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A new Helmholtz energy equation of state is presented for trans-1-chloro-3,3,3-

trifluoroprop-1-ene [R1233zd(E)], which is expressed with temperature and density as the

independent variables. Experimental data in the range of temperatures from 215 K to

444 K and pressures up to 35 MPa form the basis of the new equation. In this range, ex-

pected uncertainties (k = 2) of the new equation of state are 0.07 % for vapor pressures

at temperatures above the normal boiling point temperature (≈ 291 K), 0.2 % for vapor

pressures at lower temperatures, 0.05 % for liquid densities, 0.15 % for vapor densities,

0.1 % for saturated liquid densities, 0.05 % for liquid-phase sound speeds, and 0.08 % for

vapor-phase sound speeds. The new equation is valid at temperatures from the triple-point

temperature (165.75 K) to 450 K and pressures up to 100 MPa with reasonable uncertain-

ties outside the available range of data because it fully extrapolates with correct physical

behavior to higher temperatures and pressures, and to lower temperatures. The equation

of state presented here has been recommended as an international standard by the working

group, presently revising ISO 17584 (Refrigerant Properties).
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1. INTRODUCTION

1.1. Background

The substance trans-1-chloro-3,3,3-trifluoro-1-propene (CAS No. 102687-65-0), also known

as R1233zd(E), is an unsaturated hydrochlorofluoroolefin (HCFO) and a fluorinated propene iso-

mer. Due to its negligible ozone depletion potential (ODP), ultralow global warming poten-

tial (GWP), non-flammability, and favorable thermophysical properties, this refrigerant has been

considered as a possible alternative to 2,2-dichloro-1,1,1-trifluoroethane (R123) and 1,1,1,3,3-

pentafluoropropane (R245fa). Patten and Wuebbles1 analytically determined the ODP as 0.00034,

and IPCC AR52 reported the 100-year GWP as 1. Its ANSI/ASHRAE safety classification is

“A1” (no flame propagation and no toxicity). R1233zd(E) was initially produced as a foam blow-

ing agent, and later received much attention as a working fluid for centrifugal chillers, medium

or high-temperature heat pumps, and organic Rankine cycles. Some manufacturers have already

launched commercial chillers that use R1233zd(E).

Mondéjar et al.3 first performed comprehensive property measurement for R1233zd(E) and

obtained experimental data for the (p, ρ, T ) behavior, vapor-phase sound speed, and vapor pres-

sure. Based on these measurements, Mondéjar et al.3 developed the first fundamental equation

of state. With its availability in thermophysical property software, it has been extensively used

in studies on this refrigerant. After the first equation of state was published, additional experi-

mental data were reported for the liquid density (including those at saturation),4–6 vapor density,7

liquid-phase sound speed,8,9 liquid isobaric heat capacity,10 vapor-phase sound speed,11 and va-

por pressure.4,7,12–14 The amount of these additional data is sufficient to update the first equation,

and our new fitting techniques for developing reliable equations of state improve a number of

characteristics in the equation. In collaboration with others,15–21 we have improved our numerical

algorithms for nonlinear optimization and found various thermodynamic constraints to help obtain

reasonable extrapolation.

Recent measurements for R1233zd(E) were evaluated for their thermodynamic consistency,

and only consistent datasets were employed in the development of the new equation. The state-

of-the-art fitting techniques were applied in this work. The following sections discuss currently

available experimental data, the functional form of the new equation, the fitting method employed,

comparisons to the experimental data, and behavior in the critical and extrapolated regions. Fi-
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nally, expected uncertainties in calculated properties with the new equation are summarized in the

conclusions.

1.2. ISO17584

ISO17584 (Refrigerant Properties) tabulates the thermodynamic properties of commonly

used refrigerants and refrigerant blends. The latest version ISO17584:200522 was published in

2005. Properties are provided for dichlorodifluoromethane (R12), chlorodifluoromethane (R22),

difluoromethane (R32), 2,2-dichloro-1,1,1-trifluoroethane (R123), pentafluoroethane (R125),

1,1,1,2-tetrafluoroethane (R134a), 1,1,1-trifluoroethane (R143a), 1,1-difluoroethane (R152a), am-

monia (R717), and carbon dioxide (R744), and the refrigerant blends R404A, R407C, R410A,

and R507A. The following properties are included: density, pressure, internal energy, enthalpy,

entropy, isobaric heat capacity, isochoric heat capacity, sound speed, and the Joule-Thomson

coefficient, for both single phase states and along the liquid-vapor saturation boundaries.

To add recently developed low-GWP refrigerants to ISO17584, a scientific working group

(ISO/TC 86/SC 8/WG 7) was organized in 2017 by experts in property measurement and mod-

eling. The working group selected six refrigerants to be added: 2,3,3,3-tetrafluoroprop-1-ene

(R1234yf), trans-1,3,3,3-tetrafluoroprop-1-ene [R1234ze(E)], trans-1-chloro-3,3,3-trifluoroprop-

1-ene [R1233zd(E)], cis-1,1,1,4,4,4-hexafluorobut-2-ene [R1336mzz(Z)], propane (R290), and

isobutane (R600a). The reason for this selection was the availability of experimental data covering

wide ranges of temperature and pressure and an equation of state based on extensive experimental

data. Subsequently, the working group evaluated equations of state available for these refrigerants

and decided that the equation of state developed in this work should be used as an international

standard formulation for R1233zd(E). The revised version ISO/DIS 17584 is now available as a

