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Abstract

The increasing CO2 level is a critical concern and suitable materials are
needed to capture such gases from the environment. While experimental and
conventional computational methods are useful in finding such materials,
they are usually slow and there is a need to expedite such processes. We
use Atomistic Line Graph Neural Network (ALIGNN) method to predict
CO2 adsorption in metal organic frameworks (MOF), which are known for
their high functional tunability. We train ALIGNN models for hypothetical
MOF (hMOF) database with 137953 MOFs with grand canonical Monte
Carlo (GCMC) based CO2 adsorption isotherms. We develop high accuracy
and fast models for pre-screening applications. We apply the trained model
on CoREMOF database and computationally rank them for experimental
synthesis. In addition to the CO2 adsorption isotherm, we also train models
for electronic bandgaps, surface area, void fraction, lowest cavity diameter,
and pore limiting diameter, and illustrate the strength and limitation of
such graph neural network models. For a few candidate MOFs we carry out
GCMC calculations to evaluate the deep-learning (DL) predictions.
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1. Introduction

The CO2 concentration in air is increasing at an alarming rate which
could escalate global temperature by 1.5 °C by 2100 [1]. CO2 capture from
pre-combustion plants is an effective way to reduce CO2 level. Typical ma-
terials used in this process are zeolites, calcium chabazite, hydrotalcite, and
activated carbon [2], but they usually suffer from low CO2 working capacities,
low tunability, and limited material diversity [3].

Metal organic frameworks (MOFs) are a class of porous materials with
inorganic clusters and organic building blocks, which can be repeated to build
an extended 3D structure. MOFs provide high thermal stabilities (as high
as 500 °C), a wide range of porosities (0.3–0.9), large surface areas (>8000
m2g−1), low densities (0.2 g cm−3), a wide range of pore sizes (3–100 Å),
active sites that can be used for site-specific adsorption and catalysis, and
most importantly a wide range of chemical tunability unlike conventional
porous materials [4]. Hence, MOFs are considered as one of the top ten
materials for emerging technologies by the International Union of Pure and
Applied Chemistry (IUPAC) [5].

In the past, there have been several efforts to use conventional computa-
tional methods such as grand canonical Monte Carlo (GCMC) to develop CO2

isotherm databases for thousands of hypothetical as well as experimentally
realizable MOFs [6, 7, 8, 9, 10, 11, 12, 13, 14]. However, such computational
methods are still time consuming, especially to screen thousands to millions
of MOF candidates. One of the most obvious ways to tackle this issue is using
machine learning (ML) methods, where ML methods act as a pre-screening
tool for conventional computational methods, which then can be used as a
screening tool for experimental designs [15, 16, 17, 18, 19, 20, 21, 20].

The key precursors for applying ML methods for CO2 absorption in MOF
are : 1) large datasets of experimental or computational CO2 isotherms
and other MOF properties, 2) an ML framework that can accurately rep-
resent arbitrary MOF crystals and chemical structures. Fortunately, due
to materials genome initiative (MGI) [22] and similar initiatives there has
been a rapid development for generating large databases of MOFs such as:
Computation-Ready, Experimental (CoREMOF), hypothetical (hMOF), and
quantum (QMOF) [7, 8, 9, 10, 11, 12, 13, 14]. These databases are based on
computational methods such as density functional theory (DFT) or GCMC
and the results are compared to experiments wherever applicable [23]. They
contain exact coordinates for MOF atomic structures and their properties.
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Machine learning has been already used in the past to model atomistic
propertiesof MOFs. For instance, Abdi et al.[24] used boosted decision-tree
methods to model CO2 adsorption of MOFs using 1191 data points using lit-
erature review. Krishnapriyan et al.[25] used random forest method to model
CO2 and methane uptake including Henry’s coefficients using persistent ho-
mology and chemical word embeddings on several datasets. Dureckova et
al. [26] used decision-tree methods to CO2 working capacity and CO2/H2

selectivity of gas adsorption in 358400 MOFs. A comprehensive review of
all ML literature is beyond the scope of present work and can be found
elsewhere[4, 27, 28, 29, 19, 21, 30, 31, 32, 33, 34, 35]. We note that previous
ML models are primarily based on cumbersome handcrafted features which
can be superseded with deep learning based methods [36]. Also, the appli-
cation of multi-output ML methods especially for pressure dependent CO2

adsorption has not been reported earlier to the best of our knowledge. Graph
neural network (GNN)/deep learning (DL) methods such as Atomistic Line
Graph Neural Network (ALIGNN) [37] can be used to represent arbitrary
chemistry and atomic structure with respect to interatomic bonds and an-
gles. GNNs can utilize the full power of deep neural network framework and
can be used to model multi-output data as well.

