., InSb, CMOS, 
Photoiode), purchase data, wavelength 
ranges, lens distortion information, and 
other specifications, including filters. 

String 

Sensor 
configuration 
ID 

Sensor configuration description must 
have the following tags 

String 

Original 
window size 
in pixels 

 mm x mm 

Cropped (y/n) Selection, 
yes/no 

Pixel pitch  µm/pixel 

Magnification magnification factor Integer 

Viewing angle (degree) Double 

Bit depth the number of levels 
on grayscale or color 
scale 

Integer 

Shutter Speed the amount of time that 
the shutter is open for 
taking an image  

s 

Optical filter 
bandwidth 

minimum and 
maximum wavelengths 

nm 

Sensor 
calibration 
information 

Calibration data, 
method, operator 

String 

 

 

Fig. 4. Layer-wise-image data structure. 

3.9. X-ray computed tomography 

X-ray Computed Tomography (XCT) model is generated 
from a XCT scan of the fabricated part. An XCT model is a 
3D model that can reveal defects inside a metal part. Required 
data elements are shown in Table 8. An example of an XCT 
images, which can be found in Fig. 5, is an image stack that is 
generated from a scan by an XCT instrument.  Both the image 
and its metadata are placed in a file based on the HDF5 
format. 

Table 8. XCT model data elements. 

Data element Description Data type 

Source ID the identification of the XCT 
source used with multiple 

String 



 

sources 

Detector ID the identification of the XCT 
detector in a multi-detector 
system 

String 

Scan ID the identification of the scan String 

Model ID The identification of the 
reconstructed model 

String 

Time and date the date and time that the scan 
was completed  

Date-time type 

Sample 
temperature  

temperature of sample in 
scanner 

oC 

XCT Scanner 
geometric 
specification 

a high-level indication of 
geometric conformance of 
generated as specified in ISO 
10360:11 

String 

System calibration 
information 

the date of calibration, artifact 
used, its date of last reference 
measurement 

String 

Geometric 
uncertainty 
estimate 

estimate of measurement 
uncertainty, based on ISO 
15530-3 

 

Detector data type 
(bit-depth) 

the number of grayscale levels, 
e.g., uint16. 

String 

Compression 
information 

description about compression 
applied in the file format 

String 

Volume height, 
width, and depth 

shape of volume in numbers of 
pixels 

 

Axes order  row major or column major for 
1-Dimensional data formats. 

String 

Voxel size voxel dimension (mm) in the 
X, Y, and Z directions 

 

X-ray tube voltage  kV 

X-ray tube current  µA 

Target (anode) 
material 

material type String 

Exposure 
(integration) time 

 s 

Source to detector 
distance 

 mm 

Source to the table 
Z-axis distance 

 mm 

Physical filter type and thickness of the filter String 

 

 

Fig. 5. XCT-image data structure. 

3.10. Part model using a Coordinate Measuring Machine 

The Part model can be generated using a Coordinate 
Measuring Machine (CMM). The model is computed from a 
point cloud generated by scanning a fabricated part using a 
CMM. It is commonly known as a CMM model, which is a 
3D model that can represent the real part. Required data 
elements about CMM model are shown in Table 9. 

Table 9. CMM model data elements. 

Data element Description Data type 

Machine ID the identification of the CMM used String 

Uncertainty 
quantification 

a high-level indication of measurement 
conforming to ISO 10360-2, 4, and 5. 

String 

Probe type the types of CMM probes used in 
measurement 

String 

Model ID the identification of the 3D CMM created String 

Setup Part setup on the build platform in the 
melting laser beam coordinate system 

String 

3.11. Surface roughness 

Surface roughness directly influences fatigue life, 
especially in medical devices. A measuring instrument is used 
to evaluate the 2D and 3D surface roughness. Required data 
elements are shown in Table 10. 

Table 10. Surface roughness data elements. 

Data element Description Data type 

Instrument ID the identification of the surface 
measurement instrument used 

String 

Type of surface 
roughness 
measurement 

Linear measurement (e.g., Ra, Ry, Rz) 
or area measurement (e.g., Sa, Sy, Sz) 

mm 

Cutoff 
wavelength  

The cutoff wavelength in surface 
roughness measurement 

mm 

Evaluation 
length/area  

The length or area of the evaluation mm or 
mm2 

Measuring speed   mm/s 

Standard used ISO, ASTM, etc. String 

Readout  µm 

3.12. Microscopy 

Optical and scanning electron microscopy (OM and SEM) 
are commonly used to characterize the microstructural 
features. To archive those images, required (meta-) data 
elements are highlighted in Table 11. An example of an 
optical microscopy image in HDF5 can be found in Fig. 6. 