Draft International Standard.23
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2. AVAILABLE EXPERIMENTAL DATA

Table I summarizes the currently available experimental data for the thermodynamic properties

of R1233zd(E) and their average absolute deviations (AADs) from calculated values with the new

equation of state. The AAD in any property X is defined as

AADX =
100
Nexp

Nexp∑
i=1

∣∣∣∣∣∣Xi, exp − Xi, calc

Xi, exp

∣∣∣∣∣∣ , (1)

where Nexp is the number of data points in a dataset, Xi, exp is the ith experimental value, and Xi, calc

is the calculated value at the state conditions as those of Xi, exp. AADs in density measurements

are shown for the (p, ρ, T ) data. Although the new equation of state was fitted with selected

experimental data, comparisons were made to all available experimental data, including those not

used in the development of the equation. Figures 1 and 2 show the distributions of the experimental

(p, ρ, T ) and sound speed data, respectively, as well as the vapor pressure curve obtained from the

new equation of state.
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TABLE I. Available experimental data for R1233zd(E).

Range
Author (year) N T p AAD Apparatus

(K) (MPa) (%)
Vapor pressure

Hulse et al. (2012)24 16 263–353 2.41 Isochoric method
Mondéjar et al. (2015)3 23 280–438 0.19 Two-sinker densimeter (static method)
Raabe (2015)25 8 273–383 4.57 Molecular simulation
Tanaka (2016)4 11 300–400 0.50 Extraction method
Di Nicola et al. (2017)12 32 293–353 0.15 VLE apparatus
Di Nicola et al. (2017)12 49 234–375 2.02 Isochoric method
Li et al. (2019)13 95 253–430 0.24 Burnett apparatus (experimental)
Li et al. (2019)13 95 253–430 0.42 Burnett apparatus (corrected)
Raabe (2020)26 7 273–283 5.17 Molecular simulation
Sakoda et al. (2020)14 12 300–410 0.03 Isochoric method
Yin et al. (2021)7 18 288–373 0.34 Burnett apparatus

Saturated liquid density
Hulse et al. (2012)24 13 243–293 0.15 Vibrating tube densimeter
Raabe (2015)25 8 273–383 0.20 Molecular simulation
Tanaka (2016)4 11 300–400 0.05 Extraction method
Raabe (2020)26 7 273–283 0.58 Molecular simulation

Saturated vapor density
Raabe (2015)25 8 273–383 3.88 Molecular simulation
Raabe (2020)26 7 273–283 4.56 Molecular simulation

(p, ρ, T ) data
Mondéjar et al. (2015)3 (liquid) 122 215–444 0.48–24.08 0.02 Two-sinker densimeter
Mondéjar et al. (2015)3 (vapor) 43 350–440 0.26–1.92 0.06 Two-sinker densimeter
Tanaka (2016)27 97 328–444 0.78–9.77 3.12 Isochoric method
Romeo et al. (2017)5 30 274–333 1.00–25.01 0.02 Vibrating tube densimeter
Fedele et al. (2018)6 94 283–363 0.13–35.00 0.05 Vibrating tube densimeter
Fedele et al. (2018)6 60 308–373 0.17–0.69 0.26 Isochoric method
Yin et al. (2021)7 63 303–373 0.09–0.99 0.11 Burnett apparatus

Isobaric heat capacity
Liu and Zhao (2018)10 63 313–446 1.02–10.10 4.53 Flow calorimeter

Sound speed
Mondéjar et al. (2015)3 155 290–420 0.07–2.07 0.09 Spherical resonator
Lago et al. (2018)8 41 273–353 0.17–35.06 0.39 Dual-path pulse-echo
McLinden and Perkins (2022)9 133 230–420 0.13–25.61 0.05 Dual-path pulse-echo
Kano et al. (2020)11 36 313–403 0.03–0.89 0.06 Cylindrical resonator
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FIG. 1. Distribution of experimental (p, ρ, T ) data for R1233zd(E): (×) Mondéjar et al.3 (liquid and su-
percritical); (+) Mondéjar et al.3 (vapor); (△) Tanaka;27 (⊗) Romeo et al.;5 (^) Fedele et al.6 (liquid);
(□) Fedele et al.6 (vapor); (∗) Yin et al.7
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FIG. 2. Distribution of experimental sound-speed data for R1233zd(E): (+) Mondéjar et al.3 (vapor);
(⊕) Lago et al.8 (liquid); (×) McLinden and Perkins9 (liquid); (▽) Kano et al.11 (vapor).
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3. FUNDAMENTAL EQUATION OF STATE

3.1. Critical parameters and other fundamental constants

Table II summarizes the available data for the critical parameters of R1233zd(E). Hulse et al.24

first measured the critical temperature by visual observation of the disappearance and reappearance

of the meniscus, and then determined the critical pressure with extrapolation of a vapor pressure

correlation. Mondéjar et al.3 determined the critical temperature and density while fitting the first

equation of state. The resulting critical temperature is 0.85 K higher than the value measured by

Hulse et al.24 Tanaka and Akasaka28 measured the critical temperature, pressure, and density by

visual observation coupled with image processing. Their critical temperature is similar to the value

of Hulse et al.24

Accurate values for the critical parameters, particularly, the critical temperature, are essen-

tial for the formulation of reliable equations of state since they are often used as the reducing

parameters for the independent variables. In this work, the critical temperature of Tanaka and

Akasaka28 (438.86 K) was adopted as the reducing temperature because this is most consistent

with the experimental data for the vapor pressure and (p, ρ, T ) behavior. Generally, experimental

critical densities involve uncertainties larger than those in critical temperatures due to the infi-

nite compressibility at the critical point and the difficulty of reaching thermodynamic equilibrium;

therefore, this work used the critical density of Tanaka and Akasaka28 (≈ 3.592 mol dm−3) as an

initial value of the reducing density, and then further adjusted it during the fitting of the new equa-

tion. This adjustment improved the representation of the vapor pressure and (p, ρ, T ) behavior.

