
DRAFT

Proceedings of the ASME 2021 17th International
Manufacturing Science and Engineering Conference

MSEC2022
June 27-July 1, 2022, West Lafayette, Indiana, USA

MSEC2022- 83907

EVALUATION OF DATA-DRIVEN MODELS IN HUMAN-ROBOT LOAD-SHARING

Vinh Nguyen
National Institute of

Standards and Technology
Gaithersburg, MD

Jeremy Marvel
National Institute of

Standards and Technology
Gaithersburg, MD

ABSTRACT
Human-robot load-sharing is a potential application for

human-robot collaborative systems in production environments.
However, knowledge of the appropriate data-driven models for
this application type is limited due to a lack of physical real-
world data and validation metrics. This paper describes and
demonstrates a load-sharing testbed for evaluating data-driven
models in a human-robot load-sharing application. Specifically,
the testbed consists of a single operator and single robot
relocating a payload to a desired destination. In this work, the
operator initially communicates to the robot using audio
feedback to initiate and alter robotic motion commands. During
the payload relocation, human, payload, and robot state data are
recorded. The measurements are then used to train three data-
driven models (neural network, naïve Bayes, and random forest).
The data-driven models are then used to transmit movement
commands to the robot during human-robot load-sharing
without the use of audio feedback, thus improving robustness and
eliminating audio signal processing time. Evaluation of the three
data-driven models shows that the random forest model was
demonstrated to be the most accurate model followed by naïve
Bayes and then the neural network. Hence, the results of this
study provide novel insight into the types of data-driven models
that can be used in load-sharing applications in addition to
development of a real-world testbed.

Keywords: Human-Robot Interaction, Manufacturing,
Load-Sharing, Collaborative Robot, Wearable Electronics

1. INTRODUCTION

Human-robot collaborative systems are seeing increasing
adoption in manufacturing applications due to their flexibility
and efficiency. In particular, load-sharing applications are
studied by researchers in fields including production [1] and
health [2]. In this work, human-robot load-sharing refers to a
system where at least one human and one independent robot

coordinate to relocate a payload. In this application of human-
robot collaboration, the robot must have both perception and
cognitive capabilities to ensure accurate and safe handling of the
payload.

Exclusive monitoring of the robot state, such as the joint
angles and current sensors, has been used for the robot to learn
the optimal configuration for assisted lifting [3]. However,
human-robot load-sharing applications generally tend to require
the robot to sense the payload or state of the human. As such,
multiple prior sensing technologies have been developed to
augment robots for this task. For instance, DelPreto and Rus [4]
used surface electromyography in a manufacturing-based load-
sharing system to sense the operator intent based on muscle
signals in the human arm. In addition, van der Spaa et al. [5] used
data from an entire motion capture suit to train a graph search
algorithm to determine optimal robot motion. Another use of
motion capture for robot perception in human-robot load-sharing
involved tracking the robot hand, human hand, and payload pose
[6]. However, in a realistic production environment, the robot,
operator, and payload information must all be measured by a
variety of sensor types to improve robustness against sensor
interference that is known to occur in production environments
[7]. In addition, cognitive models must be developed based on
sensor data for determining the appropriate robot commands to
ensure safe and accurate execution of human-robot load-sharing.

Though teleoperated human-robot load-sharing applications
have been demonstrated [8], automated robotic motions that
require cognitive models are more desirable due to reduced
manual variation and lag. Therefore, human-robot load-sharing
is a use-case of interest for researchers to develop robotic
cognitive models of human behavior, because the application
requires human-robot coordination. While analytical models are
known to be used in human-robot collaboration applications
such as task allocation [9], data-driven models are known to be
more reliable in quantifying stochastic phenomena including