In this work, we apply the ALIGNN model for predicting properties in
hMOF and QMOF databases which can be used for accelerated MOF de-
sign. We train models for technologically important quantities such as CO2

adsorption isotherms at different pressures, electronic bandgap, lowest cav-
ity diameter (LCD), pore limiting diameter (PLD), void fraction, volumetric,
and gravimetric surface areas. After training the models, we apply them to
more CoREMOF database to screen for potential MOF candidates for CO2

capture. We compare the model predictions with a few experimental mea-
surement results to check accuracy. Additionally, we identify some of the key
strength and challenges of the DL framework.

2. Methods

This study uses the QMOF dataset [14] and the hMOF database [8] to
train the DL model. The trained DL model is applied to the CoreMOF
2019 database [7] to computationally rank the MOFs based on max CO2

adsorption.
The QMOF dataset consists of 20425 MOFs that Rosen et al. [14] gener-

ated using a subset of the CoRE-MOF and Cambridge Structural Database
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(CSD) [38] and made them suitable for density functional theory (DFT) cal-
culations. The DFT calculations [39] were carried out at PBE-D3(BJ) level
with Vienna ab initio Simulation Package (VASP) [40, 41].

The hMOF database consists of 137953 MOF structures which were gen-
erated using 102 building blocks from Wilmer et al. [9]. Details about the
generation of the hMOF database can be found in Wilmer et al. [10]. Briefly,
the Grand canonical Monte-Carlo (GCMC) calculations were performed us-
ing the RASPA code [42]. GCMC requires reliable force-fields for simulation.
Interaction energies between non-bonded atoms were computed through the
Lennard-Jones (LJ) and Coulomb potentials. LJ parameters for the frame-
work atoms were taken from the Universal Force Field (UFF) [43]. Partial
charges and LJ parameters for CO2 were taken from the TraPPE force field
[44]. Each GCMC calculation used a 1000 cycle equilibration period fol-
lowed by a 1000 cycle production run. A cycle consists of n Monte Carlo
steps; where n is equal to the number of molecules (which fluctuates during
a GCMC simulation). All simulations included random insertion, deletion,
rotation, and translation moves of molecules with equal probabilities.

Unlike the previous database where the MOF structures have been gener-
ated using computer algorithms, Computation-Ready, Experimental Metal–Organic
Framework (CoREMOF) database contains materials that are derived from
synthesized materials following the synthesis and data-refining protocols to
provide closer to reality structures. CoREMOF database contains more than
14000 MOF structures [7]. There is no direct overlap between hMOF and
CoREMOF database.

Graph neural networks are trained with atomistic line graph neural net-
work (ALIGNN) [37] which is available at https://github.com/usnistgov/alignn.
ALIGNN has been used to train more than 50 properties of solids and
molecules with high accuracy. A MOF structure is represented as a graph
using atomic elements as nodes, and atomic bonds as edges. Each node in
the atomistic graph is assigned 9 input node features based on its atomic
species: electronegativity, group number, covalent radius, valence electrons,
first ionization energy, electron affinity, block and atomic volume. The inter-
atomic bond distances are used as edge features with radial basis function
upto 8 Å cut-off. We use a periodic 12-nearest-neighbor graph construction.
This atomistic graph is then used for constructing corresponding line graph
using interatomic bond-distances as nodes and bond-angles as edge features.
ALIGNN uses Edge-gated graph convolution for updating nodes as well as
edge features. One ALIGNN layer composes an edge-gated graph convolution

4



on the bond graph with an edge-gated graph convolution on the line graph.
The line graph convolution produces bond messages that are propagated to
the atomistic graph, which further updates the bond features in combination
with atom features. The ALIGNN model is implemented in PyTorch [45]
and deep graph library (DGL) [46].