The final value of the critical density was 3.704 mol dm−3. The critical pressure is calculated from

the new equation of state as 3.5828 MPa at 438.86 K and 3.704 mol dm−3. Tomassetti et al.29

measured the triple-point temperature of R1233zd(E) as 165.75 K. This work regards this value as

the lower temperature limit of the applicable range of the new equation, where the vapor pressure

is calculated as 8.628 Pa.

Table III lists fixed-point constants of R1233zd(E), including the critical parameters and other

characteristic properties calculated from the new equation of state.
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TABLE II. Available data for the critical parameters for R1233zd(E).

Author (year) Tc (K) pc (MPa) ρc Remarks
Hulse et al. (2012)24 438.75 3.7721 – Visual observation
Mondéjar et al. (2015)3 439.6 3.6237 3.68 mol dm−3 Fitted parameters
Tanaka and Akasaka (2021)28 438.86 3.5575 486.7 kg m−3 Visual observation

(≈ 3.592 mol dm−3)
This work 438.86 3.5828 3.704 mol dm−3

TABLE III. Fixed-point constants and other characteristic properties of R1233zd(E)a.

Property Symbol Value
CAS number 102687-65-0
Chemical formula CF3CH=CHCl
Molar mass M 130.4962 g mol−1

Critical temperature Tc 438.86 K
Critical pressure pc 3.5828 MPa
Critical density ρc 3.704 mol dm−3

Triple-point temperature Ttp 165.75 K
Triple-point pressure ptp 8.628 Pa
Saturated liquid density ρ′tp 11.85 mol dm−3

at triple point
Saturated vapor density ρ′′tp 6.261 × 10−6 mol dm−3

at triple point
Normal boiling point temperature Tb 291.28 K
Saturated liquid density ρ′b 9.804 mol dm−3

at normal boiling point
Saturated vapor density ρ′′b 0.04364 mol dm−3

at normal boiling point
Reference temperature T0 273.15 K

for ideal gas properties
Reference pressure p0 0.001 MPa

for ideal gas properties
Reference ideal-gas h◦0 52752.273510 J mol−1

enthalpy at T0

Reference ideal-gas s◦0 260.14966456 J mol−1 K−1

entropy at T0 and p0

Acentric factor ω 0.304
a All properties in this table were determined in this work except M, Tc, and Ttp.
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3.2. Equation of state

3.2.1. Overview

The new equation of state for R1233zd(E) is expressed in terms of the Helmholtz energy with

independent variables of temperature and density. The equation of state has the form:

a(T, ρ)
RT

= α(τ, δ) = α◦(τ, δ) + αr(τ, δ), (2)

where a is the molar Helmholtz energy, α is the dimensionless Helmholtz energy, R = 8.314462618 J mol−1 K−1

is the molar gas constant, τ = Tc/T is the reciprocal reduced temperature, and δ = ρ/ρc is the

reduced density. The value of R is a slightly rounded value of the exact value30 (differing by about

18 parts per trillion). The dimensionless Helmholtz energy α is split into an ideal-gas part α◦

expressing ideal-gas properties and a residual part αr corresponding to the macroscopic influence

of intermolecular forces between molecules. As demonstrated in the following sections, α◦ and αr

are individually formulated.

Since Eq. (2) is one of the four fundamental equations, all single-phase thermodynamic prop-

erties can be calculated from derivatives of Eq. (2) with respect to temperature and density. For

example, equations for calculating compressibility factor Z, molar enthalpy h, isochoric heat ca-

pacity cv, and sound speed w are

Z =
p

ρRT
= 1 + δ

(
∂αr

∂δ

)
τ

, (3)

h
RT
= τ

[(
∂α◦

∂τ

)
δ

+

(
∂αr

∂τ

)
δ

]
+ δ

(
∂αr

∂δ

)
τ

+ 1, (4)

cv

R
= −τ2

[(
∂2α◦

∂τ2

)
δ

+

(
∂2αr

∂τ2

)
δ

]
, and (5)

w2M
RT

= 1 + 2δ
(
∂αr

∂δ

)
τ

+ δ2
(
∂2αr

∂δ2

)
τ

−

[
1 + δ

(
∂αr

∂δ

)
τ

− δτ ∂
2αr

∂δ∂τ

]2

τ2

[(
∂2α◦

∂τ2

)
δ

+

(
∂2αr

∂τ2

)
δ

] . (6)

The location of the saturation boundaries requires an iterative solution of the physical constraints

on saturation (Maxwell criteria); specifically, the following two equations are satisfied on satura-

tion at a given temperature T :

p(T, ρ′) = p(T, ρ′′) (7)
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and

g(T, ρ′) = g(T, ρ′′), (8)

where g is the molar Gibbs energy and calculated as

g
RT
= 1 + α◦ + αr + δ

(
∂αr

∂δ

)
τ

. (9)

Kretzschmar et al.,31 Span,32 and Akasaka33 discuss robust numerical algorithms to obtain the

Maxwell solutions correctly.