 2

operator intent and sensor noise. Many of the previously
mentioned prior literature also developed data-driven models
that leveraged their demonstrated sensing capabilities. For
instance, Sheng et al. [6] developed a reinforcement learning
approach to lift the payload, though only vertical lifting was
conducted. In addition, Roveda et al. [10] used a reinforcement
learning algorithm based on neural networks to conduct
impedance control in human-robot load-sharing. However,
reinforcement learning requires multiple trials, which may
require incorrect motions that induce hazards in a coordinated
task, such as load-sharing, for training. While supervised
learning approaches such as neural networks [4] and Gaussian
Process Regression [3] have been demonstrated, there is a lack
of comparison between the plethora of data-driven models that
can be applied towards human-robot load-sharing. Therefore,
researchers and manufacturers have limited knowledge on the
appropriate data-driven models that can be used in human-robot
load-sharing.

This research aims to provide an evaluation of supervised
learning data-driven models in human-robot load-sharing. In this
work, a single human operator and a single robot coordinate to
relocate a payload. To initially train the data-driven models in
this work, voice commands by the operator are used to direct the
robot motion to relocate the payload while human, payload, and
robot state data are recorded. The data are then used to train three
individual data-driven models (neural network, naïve Bayes, and
random forest) to command robot motions based on
measurements without the use of voice commands. Figure 1
shows a flowchart of training and implementation methodology.
The results of the performance of the models are then evaluated
followed by discussion and conclusion.

FIGURE 1: FLOWCHART OF TRAINING AND EVALUATION
METHODOLOGY

2. TESTBED

Figure 2 shows the experimental testbed used in this work.
At the beginning of the experiments, the robot was automatically
driven to the start position shown in Fig. 2 and the data collection
was started. Then, the operator and the robot were tasked with

raising a payload (+Z direction), moving the payload
horizontally (+Y direction), and then lowering the payload (-Z
direction) onto the end position supports identified in Fig. 2. In
this work, the payload was a 200 mm x 700 mm x 1.60 mm
aluminum plate (~0.61 kg). For safety purposes, bumpers were
mounted around the plate and a soft-stop foot switch was wired
to the robot controller.

FIGURE 2: EXPERIMENTAL SETUP FOR LOAD-SHARING
TESTBED

2.1 Audio Commands for Training

Initially, data for supervised learning were collected by
repeatedly conducting the load-sharing task with the operator
controlling the robot with voice commands. Figure 3 shows the
available voice commands the operator can give to move the
robot in a specified direction at 20 mm/sec. In addition, the voice
command “Stop” would stop any robot motion. To conduct the
voice control, a Python script ran on a personal computer (PC)
that used a Bluetooth receiver to read audio signals. The Google
Cloud Text-to-Speech Application Programming Interface (API)
was used to convert the raw audio signal to text within 2 seconds.
The text was then analyzed by the Python script to determine the
direction of motion for the robot.

FIGURE 3: VOICE COMMANDS AND THE CORRESPONDING
ROBOT MOTION DIRECTION

 3

 During the training phase, the operator used voice
commands to move the robot in a specified direction, and the
operator would move in tandem with the robot while holding the
payload. Thus, robot, human motion, and payload data would be
recorded throughout the entire move, which would then in turn
be used to train the data-driven models in this work.

2.2 Robot and Operator

In this experiment, a Universal Robot UR10 collaborative
robot arm with a CB3 control was used to support the payload.
The robot was configured to accept velocity commands from the
external computer using the User Datagram Protocol (UDP) at a
rate of 10 Hz. For safety, the payload was manually clamped to
the robot’s end effector instead of using a robotic gripper. During
the load-sharing process, recorded data from the robot included
Cartesian position and velocity.

In this paper, a single operator was used since the focus of
this work was the evaluation of data-driven models in a
controlled human-robot team. Note that the operator was
provided no instruction on the ideal path to move the robot in
addition to no instruction regarding body posture. Thus, this
research studies variability within a particular human subject but
does not generalize the results to a population. In addition, the
operator’s intuition was used to determine factors including the
appropriate vertical direction height before moving in the
horizontal direction.

