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ABSTRACT 
Human-robot load-sharing is a potential application for 

human-robot collaborative systems in production environments. 
However, knowledge of the appropriate data-driven models for 
this application type is limited due to a lack of physical real-
world data and validation metrics. This paper describes and 
demonstrates a load-sharing testbed for evaluating data-driven 
models in a human-robot load-sharing application. Specifically, 
the testbed consists of a single operator and single robot 
relocating a payload to a desired destination. In this work, the 
operator initially communicates to the robot using audio 
feedback to initiate and alter robotic motion commands. During 
the payload relocation, human, payload, and robot state data are 
recorded. The measurements are then used to train three data-
driven models (neural network, naïve Bayes, and random forest). 
The data-driven models are then used to transmit movement 
commands to the robot during human-robot load-sharing 
without the use of audio feedback, thus improving robustness and 
eliminating audio signal processing time. Evaluation of the three 
data-driven models shows that the random forest model was 
demonstrated to be the most accurate model followed by naïve 
Bayes and then the neural network. Hence, the results of this 
study provide novel insight into the types of data-driven models 
that can be used in load-sharing applications in addition to 
development of a real-world testbed. 

Keywords: Human-Robot Interaction, Manufacturing, 
Load-Sharing, Collaborative Robot, Wearable Electronics 
 
1. INTRODUCTION 

Human-robot collaborative systems are seeing increasing 
adoption in manufacturing applications due to their flexibility 
and efficiency. In particular, load-sharing applications are 
studied by researchers in fields including production [1] and 
health [2]. In this work, human-robot load-sharing refers to a 
system where at least one human and one independent robot 

coordinate to relocate a payload. In this application of human-
robot collaboration, the robot must have both perception and 
cognitive capabilities to ensure accurate and safe handling of the 
payload. 

Exclusive monitoring of the robot state, such as the joint 
angles and current sensors, has been used for the robot to learn 
the optimal configuration for assisted lifting [3]. However, 
human-robot load-sharing applications generally tend to require 
the robot to sense the payload or state of the human. As such, 
multiple prior sensing technologies have been developed to 
augment robots for this task. For instance, DelPreto and Rus [4] 
used surface electromyography in a manufacturing-based load-
sharing system to sense the operator intent based on muscle 
signals in the human arm. In addition, van der Spaa et al. [5] used 
data from an entire motion capture suit to train a graph search 
algorithm to determine optimal robot motion. Another use of 
motion capture for robot perception in human-robot load-sharing 
involved tracking the robot hand, human hand, and payload pose 
[6]. However, in a realistic production environment, the robot, 
operator, and payload information must all be measured by a 
variety of sensor types to improve robustness against sensor 
interference that is known to occur in production environments 
[7]. In addition, cognitive models must be developed based on 
sensor data for determining the appropriate robot commands to 
ensure safe and accurate execution of human-robot load-sharing. 

Though teleoperated human-robot load-sharing applications 
have been demonstrated [8], automated robotic motions that 
require cognitive models are more desirable due to reduced 
manual variation and lag. Therefore, human-robot load-sharing 
is a use-case of interest for researchers to develop robotic 
cognitive models of human behavior, because the application 
requires human-robot coordination. While analytical models are 
known to be used in human-robot collaboration applications 
such as task allocation [9], data-driven models are known to be 
more reliable in quantifying stochastic phenomena including 



 2  

operator intent and sensor noise. Many of the previously 
mentioned prior literature also developed data-driven models 
that leveraged their demonstrated sensing capabilities. For 
instance, Sheng et al. [6] developed a reinforcement learning 
approach to lift the payload, though only vertical lifting was 
conducted. In addition, Roveda et al. [10] used a reinforcement 
learning algorithm based on neural networks to conduct 
impedance control in human-robot load-sharing. However, 
reinforcement learning requires multiple trials, which may 
require incorrect motions that induce hazards in a coordinated 
task, such as load-sharing, for training. While supervised 
learning approaches such as neural networks [4] and Gaussian 
Process Regression [3] have been demonstrated, there is a lack 
of comparison between the plethora of data-driven models that 
can be applied towards human-robot load-sharing. Therefore, 
researchers and manufacturers have limited knowledge on the 
appropriate data-driven models that can be used in human-robot 
load-sharing. 