For regression targets we minimize the mean squared error (MSE) loss
for 50 epochs using the AdamW optimizer with normalized weight decay of
10−5 and a batch size of 64.The learning rate is scheduled according to the
one-cycle policy with a maximum learning rate of 0.001. We use 80 initial
bond radial basis function (RBF) features, and 40 initial bond angle RBF
features. The atom, bond, and bond angle feature embedding layers produce
64-dimensional inputs to the graph convolution layers. The main body of
the network consists of 4 ALIGNN layers and 4 graph convolution (GCN)
layers, each with hidden dimension 256 nodes. The final atom representa-
tions are reduced by atom-wise average pooling and mapped to regression or
classification outputs by a single linear layer.

We used National Institute of Standards and Technology (NIST)’s Nisaba
cluster to train all ALIGNN models [39]. Each model is trained on a single
Tesla V100 SXM2 32 gigabyte Graphics processing unit (GPU), with 8 In-
tel Xeon E5-2698 v4 CPU cores for concurrently fetching and preprocessing
batches of data during training. We use 80 %:10 %: 10 % splits. The 10 %
test data is never used during training procedures. Except for the pressure
dependent CO2 adsorption data, which is a multi-output model, all other
models are single output regression.

3. Results and discussion

We apply ALIGNN model to predict MOF properties in QMOF and
hMOF databases. QMOF is developed using quantum density functional
theory method while hMOF is based on classical force field guided GCMC
calculations. The QMOF and hMOF materials are composed of some of the
combination of the following 9 elements: C, H, O, N, Zn, Cu, Zr, F, Cl,
and Br. These datasets are kept in the jarvis-tools package: https://jarvis-
tools.readthedocs.io/en/master/databases.html [47] in a format to easily ap-
ply DL methods. In this section, we will first visualize the data distribution
and then discuss the ALIGNN application on these datasets.
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Figure 1: Data visualization of QMOF electronic bandgaps and GNN predictions on the
test set. a) Electronic bandgap data distribution in QMOF bandgap distribution database,
b) ALIGNN based deep-learning (DL) predictions on 10 % test set.

3.1. Application to QMOF database

Before applying the DL model on QMOF we visualize the properties in
QMOF database with about 20425 MOFs. One of the unique features of
QMOF is electronic bandgap data which cannot be obtained from classical
force field calculations such as in hMOF. Although the focus of the work
is on CO2 adsorption, we note that MOFs can be viewed as photocatalysts
and tailoring of bandgaps can provide dual technological benefits of CO2

reduction as well as solar power generation [48, 49]. We visualize the bandgap
data distribution in Fig. 1a. We observe a high peak around 1 eV and 3 eV
with data range up to 6 eV.

The developers of QMOF applied several machine-learning models for
predicting the bandgaps. They compared well-known machine learning model
such as Sine Coulomb matrix, Orbital field matrix [50, 51], Smooth overlap of
atomic orbitals (SOAP) [52], and crystal graph convolution neural network
(CGCNN) [53] to develop a model for predicting the bandgap of MOFs. They
found that the best model was achieved with CGCNN with a mean absolute
error (MAE) of 0.274 eV for bandgap prediction. Following a similar training
strategy, we trained ALIGNN model on this dataset and find the MAE to be
0.20 eV, which is nearly 27 % improvement in accuracy. A parity plot for the
actual DFT data and ALIGNN based predictions on 10 % test set is shown in
Fig. 1b. For a perfect agreement, all the data-points would fall upon y = x
line, which the data points in Fig. 1b closely resemble. ALIGNN has already
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been shown to outperform CGCNN and other models for other solid-state
and molecular dataset and the previous results support the findings [37].

3.2. Application to hMOF database

hMOF database 
(137k 

hypothetical 
MOFs)

-Surface area

-Pore diameter

-Void fraction

-CO2 adsorption 
isotherm 
(GCMC)

ALIGNN 

DL training

(80:10:10 split)

Prediction on     
CoreMOF

Screening

(Experimental 
structures)

GCMC 
validation

(Candidates 

for experiments)

Figure 2: Workflow used in training and applying graph neural network models for several
properties in hMOF database.