2.3 Position Tracking

To track the position of the payload and operator wearables,
an 8-camera motion capture system (Vicon Bonita 10) at 100 Hz
was used. The camera system communicated to an external PC
using Power-over-Ethernet. The external PC then transmitted
tracking data of the desired objects to the main PC using the UDP
protocol. Figure 4 shows the objects that were tracked in this
work. Specifically, retroreflective motion tracker markers were
mounted onto the payload center point, operator wristbands, and
safety glasses. For each object, a rigid body was assigned in the
motion capture software to the marker arrangement, providing a
full 6 degrees-of-freedom pose. Therefore, the Cartesian position
and orientation of the objects were tracked and then used for
training and control. Note that the operator wristbands had to be
positioned such that the markers would face towards the cameras
and therefore the testbed with its current camera distribution
cannot accommodate the operator flipping their wrist
orientation. Alternatively, an Inertial Measurement Unit was
explored as an option to obtain hand position information, but
this method was determined to be infeasible due to the need for
repeated calibration in addition to lag time caused by the required
Extended Kalman Filter [11].

2.4 Glove Sensors

For localized hand measurements, operator gloves (Klein
Tools 40229) were augmented with electronic sensors as shown
in Figure 5. For finger bend measurements, flexible sensors that
change resistivity with respect to the degree of bending (Spectra
Symbol FS-L-0055-253-ST) were sewn onto the back of the

glove. In addition, thin pressure sensors that change resistivity
with respect to applied pressure (Interlink Electronics FSR 400)
were sewn onto the glove fingertips to measure the contact force.
Both the bend and pressure sensors were wired to voltage
dividers that were then measured by the Analog-to-Digital
Converter of a Teensy 4.0. The Teensy 4.0 then transmitted data
to the PC using serial communication at 100 Hz. Note that the
gloves also allow transmission using wireless Bluetooth via a
Microchip RN-42 Module, though this feature was not used in
this work.

FIGURE 4: a) PAYLOAD, b) SAFETY GLASSES, AND c)
WRISTBANDS TRACKED BY THE MOTION CAPTURE SYSTEM

 4

FIGURE 5: a) FRONT AND b) BACK VIEW OF AUGMENTED
OPERATOR GLOVES

3. DATA-DRIVEN MODELS

After collecting the data, three individual data-driven
classifier models were trained to predict the correct robot motion
command based on the sensor measurements. Hence, using these
data-driven models, audio feedback would no longer be required
for load-sharing, which therefore improves processing speed and
reliability. Specifically, neural networks, naïve Bayes, and
random forest algorithms were studied. This section briefly
summarizes the classifiers in addition to specific parameters
used in this work.

3.1 Neural Network

Neural network models have been used in multiple
manufacturing applications including tool condition monitoring
[12] and part quality inspection [13]. Neural networks consist of
multiple neurons with activation functions [14]. These neurons
are segregated into an input layer, an output layer, and at least
one hidden layer between the input and output layers. The neuron
of a subsequent layer can be represented as the activation
function of the sum of the previous layer multiplied by calibrated
weights. Thus, the final output of a neural network is represented
as the activation function of its prior layer multiplied by its
weights. Hence, a neural network model can model nonlinear
systems due to application of weights and activation functions.

To determine the weight values, this work uses a limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm [15] to
minimize a cross entropy loss function. In addition, a single 20

neuron hidden layer was used in this work. The size of the hidden
layer was determined by gradually increasing the number of
neurons until the classification accuracy no longer showed
significant improvement.