This research aims to provide an evaluation of supervised 
learning data-driven models in human-robot load-sharing. In this 
work, a single human operator and a single robot coordinate to 
relocate a payload. To initially train the data-driven models in 
this work, voice commands by the operator are used to direct the 
robot motion to relocate the payload while human, payload, and 
robot state data are recorded. The data are then used to train three 
individual data-driven models (neural network, naïve Bayes, and 
random forest) to command robot motions based on 
measurements without the use of voice commands. Figure 1 
shows a flowchart of training and implementation methodology. 
The results of the performance of the models are then evaluated 
followed by discussion and conclusion.  

 

 
FIGURE 1: FLOWCHART OF TRAINING AND EVALUATION 
METHODOLOGY 
 
2. TESTBED 

Figure 2 shows the experimental testbed used in this work. 
At the beginning of the experiments, the robot was automatically 
driven to the start position shown in Fig. 2 and the data collection 
was started. Then, the operator and the robot were tasked with 

raising a payload (+Z direction), moving the payload 
horizontally (+Y direction), and then lowering the payload (-Z 
direction) onto the end position supports identified in Fig. 2. In 
this work, the payload was a 200 mm x 700 mm x 1.60 mm 
aluminum plate (~0.61 kg). For safety purposes, bumpers were 
mounted around the plate and a soft-stop foot switch was wired 
to the robot controller. 

 

 
FIGURE 2: EXPERIMENTAL SETUP FOR LOAD-SHARING 
TESTBED 

 
2.1 Audio Commands for Training 

Initially, data for supervised learning were collected by 
repeatedly conducting the load-sharing task with the operator 
controlling the robot with voice commands. Figure 3 shows the 
available voice commands the operator can give to move the 
robot in a specified direction at 20 mm/sec. In addition, the voice 
command “Stop” would stop any robot motion. To conduct the 
voice control, a Python script ran on a personal computer (PC) 
that used a Bluetooth receiver to read audio signals. The Google 
Cloud Text-to-Speech Application Programming Interface (API) 
was used to convert the raw audio signal to text within 2 seconds. 
The text was then analyzed by the Python script to determine the 
direction of motion for the robot.  

 

 
FIGURE 3: VOICE COMMANDS AND THE CORRESPONDING 
ROBOT MOTION DIRECTION 
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 During the training phase, the operator used voice 
commands to move the robot in a specified direction, and the 
operator would move in tandem with the robot while holding the 
payload. Thus, robot, human motion, and payload data would be 
recorded throughout the entire move, which would then in turn 
be used to train the data-driven models in this work. 
 
2.2 Robot and Operator 

In this experiment, a Universal Robot UR10 collaborative 
robot arm with a CB3 control was used to support the payload. 
The robot was configured to accept velocity commands from the 
external computer using the User Datagram Protocol (UDP) at a 
rate of 10 Hz. For safety, the payload was manually clamped to 
the robot’s end effector instead of using a robotic gripper. During 
the load-sharing process, recorded data from the robot included 
Cartesian position and velocity. 

In this paper, a single operator was used since the focus of 
this work was the evaluation of data-driven models in a 
controlled human-robot team. Note that the operator was 
provided no instruction on the ideal path to move the robot in 
addition to no instruction regarding body posture. Thus, this 
research studies variability within a particular human subject but 
does not generalize the results to a population. In addition, the 
operator’s intuition was used to determine factors including the 
appropriate vertical direction height before moving in the 
horizontal direction. 

 
2.3 Position Tracking 

To track the position of the payload and operator wearables, 
an 8-camera motion capture system (Vicon Bonita 10) at 100 Hz 
was used. The camera system communicated to an external PC 
using Power-over-Ethernet. The external PC then transmitted 
tracking data of the desired objects to the main PC using the UDP 
protocol. Figure 4 shows the objects that were tracked in this 
work. Specifically, retroreflective motion tracker markers were 
mounted onto the payload center point, operator wristbands, and 
safety glasses. For each object, a rigid body was assigned in the 
motion capture software to the marker arrangement, providing a 
full 6 degrees-of-freedom pose. Therefore, the Cartesian position 
and orientation of the objects were tracked and then used for 
training and control. Note that the operator wristbands had to be 
positioned such that the markers would face towards the cameras 
and therefore the testbed with its current camera distribution 
cannot accommodate the operator flipping their wrist 
orientation. Alternatively, an Inertial Measurement Unit was 
explored as an option to obtain hand position information, but 
this method was determined to be infeasible due to the need for 
repeated calibration in addition to lag time caused by the required 
Extended Kalman Filter [11]. 
 