Next we apply the ALIGNN model for training properties in the hMOF
databases. The list of properties include: gravimetric surface area ( m2g−1) ,
volumetric surface area (m2cm−3), largest cavity diameter (LCD), pore limit-
ing diameter (PLD), void fraction, and pressure dependent CO2 absorption.
All the models except the CO2 isotherm are single output models. The ad-
sorption isotherm predictions has 5 outputs representing CO2 absorption at
5 different pressures 0.01, 0.05, 0.1, 0.5, and 2.5 bar at 298 K. In addition to
the multi-output model, we also train models for minimum (0.01 bar) and
maximum (2.5 bar) pressures (under consideration) to check whether having
more data as targets (five versus one) helps improve the model predictions.

In Fig. 2 we show the training process for hMOF which is described
below. Before applying any DL, we first visualize the distribution of the
above mentioned properties for 137953 MOFs in Fig. 3. As observed in
Fig. 3a, MOFs in hMOF have low bulk densities with a peak around 0.7 g
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Figure 3: Data distribution visualization of several properties in the hMOF database. a)
density, b) gravimetric surface area, c) volumetric surface area, d) void fraction, e) LCD,
f) PLD, e) minimum value of CO2 dsorption among 5 pressure values (i.e. adsorption at
0.0 1bar), and f) maximum value of CO2 adsorption (i.e. adsorption at 2.5 bar) among 5
pressure values.

cm−3, which is much lower than usual solids such as silicon (2.3 g cm−3) and
aluminum (2.7 g cm−3). The gravimetric and volumetric surface areas in Fig.
3b and Fig. 3c varies up to 6000 m2 g−1 and 3000 m2 cm−3, respectively.
The gravimetric surface area is almost uniformly distributed across the range
while the volumetric surface area peaks around 2000 m2 cm−3. We note
that high volumetric surface area doesn’t necessarily imply high gravimetric
surface area and vice versa. The void fraction in Fig. 3d shows a peak
around 0.8 suggesting high porosity of MOFs. The largest cavity diameters
(LCD) and pore limiting diameters (PLD) are other critical parameters for
adsorption. Both of them vary up to 20 Å with a peak around 7 Å (as
shown in Fig. 3e and Fig. 3f). As mentioned above, hMOF contains CO2

adsorption at 5 different and monotonically increasing pressure values, so we
show the CO2 adsorption at 0.01 bar and 2.5 bar pressures in Fig. 3g and
Fig. 3h, respectively.

We note that some of these quantities (e.g. PLD, LCD, and void frac-
tion) can be easily calculated for the whole dataset of potential MOFs us-
ing conventional computational methods such as Zeo++ [54]. Using DL
based methods to predict these properties will elucidate the strengths and
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Figure 4: ALIGNN predictions and GCMC actual value comparisons of several properties
on 10 % held test set (13796 MOFs) in the hMOF dataset. a) gravimetric surface area,
b) volumetric surface area, c) void fraction, d) largest cavity diameter, e) pore limiting
diameter, f) adsorption at five different pressures, g) adsorption at 0.01 bar, and h) ad-
sorption at 2.5 bar.

weaknesses of the DL models. However, predicting adsorption isotherms can
be prohibitively expensive for the whole dataset by traditional means (e.g.
GCMC). Therefore the DL methods can be useful as a surrogate model, with
the usefulness characterized by the appropriate performance metrics.

We trained the models for the above mentioned quantities for 50 epochs
because further iterations do not improve the validation accuracy as shown
in Fig. S1 for 100 epochs. Additionally, we have tried different cutoff and
max-neighbors parameters such as: 1) cutoff 8 Å, 12 k-nearest neighbors
(kNN), 2) cutoff 20 Å , 12 kNN, 3) cutoff 8 Å and kNN 24 with no significant
change in MAE. The computational cost analysis for these trainigs are also
provided in the supplementary information (Table S1).
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The parity plots for predictions on the test dataset by the ALIGNN mod-
els for different properties is shown in Fig 4. For an ideal model the DL and
actual target values should line on y = x straight line. Corresponding per-
formance metric for the trained models are charted in Table. 1. In addition
to the performance metric such as the mean absolute error (MAE), we also
provide the mean absolute deviation (MAD) which serves as the baseline for
the model predictions. Usually, a good machine learning model has MAE
five times lower than its MAD. The MAD:MAE ratio also serves as a good
comparison metric across different properties. From Table 1, we observe
that most of our models have MAD:MAE greater than 5, with highest value
for gravimetric surface area and the minimum value for the pore limiting
diameter. Same behavior can be observed from the parity plots.