3.2 Naïve Bayes

Naïve Bayes models leverage Bayes’ theorem under the
assumption that every pair of features are conditionally
independent given the value of the output [16]. Naïve Bayes
models have been demonstrated in fault detection in
semiconductor manufacturing [17] and anomaly detection in
Industrial Internet of Things systems [18]. In naïve Bayes
classifiers, the classification rule can be expressed as

 𝑦𝑦� = 𝑎𝑎𝑎𝑎𝑎𝑎max

𝑦𝑦
(𝑃𝑃(𝑦𝑦)∏ 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦)𝑛𝑛

𝑖𝑖=1) (1)

where 𝑦𝑦 is the output and 𝑥𝑥 is the feature. In this work, 𝑃𝑃(𝑦𝑦) is
determined using Maximum A Posteriori estimation, while
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) is assumed to be Gaussian in this work:

 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) = 1

�2𝜋𝜋𝜎𝜎𝑦𝑦2
exp �− �𝑥𝑥𝑖𝑖−𝜇𝜇𝑦𝑦�

2

2𝜎𝜎𝑦𝑦2
� (2)

where 𝜇𝜇𝑦𝑦 and 𝜎𝜎𝑦𝑦 are calculated by maximizing the likelihood
function. Therefore, since the formulation is straightforward
with minimal numerical search algorithms, the training time of
the naïve Bayes classifier is expected to be the fastest out of the
models studied in this work.

3.3 Random Forest

Random forest models leverage the use of multiple decision
trees to create an ensemble classification [19]. Random forest
models have been used in manufacturing applications including
robot diagnostics [20] and job-shop scheduling [21]. Each
decision tree is trained with the bagging method using a random
subset of data with replacement for training. During
implementation, each of the decision trees (100 in this paper)
outputs a classification. The ensemble classification is then
determined by a majority vote of the decision trees. Therefore,
by using subsets for training each decision tree, errors induced
by overfitting can be reduced.

In addition to data bagging, the random forest was also
configured to bag a random subset of input features (maximum
of 7 features at a time) [22]. This feature bagging reduces
correlation among trees caused by strong predictors. By reducing
this correlation, the prediction accuracy is less prone to
overfitting in addition to ensuring that all features are analyzed
properly by the training algorithm.

4. RESULTS

This section describes predominant trends in the load-
sharing training data. Then, the models are evaluated by offline
cross-validation followed by physical implementation of the
trained models without audio feedback.

 5

4.1 Training Data
Seven load-sharing trials with the same participant were

conducted to obtain measurements for training the data-driven
models. Figure 6 shows representative time series results of the
motion tracker data. As expected, the robot’s internal position
data are relatively smooth because its pose measurements are
based on internal encoder data. However, the payload, glasses,
and wrist measurements that are based on motion capture marker
data are shown to be noisier. For instance, the X, Y, and Z safety
glass positions are reported as 0 mm when data are lost by the
motion capture cameras due to occlusion or failed camera
triangulation. However, this is prone to occur in motion capture
applications in a real-world environment, so the data were not
filtered in this work to ensure representative measurements. A
possible alternative would be to apply a median filter or first-
order hold in the event of data loss, at the cost of losing general
data fidelity. In addition, the rotations about the X, Y, and Z in
the motion tracker data show that rigid bodies represented by
motion capture markers are prone to “flipping” due to a
combination of noise and symmetry in the motion capture
patterns. This is prone to occur in the wrists since the motion
capture markers are mounted on a two-dimensional (2D) plane,
as shown in Fig. 4c. However, similar to data loss, this can occur
in real-world applications and therefore the data were not
processed to allow for this effect. Possible compensation
methods include 3D mounting of the motion capture markers at
the cost of comfort and flexibility in addition to implementing
process-based prediction models.

FIGURE 6: REPRESENTATIVE TIME SERIES FOR ROBOT AND
TRACKER MEASUREMENTS WITH DASHED LINE
REPRESENTING TARGET LOCATION OF PAYLOAD ± 20 MM

Figure 7 shows glove data for the same test shown in Fig. 6.
Interestingly, the flex sensors are shown to start and saturate at
different levels. For instance, the flex sensors for the index and
middle fingers of the left glove vary significantly from the right
glove. Therefore, after the operator wears the gloves, the sensors
may need calibration. However, this approach is time-consuming

in real-world production environments, especially if the
wearables are repeatedly removed. Therefore, this work does not
conduct sensor calibration and hence also considers variation in
the glove sensor measurements when training its data-driven
models. In addition, the pressure sensor measurements (bottom
of Fig. 7) also exhibit variation between the right and left gloves.
However, the pressure sensors can be used as important features
to identify the start and stop of the load-sharing process.