2.4 Glove Sensors 

For localized hand measurements, operator gloves (Klein 
Tools 40229) were augmented with electronic sensors as shown 
in Figure 5. For finger bend measurements, flexible sensors that 
change resistivity with respect to the degree of bending (Spectra 
Symbol FS-L-0055-253-ST) were sewn onto the back of the 

glove. In addition, thin pressure sensors that change resistivity 
with respect to applied pressure (Interlink Electronics FSR 400) 
were sewn onto the glove fingertips to measure the contact force. 
Both the bend and pressure sensors were wired to voltage 
dividers that were then measured by the Analog-to-Digital 
Converter of a Teensy 4.0. The Teensy 4.0 then transmitted data 
to the PC using serial communication at 100 Hz. Note that the 
gloves also allow transmission using wireless Bluetooth via a 
Microchip RN-42 Module, though this feature was not used in 
this work. 

 

 
FIGURE 4: a) PAYLOAD, b) SAFETY GLASSES, AND c) 
WRISTBANDS TRACKED BY THE MOTION CAPTURE SYSTEM 
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FIGURE 5: a) FRONT AND b) BACK VIEW OF AUGMENTED 
OPERATOR GLOVES  
 
3. DATA-DRIVEN MODELS 

After collecting the data, three individual data-driven 
classifier models were trained to predict the correct robot motion 
command based on the sensor measurements. Hence, using these 
data-driven models, audio feedback would no longer be required 
for load-sharing, which therefore improves processing speed and 
reliability. Specifically, neural networks, naïve Bayes, and 
random forest algorithms were studied. This section briefly 
summarizes the classifiers in addition to specific parameters 
used in this work. 

 
3.1 Neural Network 

Neural network models have been used in multiple 
manufacturing applications including tool condition monitoring 
[12] and part quality inspection [13]. Neural networks consist of 
multiple neurons with activation functions [14]. These neurons 
are segregated into an input layer, an output layer, and at least 
one hidden layer between the input and output layers. The neuron 
of a subsequent layer can be represented as the activation 
function of the sum of the previous layer multiplied by calibrated 
weights. Thus, the final output of a neural network is represented 
as the activation function of its prior layer multiplied by its 
weights. Hence, a neural network model can model nonlinear 
systems due to application of weights and activation functions. 

To determine the weight values, this work uses a limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm [15] to 
minimize a cross entropy loss function. In addition, a single 20 

neuron hidden layer was used in this work. The size of the hidden 
layer was determined by gradually increasing the number of 
neurons until the classification accuracy no longer showed 
significant improvement. 

 
3.2 Naïve Bayes 

Naïve Bayes models leverage Bayes’ theorem under the 
assumption that every pair of features are conditionally 
independent given the value of the output [16]. Naïve Bayes 
models have been demonstrated in fault detection in 
semiconductor manufacturing [17] and anomaly detection in 
Industrial Internet of Things systems [18]. In naïve Bayes 
classifiers, the classification rule can be expressed as 
 
 𝑦𝑦� = 𝑎𝑎𝑎𝑎𝑎𝑎max

𝑦𝑦
(𝑃𝑃(𝑦𝑦)∏ 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦)𝑛𝑛

𝑖𝑖=1 )  (1) 

 
where 𝑦𝑦 is the output and 𝑥𝑥 is the feature. In this work, 𝑃𝑃(𝑦𝑦) is 
determined using Maximum A Posteriori estimation, while 
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) is assumed to be Gaussian in this work: 
 

 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) = 1

�2𝜋𝜋𝜎𝜎𝑦𝑦2
exp �− �𝑥𝑥𝑖𝑖−𝜇𝜇𝑦𝑦�

2

2𝜎𝜎𝑦𝑦2
� (2) 

 
where 𝜇𝜇𝑦𝑦 and 𝜎𝜎𝑦𝑦 are calculated by maximizing the likelihood 
function. Therefore, since the formulation is straightforward 
with minimal numerical search algorithms, the training time of 
the naïve Bayes classifier is expected to be the fastest out of the 
models studied in this work. 