3.2.2. Ideal-gas Helmholtz energy

The ideal-gas Helmholtz energy α◦ is analytically obtained from an equation for the isobaric

heat capacity of the ideal gas (c◦p) according to the following equation:

α◦(τ, δ) =
h◦0τ
RTc
−

s◦0
R
− 1 + ln

δτ0

δ0τ
− τ

R

∫ τ

τ0

c◦p
τ2 dτ +

1
R

∫ τ

τ0

c◦p
τ

dτ, (10)

where τ0 = Tc/T0, δ0 = ρ0/ρc = p0/(RT0ρc), T0 is the temperature at a reference state, p0 is a

reference pressure for the ideal-gas properties, and ρ0 is the ideal-gas density at T0 and p0. This

work used the Planck-Einstein form to express the c◦p equation, which has the form

c◦p
R
= n◦0 +

2∑
i=1

n◦i

(
m◦i
T

)2 exp(m◦i /T )
[exp(m◦i /T ) − 1]2 . (11)

The value of n◦0 is theoretically always four for nonlinear polyatomic molecules to account for all

but the vibrational contributions to the ideal-gas isochoric heat capacity c◦v as given by

n◦0 =
(c◦v)translation

R
+

(c◦v)rotation

R
+

c◦p − c◦v
R

=
3
2
+

3
2
+ 1

= 4. (12)

The summation on the right-hand side of Eq. (11) represents the vibrational contribution to c◦v .

Generally, nonlinear polyatomic molecules consisting of N atoms have (3N − 6) vibrational

modes.34 The R1233zd(E) molecule (consisting of nine atoms) has 21 vibrational modes, and the

contribution of each mode attains the value of R at extremely high temperature; therefore, the value

of c◦p/R approaches 25 (without considering the effect of anharmonicity) at extremely high tem-

peratures. The molecule will dissociate before this limit is relevant, but the correct extrapolation

is vital for the formulation of reliable equations of state.
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Values of c◦p are experimentally determined from vapor-phase sound speed data or analytically

estimated from quantum analyses. Kano35 experimentally obtained c◦p values from vapor-phase

sound speed data. Hulse et al.24 presented c◦p values calculated with Gaussian 09,36 where the

scaling factor by Irikura et al.37 was used for the frequencies. In this work, the coefficients n◦i
and m◦i in Eq. (11) were initially determined by fitting the c◦p values of Kano,35 and then further

adjusted during the fitting of the residual part to obtain better agreement with sound speed data for

both the liquid and vapor phases. The final values of n◦i and m◦i are given in Table IV.

TABLE IV. Coefficients of Eq. (11).

i n◦i m◦i (K)
0 4.0
1 13.7 761
2 7.0974 2870
3 −17.291229931888
4 10.404947446884

Applying Eq. (11) to Eq. (10), the following expression for the ideal-gas Helmholtz energy is

obtained:

α◦(τ, δ) = ln δ + n◦3 + n◦4τ + (n◦0 − 1) ln τ

+

2∑
i=1

n◦i ln
[
1 − exp

(
−

m◦i τ
Tc

)]
, (13)

where values of n◦3 and n◦4, which are also given in Table IV, were determined so that the specific

enthalpy and entropy of the saturated liquid state at 0 ˚C are 200 kJ kg−1 and 1 kJ kg−1 K−1,

respectively, corresponding to the common convention of the refrigeration industry. Table IV

gives additional digits for n◦3 and n◦4 beyond those required to obtain the expected uncertainties

in order to reproduce the enthalpy and entropy values specified for the saturated liquid at 0 ˚C to

within machine precision.

3.2.3. Residual Helmholtz energy

The functional form for the residual Helmholtz energy was empirically determined by fitting

experimental data. According to recent developments of Helmholtz energy equations of state for
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refrigerants, this work used the functional form:

αr(τ, δ) =
∑

niτ
tiδdi +

∑
niτ

tiδdi exp(−δei)

+
∑

niτ
tiδdi exp

[
−ηi(δ − εi)2 − βi(τ − γi)2

]
, (14)

where the first, second, and final summations are called polynomial, exponential, and Gaussian

bell-shaped (or simply Gaussian) terms, respectively. The values of ti should be greater than zero

to avoid numerical instability at very high temperatures, and di and ei should be integers greater

than zero so that the contributions from all virial coefficients vanish at zero density.

The polynomial and exponential terms form the basis of the corresponding states principle,

and most equations of state recently developed for hydrofluoroolefin (HFO) and hydrochlorofluo-

roolefin (HCFO) refrigerants employ five polynomial terms and five exponential terms with similar

coefficients and exponents. The Gaussian terms, on the other hand, are used to model the properties

of each fluid more accurately, and their coefficients, exponents, and number of the terms are quite

different between fluids. Four or five Gaussian terms are typically necessary for HFO and HCFO

refrigerants with limited experimental data. For those with sufficient available data, additional

Gaussian terms are employed for more accurate modeling. The new equation for R1233zd(E) uses

eight Gaussian terms for the residual part.