FIGURE 7: REPRESENTATIVE TIME SERIES FOR GLOVE
SENSOR MEASUREMENTS

4.2 Evaluation Metrics

To evaluate the performance of the three data-driven
models, a series of metrics were defined based on the design of
the testbed and the nature of the training datasets. These metrics
are roughly categorized as “accuracy” and “efficiency.”

Accuracy in this work is an assessment of the correctness of
the algorithms’ capacity to identify the directional motions of the
human operator. Given the time series nature of this application,
accuracy is the correctness of the estimate of the operator’s
intended motion, 𝑚𝑚�𝑛𝑛, versus the actual intended motion, 𝑚𝑚𝑛𝑛, at
a given time step, 𝑛𝑛, over the entire length of the test, 𝑁𝑁:

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑞𝑞𝑛𝑛𝑁𝑁

𝑛𝑛=0
𝑁𝑁

, where 𝑞𝑞𝑛𝑛 = �1 if 𝑚𝑚�𝑛𝑛 = 𝑚𝑚𝑛𝑛
0 otherwise

 (3)

In all instances, incorrect estimates of operator motions

introduce strain at the grasp points and may cause internal
stresses and forces to occur within the payload. In addition,
estimates that are opposite of the operator’s motions (e.g., the
operator moves the workpiece upward, but the robot attempts to
move it downward) can result in injury. In addition, confusion
matrices were presented along with accuracy metrics to illustrate
the nature and severity of the errors.

Similarly, given the manufacturing application domain, the
efficiency of the learning algorithm is measured as a function of
the timing of the algorithm’s performance. The algorithms that
are slower to predict are considered less efficient than those that

 6

take less time. However, efficiency is distinct from the accuracy
measure, as it is possible for a given approach to be both fast and
incorrect. There are three components of the time factor that are
critical for assessing the efficiency of a given algorithm:
1. Training time – How much time and effort are required to

advance the performance of an algorithm to the point where it
can make estimates of the operator’s motions with some level
of certainty?

2. Prediction time – How much time is required for an algorithm
to take the sensor inputs from the operator’s actions and then
produce a motion estimate?

3. Correction time – In the event that an initial motion estimate
is incorrect, how much time lapses before the correct motion
is identified?

In this work, the results from only the first two categories
are presented. However, it should be noted that longer correction
times tend to directly correlate to unnecessary increases in task
times and may also result in task performance degradation,
damage to equipment, and operator injury.

4.3 Cross-Validation

5-fold cross-validation was conducted to evaluate the data-
driven models before conducting physical evaluation. Table 1
shows the model accuracy results of the cross-validation. The
random forest model is shown to exhibit the highest accuracy at
97.31%, while the neural network is shown to have the lowest
accuracy at 72.12%. This is because the features in this work
vary in their correlation with the predicted motion output and
their level of noise. For instance, the X position data of all the
measurements shown in Fig. 8 is relatively constant compared to
the Y position data because the payload only moves in the Y
direction. Therefore, the X position data would not be as
correlated with predicting the operator voice commands as the Y
position data. Because the random forest conducts feature
bagging when training its ensemble decision trees, the random
forest model is able to implicitly isolate the relevant features.
Though a neural network is expected to conduct the same
approach by activating only the relevant neurons after the
corresponding weights are minimized, the amount of data
required in this work appears to be insufficient, which results in
the neural network’s performance deteriorating. The naïve Bayes
algorithm also identifies the relevant features by explicitly
defining 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦), as shown by its 93.27% accuracy. Note that a
possible compensation method is to manually isolate the relevant
features for training, though that approach is inefficient when
using large amounts of data. In addition, some features might
change their correlation with the predictions or noise
characteristics over time, such as when components degrade.