 
3.3 Random Forest 

Random forest models leverage the use of multiple decision 
trees to create an ensemble classification [19]. Random forest 
models have been used in manufacturing applications including 
robot diagnostics [20] and job-shop scheduling [21]. Each 
decision tree is trained with the bagging method using a random 
subset of data with replacement for training. During 
implementation, each of the decision trees (100 in this paper) 
outputs a classification. The ensemble classification is then 
determined by a majority vote of the decision trees. Therefore, 
by using subsets for training each decision tree, errors induced 
by overfitting can be reduced. 

In addition to data bagging, the random forest was also 
configured to bag a random subset of input features (maximum 
of 7 features at a time) [22]. This feature bagging reduces 
correlation among trees caused by strong predictors. By reducing 
this correlation, the prediction accuracy is less prone to 
overfitting in addition to ensuring that all features are analyzed 
properly by the training algorithm. 
 
4. RESULTS 

This section describes predominant trends in the load-
sharing training data. Then, the models are evaluated by offline 
cross-validation followed by physical implementation of the 
trained models without audio feedback. 
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4.1 Training Data 
Seven load-sharing trials with the same participant were 

conducted to obtain measurements for training the data-driven 
models. Figure 6 shows representative time series results of the 
motion tracker data. As expected, the robot’s internal position 
data are relatively smooth because its pose measurements are 
based on internal encoder data. However, the payload, glasses, 
and wrist measurements that are based on motion capture marker 
data are shown to be noisier. For instance, the X, Y, and Z safety 
glass positions are reported as 0 mm when data are lost by the 
motion capture cameras due to occlusion or failed camera 
triangulation. However, this is prone to occur in motion capture 
applications in a real-world environment, so the data were not 
filtered in this work to ensure representative measurements. A 
possible alternative would be to apply a median filter or first-
order hold in the event of data loss, at the cost of losing general 
data fidelity. In addition, the rotations about the X, Y, and Z in 
the motion tracker data show that rigid bodies represented by 
motion capture markers are prone to “flipping” due to a 
combination of noise and symmetry in the motion capture 
patterns. This is prone to occur in the wrists since the motion 
capture markers are mounted on a two-dimensional (2D) plane, 
as shown in Fig. 4c. However, similar to data loss, this can occur 
in real-world applications and therefore the data were not 
processed to allow for this effect. Possible compensation 
methods include 3D mounting of the motion capture markers at 
the cost of comfort and flexibility in addition to implementing 
process-based prediction models. 

 

 
FIGURE 6: REPRESENTATIVE TIME SERIES FOR ROBOT AND 
TRACKER MEASUREMENTS WITH DASHED LINE 
REPRESENTING TARGET LOCATION OF PAYLOAD ± 20 MM  
 

Figure 7 shows glove data for the same test shown in Fig. 6. 
Interestingly, the flex sensors are shown to start and saturate at 
different levels. For instance, the flex sensors for the index and 
middle fingers of the left glove vary significantly from the right 
glove. Therefore, after the operator wears the gloves, the sensors 
may need calibration. However, this approach is time-consuming 

in real-world production environments, especially if the 
wearables are repeatedly removed. Therefore, this work does not 
conduct sensor calibration and hence also considers variation in 
the glove sensor measurements when training its data-driven 
models. In addition, the pressure sensor measurements (bottom 
of Fig. 7) also exhibit variation between the right and left gloves. 
However, the pressure sensors can be used as important features 
to identify the start and stop of the load-sharing process. 
 

 
FIGURE 7: REPRESENTATIVE TIME SERIES FOR GLOVE 
SENSOR MEASUREMENTS 
 
4.2 Evaluation Metrics 

To evaluate the performance of the three data-driven 
models, a series of metrics were defined based on the design of 
the testbed and the nature of the training datasets.  These metrics 
are roughly categorized as “accuracy” and “efficiency.”   

Accuracy in this work is an assessment of the correctness of 
the algorithms’ capacity to identify the directional motions of the 
human operator.  Given the time series nature of this application, 
accuracy is the correctness of the estimate of the operator’s 
intended motion, 𝑚𝑚�𝑛𝑛, versus the actual intended motion, 𝑚𝑚𝑛𝑛, at 
a given time step, 𝑛𝑛, over the entire length of the test, 𝑁𝑁: 

 
 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦 = ∑ 𝑞𝑞𝑛𝑛𝑁𝑁

𝑛𝑛=0
𝑁𝑁

, where 𝑞𝑞𝑛𝑛 = �1 if 𝑚𝑚�𝑛𝑛 = 𝑚𝑚𝑛𝑛
0 otherwise

  (3) 
 
In all instances, incorrect estimates of operator motions 

introduce strain at the grasp points and may cause internal 
stresses and forces to occur within the payload.  In addition, 
estimates that are opposite of the operator’s motions (e.g., the 
operator moves the workpiece upward, but the robot attempts to 
move it downward) can result in injury. In addition, confusion 
matrices were presented along with accuracy metrics to illustrate 
the nature and severity of the errors. 