Various thermodynamic properties can be used during fitting, including densities, vapor pres-

sures, critical parameters, sound speeds, virial coefficients, and heat capacities. Density and sound

speed data are essential in the development of accurate equations of state because experimental

uncertainties in these properties are normally smaller than those in other properties. In addition

to uncertainties, thermodynamic consistency between data used while fitting is crucial. The con-

sistency between available experimental data was first examined before all else, and inconsistent

data were excluded. For the reduction of computation time, fitting was carried out with a subset

of consistent experimental datasets, which were chosen to cover the full range of experimental

conditions; comparisons were then made to the full data points.

Lemmon and Jacobsen38 initially presented the methods used in the nonlinear least-squares

fitting algorithm to obtain reliable equations of state, and subsequently correlators have advanced

it during the last decade, e.g., Lemmon et al.,15 Thol et al.,16 Akasaka et al.,17 Thol and Lemmon,18

Gao et al.,19 Herrig et al.,20 and Akasaka and Lemmon.21 The most recent fitting techniques used

in this work are summarized here.
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The objective function (S ) used while fitting consists of three sums as follows:

S = ψ1S 1 + ψ2S 2 + ψ3S 3, (15)

where

S 1 =
∑

Wp,iF2
p,i +

∑
Wρ,iF2

ρ,i +
∑

Ww,iF2
w,i + · · · , (16)

S 2 =
∑

Pi, (17)

and

S 3 =
∑

Li. (18)

The sums S 1, S 2, and S 3 are based on the sum of squared deviations in experimental properties

from calculated values (F2
i ), the sum of penalties added to keep the equation within certain ther-

modynamic constraints (Pi), and the sum of penalties added to keep the coefficients and exponents

of the equation within appropriate ranges (Li), and ψ1, ψ2, and ψ3 are their scaling factors.

Deviations in pressure Fp, in density Fρ, and in sound speed Fw were calculated as

Fp =
pexp − pcalc

pexp
, (19)

Fρ =
pexp − pcalc

ρexp

(
∂ρ

∂p

)
T
, (20)

and

Fw =
wexp − wcalc

wexp
, (21)

where the subscripts exp and calc indicate experimental and calculated values. The pressure de-

viation Fp is often used for (p, ρ, T ) data in the vapor phase and critical region, and the density

deviation Fρ is applied to liquid-phase (p, ρ, T ) data. The derivative (∂ρ/∂p)T in Eq. (20) is used

to avoid iterative calculations to obtain density at a given pressure and temperature. Deviations for

other experimental data are calculated in the same manner as the sound speed deviation Fw given

in Eq. (21). The ith data point is individually weighted by weighting factors Wi, which were deter-

mined according to type, region, and experimental uncertainty. Typical weighting factors used in

this work were 1 for saturated liquid and vapor densities and ideal-gas isobaric heat capacities, 10

to 102 for vapor pressures and vapor densities, 102 to 104 for liquid densities, and 103 to 104 for

sound speeds. Substantial weighting factors were sometimes given to vapor pressure data if they

were very consistent with (p, ρ, T ) and sound speed data.
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Various thermodynamic constraints were applied to the fitting to ensure that the equation of

state was well behaved near the critical point and would reliably extrapolate beyond the range

of the experimental data. Span and Wagner,39 Lemmon and Jacobsen,38 and Lemmon et al.15

discuss these constraints in detail. Akasaka and Lemmon21 describe physically correct behavior

of the critical isotherm, virial coefficients, rectilinear diameter, and phase identification parameter

(PIP),40 which are the essential primary constraints. If the equation violated the ith constraint, then

a penalty Pi was added to S 2. Values of Pi changed gradually depending on how much a constraint

was violated. For some primary constraints, such as those related to the critical isotherm and virial

coefficients, large weighting factors were applied so that the penalties would be larger than those

for the experimental data; this forced the equation to always obey these constraints. If the equation

completely fulfilled all constraints, then S 2 would approach zero.

The final sum S 3 relates to the adjustable ranges of the coefficients ni, the temperature expo-

nents ti, and the Gaussian parameters ηi, εi, βi, and γi. Although they are arbitrary in nature, recent

studies18–21 found suitable ranges for which equations of state behave well over wide ranges of

temperatures and pressures. In this work, for example, the Gaussian parameters except the last

two terms (17th and 18th) were kept within the following ranges while fitting:

0.4 ≤ ηi ≤ 3, (22)

0.2 ≤ εi ≤ 1.4, (23)

0.3 ≤ βi ≤ 3, and (24)

0.6 ≤ γi ≤ 2.4. (25)

A penalty Li was added to S 3 when the parameters approached their upper or lower boundaries

given by Eqs. (22)–(25), even if they were still within these ranges. The value of Li increased

rapidly when the parameters exceeded the boundaries. This process forced the parameters to

always remain within the suitable ranges.

The last two Gaussian terms, which have positive and negative contributions with very similar

magnitude, were used to model the critical region. Differences between these contributions be-

come significant while approaching the critical point. These terms were first introduced by Herrig

et al.20 to the equation of state for heavy water. Akasaka et al.41 used similar terms in the equa-

tion for trifluoroethene (R1123). An example is shown below that demonstrates the effect of these

terms on the modeling of the isochoric heat capacity.
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The scaling factors ψ1, ψ2, and ψ3 are used to change the contributions of S 1, S 2, and S 3 to the

objective function S . Initially, larger values were given to ψ2 and ψ3 rather than ψ1 to roughly fix

the functional form. Once S 2 and S 3 had become sufficiently small, the value of ψ1 was gradually

increased until consistent experimental data were adequately represented.