Comparing Fig. 4a and Fig. 4b, we observe that gravimetric surface area
is easier to predict than the volumetric surface area. Currently we don’t have
a good explanation for this behavior. The void fraction is easier to predict as
well as shown in Fig. 4c. The LCD and PLD parity plots in Fig, 4d and Fig.
4e suggest they are much difficult to predict. This shows one of the limita-
tions of the ALIGNN model where it cannot capture long range order based
properties. In Fig. 4f, we show the DL predicted data against the actual
GCMC data for all the pressures in one plot. Similar plots for the mini-
mum and maximum pressures are shown in Fig. 4 g and 4h. Interestingly,
the full-isotherm data based model has lower overall MAE as well as lower
MAD:MAE in comparison with the maximum pressure adsorption model.
This result suggests that training multi-output model could be advantageous
for adsorption data especially at higher pressure values. The colorbar in the
plots represent void fraction with the exception of Fig. 4c (surface area is
represented). We observe that most of the deviations from y = x line in the
test set occur on high void fraction MOFs (such as upper yellow part of Fig.
4b, 4d, 4e and 4h). This can be due to the k-nearest neighbor and relatively
shorter cut-off (8 Å) strategies for graph construction in ALIGNN models.
Larger k-nearest neighbors and cut-off impose higher computational expense,
a challenge for ALIGNN.

In Table 1, the first 5 properties are geometric while the rest are adsorp-
tion properties. It is interesting to note that while it is difficult for ALGNN to
predict the geometric properties to high accuracy, ALGNN is able to predict
the adsorption properties accurately. The geometric properties are features
of the long range crystallographic order, while the graph used in the ALGNN
model considers neighbors only up to 8 Å away. It is therefore reasonable
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Table 1: ALIGNN performance on hMOF properties on 10 % held test dataset in terms of
mean absolute error (MAE), mean absolute deviation (MAD), coefficient of determination
(R2), and root mean-square error (RMSE).

Property Unit MAD MAE MAD:MAE R2 RMSE
Grav. surface area m2 g−1 1430.82 91.15 15.70 0.99 180.89
Vol. surface area m2 cm−3 561.44 107.81 5.21 0.91 229.24
Void fraction No unit 0.16 0.017 9.41 0.98 0.03

LCD Å 3.44 0.75 4.56 0.83 1.83
PLD Å 3.55 0.92 3.86 0.78 2.12

All adsp mol kg−1 1.70 0.18 9.44 0.95 0.49
Adsp at 0.01bar mol kg−1 0.12 0.04 3.00 0.77 0.11
Adsp at 2.5bar mol kg−1 2.16 0.48 4.50 0.90 0.97

that ALGNN, designed to capture short-range atomistic interactions, has dif-
ficulty predicting the long-range geometric features. Despite this, ALGNN
is able to predict the adsorption properties well, which leads us to conclude
that the adsorption properties are largely determined by the short-range in-
teractions. Conventional works with MOFs have focused on optimizing the
long-range geometric features in attempts to optimize the adsorption proper-
ties [55, 56, 57]. This work shows that the short-range atomistic interactions
are the primary factors in the adsorption properties. Note that previous
works on predicting CO2 adsorption with descriptor based ML models only
used a certain portion of hMOF dataset or were trained on entirely different
datasets, hence, it is not fair to compare those performances with the current
work. However, we note that CO2 adsorptions models had R2 ranging from
0.45 to 0.94 [24, 25, 26].