TABLE 1: ACCURACY OF DATA-DRIVEN CLASSIFIERS AS A
RESULT OF CROSS-VALIDATION

Neural
Network

Naïve
Bayes

Random
Forest

72.12% 93.27% 97.31%

Figure 8 shows the confusion matrices for each of the
models. Note that the operator did not use the command “Move
Left” since the payload did not overshoot in the Y direction.
Figure 8 shows that most of the robot motion in this work is
“Move Right” since this is the largest distance the robot travels.
Figure 8 also shows that the neural network appears to skew
towards the “Move Right” and “Stop” in its prediction errors. In
addition, most errors in the naïve Bayes model appears to be in
predicting “Stop” and “Move Right” when the robot should be
lifting the payload and lowering the payload, respectively.
Finally, the main prediction error for the random forest is
predicting “Stop” when the robot should be lifting the payload.

FIGURE 8: CONFUSION MATRICES FOR THE DATA-DRIVEN
CLASSIFIERS

4.4 Trained Model Validation

After conducting cross-validation, the classifiers were
trained with all available data for physical load-sharing
experiments. Table 2 shows the training and prediction time
(averaged over 1000 samples) on a Windows i7 PC. The neural
network and the naïve Bayes models were shown to have the
longest and shortest required training times, respectively. This is
because the neural network back-propagation is known to be
intensive while the optimization of the hyperparameters of the
naïve Bayes model requires less iterations. Interestingly, the
neural network has the fastest prediction time while the random
forest has the slowest. This is because the actual implementation
of the trained weights by the neural network is simply matrix
multiplication with the use of activation functions while the
random forest requires the calculations produced by multiple
decision trees. Reducing the number of trees can decrease the
prediction time at the cost of reducing accuracy. Finally, the
naïve Bayes prediction time is significantly faster than the
random forest since it uses analytical calculations in its

 7

prediction. However, note that the prediction times are negligible
compared to the 100 ms cycle time for robot commands.

TABLE 2: TRAINING AND PREDICTION TIMES FOR THE
DATA-DRIVEN CLASSIFIERS

 Neural
Network

Naïve
Bayes

Random
Forest

Training 25,210 ms 32 ms 5,930 ms
Prediction 0.075 ms 0.17 ms 6.4 ms

To evaluate the data-driven classifiers in physical load-

sharing experiments, three trials were conducted for each model
to predict and command coordinated robot motion with the
operator without the use of audio feedback. Note that the neural
network was not used in the physical load-sharing evaluation due
to its poor prediction results as shown in Table 1 and Fig. 8 to
avoid potential accidents. Hence, this work shows that the
validation approaches shown in Tables 1 and 2, and in Fig. 8 can
be used to conduct safety evaluations for these models before
conducting real human-robot experiments.

Figure 9 shows time-series positions of the payload for the
naïve Bayes classifier. Interestingly, even though the naïve
Bayes exhibited a 93.27% prediction accuracy, the payload was
unable to reach its final location. This is because the Y position
in Fig. 9 shows that the robot and operator move past the desired
workpiece location. Hence, the robot does not lower the payload
onto its final Z destination. The naïve Bayes confusion matrix in
Fig. 8 shows that the classifier tends to incorrectly predict “Move
Right” when the payload should stop moving to the right and
start lowering the payload. One method to compensate for this
error is to conduct training experiments where the operator
purposefully moves past the destination and says “Move Left” to
readjust the payload back to the desired Y direction.