The final values of the coefficients and exponents in Eq. (14) are given in Table V. The large

number of digits for n3 and n4 are required to exactly represent the critical point.

TABLE V. Coefficients and exponents of Eq. (14) for R1233zd(E).

i ni ti di ei ηi βi γi εi

1 0.04394257 1.0 4
2 1.062919 0.182 1
3 −1.2879140374971 0.865 1
4 −0.8088618920845 1.0924 2
5 0.2372427 0.49 3
6 −1.9403 1.958 1 2
7 −2.831967 2.05 3 2
8 0.373421 0.658 2 1
9 −1.515798 2.051 2 2

10 −0.02755627 0.862 7 1
11 4.24023 1.852 1 1.532 0.2912 1.7171 0.8834
12 −0.03152671 1.92 2 0.635 0.6245 0.63 1.386
13 −1.366494 1.936 3 1.4056 0.669 0.7852 0.5196
14 2.647143 1.515 1 1.451 0.5798 2.251 1.133
15 −2.325463 2.668 1 1.395 0.4643 1.821 0.9788
16 −0.2541521 1.755 1 2.259 2.449 2.074 1.166
17 0.1330834 0.526 1 24.3 1061.4 1.0797 0.9244
18 −0.1569217 2.98 1 23.6 917.8 1.084 0.9372
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3.3. Comparisons to experimental data

Deviations in experimental data from calculated values with the new equation of state were sta-

tistically evaluated mainly by averaged values of the relative deviations defined in Eq. (1). For the

vapor pressures, absolute differences between experimental and calculated values are sometimes

evaluated because relative uncertainties in vapor pressure measurements are often larger at very

low pressures (near the triple point).

3.3.1. Vapor pressure data

Figure 3 shows plots of relative deviations and differences in experimental vapor pressures

versus temperature. Table I includes the molecular simulation results25,26 for comparison, but

they do not appear in these plots because they are off-scale in most cases. The vapor pressure

data of Hulse et al.24 have significant uncertainties, probably due to low sample purity used in

their measurement. Excluding the simulation results25,26 and the data of Hulse et al.24 gives a

total of 317 data available for vapor pressure, and the overall average deviation and difference

from calculated values with the new equation of state are 0.56 % and 1.59 kPa. For the data at

temperatures above the normal boiling point (291.28 K), where 268 data points are included, the

average deviation decreases to 0.18 %.

The data of Sakoda et al.14 are represented within 0.067 %; the average deviation is 0.027 %.

Although the difference at the highest temperature (410 K) is particularly large (−1.45 kPa), dif-

ferences in other data points are less than 0.6 kPa, which is within their experimental uncertainty

(1 kPa). Systematic negative deviations are observed in the data of Mondéjar et al.,3 except one

data point at the lowest temperature (280.009 K). Their average deviation is 0.19 %, which would

be acceptable in most engineering applications; however, deviations in the data at temperatures

above 320 K are larger than the experimental uncertainties (0.022 to 0.030 %). Di Nicola et al.12

presented two datasets, each measured with a different apparatus. The datasets show systematic

positive deviations from the equation of state. Differences in the data measured with the isochoric

method are always about 1 kPa, and their relative deviations become more substantial as the tem-

perature decreases. The data measured with the VLE apparatus show smaller deviations than those

with the isochoric method, and exhibit a similar trend to the data of Sakoda et al.14 at temperatures

below 350 K. Li et al.13 also reported two datasets; one includes experimental values without any
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corrections, and the other includes values corrected taking the sample purity into account. The

data without corrections show a similar trend to the data of Sakoda et al.14 They are represented

within 0.1 % at temperatures from 300 K to 400 K, where the differences are almost within their

experimental uncertainties (0.33 to 1.18 kPa). At higher temperatures, larger relative deviations of

up to 0.2 % are observed. Larger deviations are also observed at temperatures below 300 K, but

the uncertainties in the data in this range are higher (1.9 % at the lowest temperature) due to the

very low vapor pressures (less than atmospheric pressure). The trend of the data with corrections,

on the other hand, is similar to the data of Mondéjar et al.,3 and systematic negative deviations

down to −0.2 % are observed.

Figure 4 depicts differences in the saturation temperatures as a function of pressure; this plot

is particularly applicable for heat transfer calculations where the saturation temperature is cal-

culated based on a measured pressure in a heat exchanger. Differences in calculated saturation

temperatures from experimental values are almost within 0.1 K.