Table 11. Microstructural image (meta) data elements. 

Data element Description Data type 

Sample condition description (e.g., etched) String 

Etch time s Date-time type 

Image type (e.g., tiff) String 

Magnification factor (e.g., 50x) Integer 



 

 

Fig. 6. Optical microscopy-image data structure. 

3.13. Electron backscattering diffraction SEM  

Electron Backscattering Diffraction (EBSD) SEM is 
commonly used for microstructural analysis with crystal 
orientations and morphology. To archive those EBSD SEM 
images, metadata elements are in Table 12. An example of an 
EBSD SEM image in HDF5 can be found in Fig. 7. 

Table 12. EBSD SEM microstructural image (meta) data elements. 

Data element Description Data type 

Sample orientation description (e.g., transvers, 
longitudinal to laser scanning 
direction) 

String 

Microscope sample 
orientation 

description (e.g., front at the 
top of the sample mount) 

String 

Sample preparation description String 

Magnification factor (e.g., 50x) Integer 

Accelerating voltage  kV 

Accelerating current  nA 

Tilt angle  degree 

Binning e.g., 1 x 1 String 

Scan area  µm x µm 

Step size  µm 

Image type e.g., tiff String 

Comment description String 

 

Fig. 7. EBSD SEM-image data structure. 

3.14. Powder X-ray diffraction 

Powder X-Ray Diffraction (PXRD) can be used for 
observing melt-pool depth and lattice structures of a grain. To 
archive PXRD images, metadata are listed in Table 13. An 
example of an PXRD image in HDF5 can be found in Fig. 8. 

Table 13. PXRD image (meta) data elements. 

Data element Description Data type 

Diffractometer 
parameters 

parameters used to specify 
the diffractometer 

 

Wavelength  Å 

Measurement 
temperature 

 oK 

Start-2Ɵ radian radian 

End-2Ɵ radian radian 

Ɵ step size radian radian 

Time per step  s 

Gonio radius  mm 

 

Fig. 8. Powder X-ray diffraction image data structure. 

3.15. Ultrasmall-angle X-ray spectroscopy  

Ultrasmall-Angle X-Ray Spectroscopy can be used to 
measure lattice structures and estimate residual stresses in the 
fabricated part. Small- and wide-angle X-Ray spectroscopy 
have the same metadata elements. To archive the images, 
those elements are in Table 14. 

Table 14. Ultrasmall angle X-ray spectroscopy image (meta) data elements. 

Data element Description Data type 

Scattering type ultrasmall, small, or wide angle String 

Sample orientation description (e.g., transverse) String 

Beam line 
instrument 

Description (e.g., ultrasmall 
angle X-Ray scattering 
instrument at beamline -ID-C) 

String 

Instrument notes notes String 

Detector name name String 

Detector type  String 

Detector size  mm x mm 

Wavelength  Å 

Photon flux density  photons/s/mm2 

Horizontal slit 
description 

text String 



 

Vertical slit 
description 

Text String 

Acquisition time  s 

Count time  s 

Q-range e.g., Qmin 0.0001 Qmax 0.3/ Å /Å 

3.16. Energy dispersive spectroscopy  

Energy Dispersive Spectroscopy (EDS) can be used for 
analyzing elements in the fabricated part. To archive EDS 
images, required (meta) data elements are in Table 15. An 
example of an EDS image in HDF5 can be found in Fig. 9. 

Table 15. Energy dispersive spectroscopy image (meta) data elements. 

Data element Description Data type 

Image width  (e.g., 12 µm) µm 

Image height  (e.g., 9 µm) µm 

EDS accelerating voltage    

Working distance  (e.g., 10 mm) mm 

Map file  (e.g., Mn Kalpha1) String 

Map image type  (e.g., tiff) String 

Detector size  mm x mm 

Description Text String 

 

Fig. 9. EDS image data structure. 

3.17. Mechanical property test  

The sample mechanical property tests are demonstrated for 
tensile strength test, hardness test, and fatigue life test. To 
archive tensile strength test data, the meta-data are suggested 
in Table 16. 

Table 16. Tensile test (meta) data elements. 

Data element Description Data type 

Tensile strength test 
machine ID 

 String 

Machine model  String 

Machine location   

Maximum load   

Coupon dimensions   

Coupon orientation  Relative to the build 
platform coordinate system 

 

Description  String 

Yield stress  MPa 

Ultimate tensile stress  MPa 

Elongation  % 

 
Hardness test data indicates how hard a fabricated coupon 

of a fabricated part is. To archive hardness test data, required 
(meta) data elements are in Table 17. 

Table 17. Hardness test (meta) data elements. 