In addition to the parity plots, we also analyze the best and worst isotherm
predictions using the multi-output isotherm predictor model. We sort the
test data based predictions with respect to MAE and show top 5 results in
Fig. 5a to Fig. 5e and worst values from Fig. 5f to Fig. 5j. Clearly, the
best predictions are on par with the target data. For the worst predictions,
the multi-output predictions are higher in some cases and lower in others
compared to actual GCMC data implying non-uniform trends.

To investigate the reason why the DL model works well for a certain
class of materials, we carried out several correlation analyses between the
errors of multi-output isotherm predictor model and materials properties.
We calculate the mean of absolute errors between actual and DL predictor
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Figure 5: Comparison of actual GCMC and ALIGNN predictions of CO2 adsorption at
different pressures values and at 298 K. The model was tested on the 10 % held set of 13796
materials, out of which 5 best and 5 worst predictions are shown. a-e) 5 best predictions,
f-j) 5 worst predictions.

values. From Table 2, we find the minimum and maximum CO2 intake and
density of the MOFs relate the most to the errors in the DL predictions.
Note that there are relatively few examples of low-density materials, hence
DL is less likely to generalize well for these set of materials.

Table 2: Pearson and Spearman correlation between mean of mean absolute errors of the
CO2 absorptions on test set and physical properties.

Property Unit Pearson Spearman
Density g m−3 0.04 0.22

Grav. surface area m2 g−1 -0.07 -0.10
Vol. surface area m2 cm−3 -0.04 -0.10
Void fraction No unit -0.02 -0.2
N atoms No unit 0.1 0.2
PLD Å -0.07 -0.23
LCD Å -0.05 -0.21

Min adsp mol kg−1 0.33 0.56
Max adsp mol kg−1 0.27 0.40

Next, we evaluate the accuracy of the DL model based predictions by
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comparing them with a few experimental and GCMC calculation results.
Over the years we have experimentally characterized a large number of MOFs
using same measurement protocol and very accurate high-pressure sievert
apparatus[58]. We compare the experimental CO2 adsorption at 2.5 bar for
some of these previously well characterized MOFs [59, 58, 60, 61] with DL
predictions in Fig. 6. We observe excellent comparison between DL and
experimental results. We find that the DL and experimental data are in
reasonable agreement with mean absolute difference for CO2 adsorption and
surface area as 1.54 molkg−1 and 399.75 m2g−1 respectively.

Moreover, we apply the DL model for predicting maximum CO2 adsorp-
tion trained on hMOF database to screen high CO2 adsobing MOFs in the
CoREMOF database Note that there is almost no overlap between the MOFs
in these two databases. Only 16 MOFs were confirmed to be overlapping
between these two databases as mentioned in the supplementary article in-
formation of ref.[7]. The hMOF database is based on hypothetical structures
while CoreMOF uses experimental structures which have been processed fol-
lowing several protocols. DL prediction for a MOF takes less than a few sec-
onds. We rank the MOFs and provide the DL based predictions for MOFs
in the supplementary information. Some of the high rank materials pre-
dicted by our DL model are: ATEYUV (10.7 mol.kg−1), WEHJUQ (10.2
mol.kg−1), ATEYOP (9.94 mol.kg−1), HOJLID (9.86 mol.kg−1), and MIN-
CUJ (9.81 mol.kg−1) , shown in Fig. 7 and Fig. 8. The crystal structure
visualization for these MOFs as well as other screened materials are available
at https://mof.tech.northwestern.edu

In order to check the DL predictions, we carried out accurate GCMC
simulations and compare the results with DL predictions. In Fig. 8a, the
comparison of GCMC vs DL predictions for CO2 on top 10 screened candi-
dates shows the DL method can indeed predict high CO2 adsorption MOFs.
The GCMC data are obtained with the similar computation set-up as of
hMOF database but with larger cutoff (up to 18 Å) and atomic charges of
MOFs. The partial atomic charges of the framework are obtained by mes-
sage passing neural networks model developed in Ref.[62] and included in the
CO2 adsorption simulations. Although the GCMC values do not perfectly
align with the DL data, the trends are noteworthy. We note that nine out of
ten predicted structures give a CO2 adsorption above 10 mol/kg at 2.5 bar,
which is quite high compared to all other experimentally well known MOFs.
Fig. 8a clearly suggests that DL can predict high performing MOFs which
are also validated with the GCMC calculations. We find that the mean ab-
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Figure 6: Comparison of experimental measurements and ALIGNN (DL) predictions for
a few previously characterized MOFs from literature. a) CO2 adsorption , b) gravimetric
surface area.