(a) (b)

FIG. 3. Relative deviations (a) and differences (b) in experimental vapor pressures of R1233zd(E) from
calculated values with the new equation of state: (•) Hulse et al.;24 (□) Mondéjar et al.3 (experimental);
(—) Mondéjar et al.3 (equation of state); (▲) Tanaka;4 (^) Di Nicola et al.12 (VLE apparatus); (▽) Di Nicola
et al.12 (isochoric method); (⊕) Li et al.13 (experimental); (⊚) Li et al.13 (corrected); (×) Sakoda et al.14
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FIG. 4. Differences in experimental and calculated saturation temperatures of R1233zd(E): (•) Hulse
et al.;24 (□) Mondéjar et al.3 (experimental); (—) Mondéjar et al.3 (equation of state); (▲) Tanaka;4

(^) Di Nicola et al.12 (VLE apparatus); (▽) Di Nicola et al.12 (isochoric method); (⊕) Li et al.13 (experi-
mental); (⊚) Li et al.13 (corrected); (×) Sakoda et al.14
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3.3.2. (p, ρ, T ) data

Deviations in density are discussed here. For the liquid and supercritical regions, three datasets

(Mondéjar et al.,3 Romeo et al.,5 and Fedele et al.6) are available. They are mostly consistent

with each other. A total of 246 data points are available in these datasets, and the overall average

deviation from calculated values with the new equation of state is 0.034 %. Figure 5 shows plots of

relative deviations versus pressure in different temperature intervals. The average deviation in the

data of Mondéjar et al.3 is 0.021 %; this slightly exceeds their typical experimental uncertainties

(0.011–0.015 %). Several data points near the critical point show larger deviations up to 0.12 %.

These deviations, however, are less than typical uncertainties in calculated densities in the critical

region. Densities in the (p, ρ, T ) data of Fedele et al.6 are represented with an average deviation

of 0.054 %. Fedele et al.6 reported the expanded uncertainty in their density measurements as

0.8 kg m−3, which corresponds to relative uncertainties from 0.058 % to 0.072 %. Most data

points are represented within the uncertainty. Some data at pressures above 15 MPa at the highest

temperature (363.15 K) show larger deviations up to 0.11 %. Densities in the (p, ρ, T ) data of

Romeo et al.5 are also accurately represented, where the maximum and average deviations are

0.053 % and 0.022 %. The maximum deviation is less than the experimental uncertainty claimed

by the authors (0.07 %), and the average deviation is similar to that in the data of Mondéjar et al.3

For the vapor phase, four datasets (Mondéjar et al.,3 Tanaka,27 Fedele et al.,6 and Yin et al.7) are

available. Figure 6 shows plots of relative deviations in these data versus temperature or pressure.

The datasets other than Tanaka27 are nearly consistent; their deviations are normally within 0.4 %,

except for some data points of Fedele et al.6 For a total of 166 data points in these three datasets,

the overall average deviation is 0.15 %. The data of Tanaka27 show systematic positive deviations,

which often exceed 0.4 %; therefore, they were excluded from the overall statistical analysis of

vapor density deviations. The data of Mondéjar et al.3 are represented within 0.2 %, and the av-

erage deviation is 0.058 %. Although this average deviation is larger than typical experimental

uncertainties in the data (0.012–0.025 %), it is quite acceptable in engineering applications. De-

viations in the data of Fedele et al.6 are scattered between −0.36 % and 0.83 %, and their average

deviation is 0.26 %. Fedele et al.6 evaluated the experimental uncertainty in the specific volume

as 0.00013 m3 kg−1; this corresponds to relative uncertainties in density from 0.12 % to 0.44 %.

Most data points are represented within the uncertainties. Along each isochore, larger deviations

of up to 0.83 % are observed at the lowest temperature, where uncertainties are generally larger
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than those evaluated by the author due to their proximity to saturation. Deviations in the data of

Yin et al.7 are consistent with the data of Mondéjar et al.3 and less scattered than those of Fedele

et al.,6 which are observed almost within 0.2 %. The average deviation is 0.11 %; this is similar

to the experimental uncertainty (0.1 %). Larger deviations up to 0.40 % are sometimes observed

at temperatures below 330 K.
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FIG. 5. Relative deviations in the experimental liquid and supercritical densities of R1233zd(E):
(×) Mondéjar et al.;3 (⊗) Romeo et al.;5 (^) Fedele et al.6
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FIG. 6. Relative deviations in the experimental vapor densities for R1233zd(E): (+) Mondéjar et al.;3

(△) Tanaka;27 (□) Fedele et al.;6 (∗) Yin et al.7
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3.3.3. Saturated liquid density data

Hulse et al.24 and Tanaka4 measured the saturated liquid densities with different approaches.

Figure 7 shows their relative deviations. Although the fitting did not incorporate these data, they

reasonably correspond to calculated values with the new equation; this means that the two datasets

shown here are consistent with the vapor pressure and (p, ρ, T ) data to which the equation was

fitted. Systematic negative deviations are observed in the data of Hulse et al.,24 except one data

point at 255.66 K. Their average deviation is 0.15 %; this is acceptable in most engineering appli-

cations. The data of Tanaka4 are represented within 0.11 %; the average deviation is 0.054 %. The

experimental uncertainties estimated by the author are 0.9 to 1.4 kg m−3, and this is equivalent to

a relative uncertainty of 0.080 to 0.14 %.

FIG. 7. Relative deviations in experimental data for the saturated liquid density of R1233zd(E): (•) Hulse
et al.;24 (△) Tanaka.4
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3.3.4. Caloric data

Figure 8 shows plots of relative deviations in experimental sound-speed data versus pressure

in different temperature intervals. Among the liquid-phase sound speeds, significant discrepancy

is observed between the datasets of Lago et al.8 and McLinden and Perkins.9 The new equation

represents the data of McLinden and Perkins9 with an average deviation of 0.054 %, and 74 %

of the total data points are represented within their experimental uncertainties (0.034–0.45 %).