FIGURE 9: REPRESENTATIVE PAYLOAD POSITION RESULTS
FOR NAÏVE BAYES CLASSIFIER WITH DASHED LINE
REPRESENTING TARGET LOCATION OF PAYLOAD ± 20 MM

Figure 10 shows results for the random forest classifier.
Figure 10 shows that the random forest classifier is able to
accurately predict the intended operator commands and
coordinate moving the payload to its final destination. This is
because Table 1 shows that the random forest exhibits 97.31%
accuracy, and its largest prediction error is predicting “Stop”
when the robot should be moving up. This is most likely due to
errors in transitioning between the initial zero velocity state and
the lifting state. In addition, Figs. 9 and 10 show that the models
experience variation in the payload trajectory. For instance, Fig.
10 shows that the random forest lifts the payload higher in the Z
direction for Trial 1 vs. Trials 2 and 3. This could be because the
data-driven models are also mimicking operator variation in this
work.

FIGURE 10: REPRESENTATIVE RESULTS FOR RANDOM
FOREST CLASSIFIER WITH DASHED LINE REPRESENTING
TARGET LOCATION OF PAYLOAD ± 20 MM

5. CONCLUSION
This paper presents an evaluation of three data-driven

decision models in a human-robot load-sharing application.
Robot, operator, and payload data were collected to train neural
network, naïve Bayes, and random forest models by using a load-
sharing testbed consisting of a motion tracker, wearable sensors,
and voice commands. The random forest model was shown to
exhibit the highest prediction accuracy and was able to command
robot motion to accurately coordinate with the operator without
the use of voice commands. In addition, the naïve Bayes and the
random forest models were not used previously in human-robot
load-sharing applications demonstrated in prior literature.
Hence, this work can further the advancement of human-robot
collaboration in manufacturing applications due to its novel
insights into a human-robot coordinated task.

Though this work evaluates variation within an operator,
human subjects research is desired as future work. In addition,
developing methods to identify the most impactful features on
predictions quickly and quantitatively are a topic of interest.
Also, an ongoing topic of future work is to develop more data-

 8

driven classifiers, such as an ensemble neural network, to
improve robustness and accuracy. Finally, timing analysis
between voice commands and human movements are also of
interest regarding future work.

ACKNOWLEDGEMENTS

This work was funded by NIST and the National Research
Council Research Associateship Program.

DISCLAIMER

Certain commercial equipment, instruments, or materials
are identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to
imply recommendation or endorsement by NIST, nor is it
intended to imply that the materials or equipment identified are
necessarily the best available for the purpose.

REFERENCES
[1] Anvaripour, M., Khoshnam, M., Menon, C., and Saif, M.,

2019, “Safe Human Robot Cooperation in Task Performed
on the Shared Load,” 2019 International Conference On
Robotics And Automation (ICRA), IEEE, pp. 3761–3767.

[2] Kim, W., Lee, J., Peternel, L., Tsagarakis, N., and Ajoudani,
A., 2017, “Anticipatory Robot Assistance for the Prevention
of Human Static Joint Overloading in Human–Robot
Collaboration,” IEEE Robotics and Automation Letters,
3(1), pp. 68–75.

[3] Berger, E., Vogt, D., Haji-Ghassemi, N., Jung, B., and Amor,
H. ben, 2013, “Inferring Guidance Information in
Cooperative Human-Robot Tasks,” 2013 13th IEEE-RAS
International Conference on Humanoid Robots
(Humanoids), IEEE, pp. 124–129.

[4] DelPreto, J., and Rus, D., 2019, “Sharing the Load: Human-
Robot Team Lifting Using Muscle Activity,” 2019
International Conference on Robotics and Automation
(ICRA), IEEE, pp. 7906–7912.

[5] van der Spaa, L., Gienger, M., Bates, T., and Kober, J., 2020,
“Predicting and Optimizing Ergonomics in Physical
Human-Robot Cooperation Tasks,” 2020 IEEE
International Conference on Robotics and Automation
(ICRA), IEEE, pp. 1799–1805.

[6] Sheng, W., Thobbi, A., and Gu, Y., 2014, “An Integrated
Framework for Human–Robot Collaborative
Manipulation,” IEEE Transactions on Cybernetics, 45(10),
pp. 2030–2041.