solute difference between the GCMC and DL values for CO2 adsorption at
2.5 bar for these candidates is 4.2 molkg−1 which is almost 9 times higher
than that of MAE reported in Table 1. Next we compare the DL and GCMC
bases surface area predictions for these top 10 screened MOFs. We notice
that the trends in the predictions (as shown in Fig. 8b) are much better than
that of CO2 adsorption. We find the mean absolute difference between these
values as 697.2 m2g−1 which is 7 times higher than MAE of the DL model
obtained for gravimetric surface area in Table. 1.

We studied the effect of Cutoff (both van der Walls and Coulomb inter-
action) and the results are shown in Fig. S2 and Fig. S3. We noticed that
for Coulomb interaction 8 Å is good enough for convergence. For vdW inter-
action, we observe a 5 % decrease in adsorption at high pressures. However,
we note that taking a larger vdW cutoff does not affect the general trend
in the adsorption data which is clear from Fig. S3. The agreement between
DL and GCMC calculations with 8 Å cutoff are much better compared to
16 Å cutoff. This is probably due to the fact that we used 8 Å cutoff in DL
model. Since cutoff does not change the general trend in the isotherm, the
overall effect is just to shift the adsorption isotherm and therefore it won’t
affect the predictive feature of our DL model.

Experimental synthesis and characterizations of these is beyond the scope
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(b) WEHJUQ(a) ATEYUV (c) ATEYOP

(d) HOJLID (e) MINCUJ

Figure 7: ALIGNN predicted some examples of the high-CO2 adsorbing MOFs from
CoREMOF DB. Complete list is provided in the supplementary information. a)
ATEYUV, b) WEHJUQ, c) ATEYOP , d) HOJLID , and e) MINCUJ. The crystal struc-
ture visualization for these MOFs as well as other screened materials are available at
https://mof.tech.northwestern.edu.

of the present work and will be carried out in future. The complete list of
MOFs during the above screening procedure is provided in the supplemen-
tary information. The supplementary information include the name identi-
fier of the MOF (id), DL based gravimetric surface area (dl sag), gravimetric
surface area reported in CoREMOF (actual sag), density , DL based CO2

isotherm predictions at the five pressure bar points, and DL based maximum
CO2 predictions at 2.5 bar. We note that some of the MOFs in the CoRE-
MOF database have multiple disordered atoms, which are not physical. In
the supplementary information, we designate such structures with yes or no
(Y/N) and we recommend MOFs with no multiple atoms only. The trained
ALIGNN (DL) models for the properties trained above are also distributed in
the ALIGNNGitHub repo https://github.com/usnistgov/alignn/blob/main/alignn/pretrained.py
as pre-trained models for making quick predictions on arbitrary MOFs.
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Figure 8: Comparison of GCMC and ALIGNN (DL) predictions for top 10 screened can-
didates from CoREMOF DB. a) CO2 adsorption , b) gravimetric surface area.

4. Conclusion

In this article, we have applied atomistic line graph neural network (ALIGNN)
to predict several properties such as volumetric and gravimetric surface area,
void fraction, maximum and minimum CO2 adsorption, adsorption isotherms
at several pressures and electronic bandgaps in hMOF and QMOF datasets.
High accuracy models are obtained for surface area and CO2 adsorption that
can be used for pre-screening applications. We have applied the trained
model to pre-screening high-performance MOFs in the CoREMOF database
and predicted several promising MOF for CO2 capture. Moreover, we carry
out GCMC calculations for a few screened candidates and compare them with
DL predictions showing promising trends. This study demonstrates some of
the key strength for using GNN over usual conventional methods. We also
discuss some of the weaknesses of the model that motivate further develop-
ment for the GNN model. Our work also establishes that GNN models can
not only be successfully applied for molecules and solids but MOF structures
as well.
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[51] A. P. Bartók, R. Kondor, G. Csányi, On representing chemical environ-
ments, Physical Review B 87 (18) (2013) 184115.
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