Data element Description Data type 

Hardness test 
machine ID 

 String 

Machine model  String 

Machine location   

Maximum load   

Coupon dimensions   

Coupon orientation  Relative to the build platform 
coordinate system 

 

Description  String 

Indentation  String 

Measured load  MPa 

Type of hardness  String 

 
Fatigue life test data indicates the number of cycles of a 

fabricated coupon. To archive fatigue-life, test data, required 
(meta) data elements are in Table 18. 

Table 18. Fatigue life test (meta) data elements. 

Data element Description Data type 

Fatigue life test machine 
ID 

 String 

Machine model  String 

Machine location   

Maximum load   

Coupon dimensions   

Coupon orientation  Relative to the build 
platform coordinate system 

 

Description  String 

Number of cycles that 
the part broke  

 Integer 

Measured amplitude of 
the cyclical stress 

 MPa 

 

4. Discussion 

With advanced sensing technologies, massive datasets are 
generated from an AM build, including the machine, process 
plan, in-situ sensing, ex-situ inspection, microstructural 
analysis, and structural test. Part defects and out-of-tolerance 
features can be detected and analyzed using these datasets; the 
same datasets can be used for validation and qualification of 
PBF-LB/M AM parts and processes. A hierarchical data 
model is designed for these purposes. Such a model can 
contain many data groups, which explicitly (1) define the 
context for LPB-LB/M AM part fabrication and (2) enable the 



 

downstream data analytics for defect detection, process 
validation, and part qualification. 

Hierarchical data structures are easy to understand and 
manipulate. For example, HDF5 images and their attributes 
can be stored in the same group (directory), which 
significantly helps users understand their contextual relations. 
AM data can be organized using HDF5 for different types of 
sensors used in different stage of a build - scan, melting, 
scanned layer, microstructure, and mechanical property. 
These data are properly organized to be consistent with 
different stages in AM part-fabrication. Application software 
can access these datasets for the subsequent data analytics for 
defect evaluation and creating a new control strategy. 

HDF5 efficiently manages complex datatypes and datasets; 
however, it has limitations. HDF5 requires additional efforts 
to validate the data formats for data in schemas that are 
outside the ones modeled in HDF5. Since HDF5 compresses 
the dataset into a file, the ability for multiple users to access a 
file can be limited. Interestingly, data are never really deleted 
from the file; it is just disabled instead of removed. The file 
size can only be growing if not property managed.  

The technology supporting new versions of HDF5 can be 
limited because new versions are developed by a volunteer 
community. To alleviate the potential problems, data 
developers can create a hierarchical data structure in a data 
server for easy update and parallel access by multiple users as 
a concept model. 

5. Conclusions 

The use of laser powder bed fusion, PBF-LB/M, processes 
to fabricate complex, AM metal parts in aerospace and 
medical industries has been increasing steadily. As a result, 
the demands on the quality and reliability of those parts have 
also increased. To respond to these demands, researchers and 
practitioners have started to use in-situ sensors and ex-situ 
measurement to detect potential anomalies in the parts. 
Organizing and archiving these related datasets are critical to 
process validation. Correlated datasets can also be used to 
verify the quality of AM parts. Organized data can be used as 
inputs to data analytics and other predictive tools. 

In this paper, we described a data model with metadata 
elements in a hierarchical form to organize tables, text, and 
images for documenting machine, process, and part during an 
AM build. Images generated from in-situ monitoring sensors 
and ex-situ inspection instruments parts can be archived with 
text data, which generally include the attributes about the 
tables, images, signals, part design, material, and machine.  

This model addresses the long-standing issue of how to 
organize textual descriptions, tables, images, and other types 
of data into a generic structure for the subsequent analyses. 
This model stores in-situ monitoring data, ex-situ monitoring 
data, coordinate measurements, microstructural analysis, AM 
machine status, and the part design model in a centrally 
managed file. The purpose is to share data with various 
applications. Examples in Section 3 show laser control 
commands, in-situ, and ex-situ images in HDF5 formats that 
can be used for such applications.  

Future work will be in two areas. One is to validate this 
data model including time series data, such as acoustic signals 
and laser commands for infilling and contouring, mechanical 
property testing data, and other geometric data. Second is to 
develop a new, file management system including a procedure 
that will allow parallel/concurrent accessing of the data. In 
addition, we plan to use a part-development-lifecycle case 
study that includes design, build, processing plan, 
measurement, and test to show that well-organized data can 
enable qualification of AM parts. 

 

Disclaimer  

Certain commercial equipment, instruments, or materials 
identified in this paper are not intended to imply 
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materials or equipment identified are necessarily the best 
available for the purpose. Any opinions, findings, 
conclusions, or recommendations expressed in this material 
are those of the authors and do not necessarily reflect the 
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