[7] Tan, J. T. C., and Arai, T., 2011, “Triple Stereo Vision
System for Safety Monitoring of Human-Robot
Collaboration in Cellular Manufacturing,” 2011 IEEE
International Symposium on Assembly and Manufacturing
(ISAM), IEEE, pp. 1–6.

[8] Lawitzky, M., Mörtl, A., and Hirche, S., 2010, “Load
Sharing in Human-Robot Cooperative Manipulation,” 19th
International Symposium in Robot and Human Interactive
Communication, IEEE, pp. 185–191.

[9] Tsarouchi, P., Michalos, G., Makris, S., Athanasatos, T.,
Dimoulas, K., and Chryssolouris, G., 2017, “On a Human–

Robot Workplace Design and Task Allocation System,”
International Journal of Computer Integrated
Manufacturing, 30(12), pp. 1272–1279.

[10] Roveda, L., Maskani, J., Franceschi, P., Abdi, A., Braghin,
F., Tosatti, L. M., and Pedrocchi, N., 2020, “Model-Based
Reinforcement Learning Variable Impedance Control for
Human-Robot Collaboration,” Journal of Intelligent &
Robotic Systems, 100(2), pp. 417–433.

[11] Nenna, V., Pidlisecky, A., and Knight, R., 2011,
“Application of an Extended Kalman Filter Approach to
Inversion of Time‐lapse Electrical Resistivity Imaging Data
for Monitoring Recharge,” Water Resources Research,
47(10), pp. W10525.

[12] Dornfeld, D. A., and DeVries, M. F., 1990, “Neural Network
Sensor Fusion for Tool Condition Monitoring,” CIRP
Annals, 39(1), pp. 101–105.

[13] Zhang, B., Jaiswal, P., Rai, R., Guerrier, P., and Baggs, G.,
2019, “Convolutional Neural Network-Based Inspection of
Metal Additive Manufacturing Parts,” Rapid Prototyping
Journal, 25(3), pp. 530-540.

[14] Anthony, M., and Bartlett, P. L., 2009, “Neural Network
Learning: Theoretical Foundations,” Cambridge University
Press.

[15] Liu, D. C., and Nocedal, J., 1989, “On the Limited Memory
BFGS Method for Large Scale Optimization,”
Mathematical Programming, 45(1), pp. 503–528.

[16] Rish, I., 2001, “An Empirical Study of the Naive Bayes
Classifier,” IJCAI 2001 Workshop on Empirical Methods in
Artificial Intelligence, pp. 41–46.

[17] Fan, S.-K. S., Hsu, C.-Y., Tsai, D.-M., He, F., and Cheng,
C.-C., 2020, “Data-Driven Approach for Fault Detection
and Diagnostic in Semiconductor Manufacturing,” IEEE
Transactions on Automation Science and Engineering,
17(4), pp. 1925–1936.

[18] Wu, D., Jiang, Z., Xie, X., Wei, X., Yu, W., and Li, R., 2019,
“LSTM Learning with Bayesian and Gaussian Processing
for Anomaly Detection in Industrial IoT,” IEEE
Transactions on Industrial Informatics, 16(8), pp. 5244–
5253.

[19] Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-
Olmo, M., and Rigol-Sanchez, J. P., 2012, “An Assessment
of the Effectiveness of a Random Forest Classifier for Land-
Cover Classification,” ISPRS Journal of Photogrammetry
and Remote Sensing, 67, pp. 93–104.

[20] Wescoat, E., Krugh, M., and Mears, L., 2021, “Random
Forest Regression for Predicting an Anomalous Condition
on a UR10 Cobot End-Effector from Purposeful Failure
Data,” Procedia Manufacturing, 53, pp. 644–655.

[21] Jun, S., Lee, S., and Chun, H., 2019, “Learning Dispatching
Rules Using Random Forest in Flexible Job Shop
Scheduling Problems,” International Journal of Production
Research, 57(10), pp. 3290–3310.

[22] Ho, T. K., 1998, “The Random Subspace Method for
Constructing Decision Forests,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(8), pp. 832–
844.