Similarly, given the manufacturing application domain, the 
efficiency of the learning algorithm is measured as a function of 
the timing of the algorithm’s performance. The algorithms that 
are slower to predict are considered less efficient than those that 
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take less time.  However, efficiency is distinct from the accuracy 
measure, as it is possible for a given approach to be both fast and 
incorrect. There are three components of the time factor that are 
critical for assessing the efficiency of a given algorithm: 
1. Training time – How much time and effort are required to 

advance the performance of an algorithm to the point where it 
can make estimates of the operator’s motions with some level 
of certainty? 

2. Prediction time – How much time is required for an algorithm 
to take the sensor inputs from the operator’s actions and then 
produce a motion estimate? 

3. Correction time – In the event that an initial motion estimate 
is incorrect, how much time lapses before the correct motion 
is identified? 

In this work, the results from only the first two categories 
are presented.  However, it should be noted that longer correction 
times tend to directly correlate to unnecessary increases in task 
times and may also result in task performance degradation, 
damage to equipment, and operator injury. 
 
4.3 Cross-Validation 

5-fold cross-validation was conducted to evaluate the data-
driven models before conducting physical evaluation. Table 1 
shows the model accuracy results of the cross-validation. The 
random forest model is shown to exhibit the highest accuracy at 
97.31%, while the neural network is shown to have the lowest 
accuracy at 72.12%. This is because the features in this work 
vary in their correlation with the predicted motion output and 
their level of noise. For instance, the X position data of all the 
measurements shown in Fig. 8 is relatively constant compared to 
the Y position data because the payload only moves in the Y 
direction. Therefore, the X position data would not be as 
correlated with predicting the operator voice commands as the Y 
position data. Because the random forest conducts feature 
bagging when training its ensemble decision trees, the random 
forest model is able to implicitly isolate the relevant features. 
Though a neural network is expected to conduct the same 
approach by activating only the relevant neurons after the 
corresponding weights are minimized, the amount of data 
required in this work appears to be insufficient, which results in 
the neural network’s performance deteriorating. The naïve Bayes 
algorithm also identifies the relevant features by explicitly 
defining 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦), as shown by its 93.27% accuracy. Note that a 
possible compensation method is to manually isolate the relevant 
features for training, though that approach is inefficient when 
using large amounts of data. In addition, some features might 
change their correlation with the predictions or noise 
characteristics over time, such as when components degrade. 
 
TABLE 1: ACCURACY OF DATA-DRIVEN CLASSIFIERS AS A 
RESULT OF CROSS-VALIDATION 

Neural 
Network 

Naïve 
Bayes 

Random 
Forest 

72.12% 93.27% 97.31% 
 

Figure 8 shows the confusion matrices for each of the 
models. Note that the operator did not use the command “Move 
Left” since the payload did not overshoot in the Y direction. 
Figure 8 shows that most of the robot motion in this work is 
“Move Right” since this is the largest distance the robot travels. 
Figure 8 also shows that the neural network appears to skew 
towards the “Move Right” and “Stop” in its prediction errors. In 
addition, most errors in the naïve Bayes model appears to be in 
predicting “Stop” and “Move Right” when the robot should be 
lifting the payload and lowering the payload, respectively. 
Finally, the main prediction error for the random forest is 
predicting “Stop” when the robot should be lifting the payload. 

 

  
FIGURE 8: CONFUSION MATRICES FOR THE DATA-DRIVEN 
CLASSIFIERS 

 
4.4 Trained Model Validation 

After conducting cross-validation, the classifiers were 
trained with all available data for physical load-sharing 
experiments. Table 2 shows the training and prediction time 
(averaged over 1000 samples) on a Windows i7 PC. The neural 
network and the naïve Bayes models were shown to have the 
longest and shortest required training times, respectively. This is 
because the neural network back-propagation is known to be 
intensive while the optimization of the hyperparameters of the 
naïve Bayes model requires less iterations. Interestingly, the 
neural network has the fastest prediction time while the random 
forest has the slowest. This is because the actual implementation 
of the trained weights by the neural network is simply matrix 
multiplication with the use of activation functions while the 
random forest requires the calculations produced by multiple 
decision trees. Reducing the number of trees can decrease the 
prediction time at the cost of reducing accuracy. Finally, the 
naïve Bayes prediction time is significantly faster than the 
random forest since it uses analytical calculations in its 
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prediction. However, note that the prediction times are negligible 
compared to the 100 ms cycle time for robot commands. 

 
TABLE 2: TRAINING AND PREDICTION TIMES FOR THE 
DATA-DRIVEN CLASSIFIERS 

 Neural 
Network 

Naïve 
Bayes 

Random 
Forest 

Training 25,210 ms 32 ms 5,930 ms 
Prediction 0.075 ms 0.17 ms 6.4 ms 

 
To evaluate the data-driven classifiers in physical load-

sharing experiments, three trials were conducted for each model 
to predict and command coordinated robot motion with the 
operator without the use of audio feedback. Note that the neural 
network was not used in the physical load-sharing evaluation due 
to its poor prediction results as shown in Table 1 and Fig. 8 to 
avoid potential accidents. Hence, this work shows that the 
validation approaches shown in Tables 1 and 2, and in Fig. 8 can 
be used to conduct safety evaluations for these models before 
conducting real human-robot experiments. 

Figure 9 shows time-series positions of the payload for the 
naïve Bayes classifier. Interestingly, even though the naïve 
Bayes exhibited a 93.27% prediction accuracy, the payload was 
unable to reach its final location. This is because the Y position 
in Fig. 9 shows that the robot and operator move past the desired 
workpiece location. Hence, the robot does not lower the payload 
onto its final Z destination. The naïve Bayes confusion matrix in 
Fig. 8 shows that the classifier tends to incorrectly predict “Move 
Right” when the payload should stop moving to the right and 
start lowering the payload. One method to compensate for this 
error is to conduct training experiments where the operator 
purposefully moves past the destination and says “Move Left” to 
readjust the payload back to the desired Y direction.  

 

 
FIGURE 9: REPRESENTATIVE PAYLOAD POSITION RESULTS 
FOR NAÏVE BAYES CLASSIFIER WITH DASHED LINE 
REPRESENTING TARGET LOCATION OF PAYLOAD ± 20 MM 

 

Figure 10 shows results for the random forest classifier. 
Figure 10 shows that the random forest classifier is able to 
accurately predict the intended operator commands and 
coordinate moving the payload to its final destination. This is 
because Table 1 shows that the random forest exhibits 97.31% 
accuracy, and its largest prediction error is predicting “Stop” 
when the robot should be moving up. This is most likely due to 
errors in transitioning between the initial zero velocity state and 
the lifting state. In addition, Figs. 9 and 10 show that the models 
experience variation in the payload trajectory. For instance, Fig. 
10 shows that the random forest lifts the payload higher in the Z 
direction for Trial 1 vs. Trials 2 and 3. This could be because the 
data-driven models are also mimicking operator variation in this 
work. 
 

 
FIGURE 10: REPRESENTATIVE RESULTS FOR RANDOM 
FOREST CLASSIFIER WITH DASHED LINE REPRESENTING 
TARGET LOCATION OF PAYLOAD ± 20 MM 
 

5. CONCLUSION 
This paper presents an evaluation of three data-driven 

decision models in a human-robot load-sharing application. 
Robot, operator, and payload data were collected to train neural 
network, naïve Bayes, and random forest models by using a load-
sharing testbed consisting of a motion tracker, wearable sensors, 
and voice commands. The random forest model was shown to 
exhibit the highest prediction accuracy and was able to command 
robot motion to accurately coordinate with the operator without 
the use of voice commands. In addition, the naïve Bayes and the 
random forest models were not used previously in human-robot 
load-sharing applications demonstrated in prior literature. 
Hence, this work can further the advancement of human-robot 
collaboration in manufacturing applications due to its novel 
insights into a human-robot coordinated task. 

Though this work evaluates variation within an operator, 
human subjects research is desired as future work. In addition, 
developing methods to identify the most impactful features on 
predictions quickly and quantitatively are a topic of interest. 
Also, an ongoing topic of future work is to develop more data-
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driven classifiers, such as an ensemble neural network, to 
improve robustness and accuracy. Finally, timing analysis 
between voice commands and human movements are also of 
interest regarding future work. 
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