Some data points at temperatures above 400 K show deviations over 0.5 % due to larger experi-

mental uncertainties near the critical point. If they are excluded, the average deviation decreases

to 0.041 %. The data of Lago et al.8 show systematic negative deviations down to −0.69 %. At

pressures above 10 MPa, the deviations tend to be smaller, but rise to 0.15–0.20 % at the highest

pressure (35 MPa).

The two datasets for the vapor-phase sound speeds (Mondéjar et al.3 and Kano et al.11) are

nearly consistent. The overall average deviation is 0.084 % for a total of 191 data points included

in the two datasets. For the data of Mondéjar et al.,3 deviations at temperatures above 350 K are

comparable to the experimental uncertainties (less than 0.04 %), but those at lower temperatures

are sometimes larger than the uncertainties. The average deviation is 0.089 %. Kano et al.11

roughly estimated the experimental uncertainty in their sound speed data as less than 0.1 %. The

new equation represents the data of Kano et al.11 almost within this uncertainty; the average devi-

ation is 0.064 %.

Liu and Zhao10 measured the isobaric heat capacity in the liquid phase. The data were not

employed during the fitting because of their larger experimental uncertainties (0.81–1.86 %), and

because they are less consistent with the (p, ρ, T ) and sound speed data in the liquid phase. The

average deviation from calculated values is 4.53 %.

31



FIG. 8. Relative deviations in the experimental sound-speed data for R1233zd(E): (+) Mondéjar et al.3

(vapor); (⊕) Lago et al.8 (liquid); (×) McLinden and Perkins9 (liquid); (▽) Kano et al.11 (vapor).
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3.4. Behavior in the critical and extrapolated regions

Various plots of constant-property lines on several thermodynamic coordinates are shown here

to demonstrate the reasonable behavior of the new equation of state in the critical region or in

regions away from the experimental data.

Virial coefficients are the most elemental properties related to the interaction potential between

molecules, and even without experimental data for the virial coefficients, equations of state should

represent their behavior qualitatively. This work constrained the value, slope, and curvature of the

second, third, and fourth virial coefficients (B, C, and D) during the fitting. Figure 9 shows values

of (Z − 1)/ρ calculated from the new equation of state along isotherms in the vapor phase. If these

values are plotted versus density, the y intercept (zero density) of each isotherm corresponds to

the second virial coefficient B at a given temperature, and the slope at zero density is equal to the

third virial coefficient C. All isotherms are very smooth, and no physically incorrect behavior is

observed. Values of B, C, and D can be directly calculated from equations of state as follows:

B = lim
δ→0

[
1
ρc

(
∂αr

∂δ

)
τ

]
, (26)

C = lim
δ→0

[
1
ρ2

c

(
∂2αr

∂δ2

)
τ

]
, (27)

and

D = lim
δ→0

[
1

2ρ3
c

(
∂3αr

∂δ3

)
τ

]
. (28)

Figure 10 shows plots of B, C, and D versus temperature. Thol et al.42 demonstrated the theoret-

ically expected changes in the virial coefficients based on the analysis of an equation of state for

the Lennard-Jones fluid; B and C should go to negative infinity at zero temperature, pass though

zero at a moderate temperature, increase to a maximum, and then approach zero at extremely high

temperatures. The general trend in D is slightly different from those of B and C at temperatures

higher than the first maximum; there should be a second maximum that is smaller in magnitude

than the first maximum; after that, D should also decrease to zero at very high temperatures. The

behavior of B, C, and D observed in Fig. 10 is in accord with the expected behavior. The inflection

point in C is about 3000 K, and this also appears in the equation of state for the Lennard-Jones

fluid.

Figures 11 and 12 demonstrate physically correct extrapolation of the new equation of state

to regions far from the experimental data. Figure 11 shows the temperature–density behavior
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along isobars over wide ranges of temperature and pressure. The saturation boundary and all

isobars are very smooth. The rectilinear diameter is straight as it approaches the critical point;

this helps to ensure that the saturated vapor densities calculated with the new equation of state are

reliable even though the experimental data were not used while fitting. Figure 12 indicates that

the extrapolation behavior to extremely high temperatures, pressures, and densities is reasonable.

As shown by Lemmon and Jacobsen,38 the smooth behavior at extreme conditions comes from the

first polynomial term with ti = 1 and di = 4 (the term with the largest di in the polynomial terms).

Figure 13 confirms the extrapolation behavior from a different aspect. This figure depicts four

characteristic curves on a reduced p-T diagram. Their definitions are given in Table VI. All curves

exhibit smooth shapes over wide ranges of temperature and pressure, and no unrealistic bumps are

observed.

TABLE VI. Definitions of the four characteristic curves.

Designation Definition

Ideal curve Z = 1

Boyle curve
(
∂Z
∂ρ

)
T
= 0

Joule-Thomson inversion curve
(
∂Z
∂T

)
p
= 0

Joule inversion curve
(
∂Z
∂T

)
ρ

= 0

Reasonable behavior in the critical region is verified in Figures 14 and 15. Figure 14 plots

the saturation boundary in the vicinity of the critical point on a T -ρ diagram, as well as the crit-

ical isobar. The saturated liquid and vapor lines smoothly curve and meet at the critical point,

and the rectilinear diameter remains straight up to the critical point. In Figure 15, the saturation

boundary is plotted on a p-ρ diagram, as well as several isotherms, including the critical isotherm.

The isotherms for temperatures below Tc should have only two intersections with the saturation

boundary; this suggests that the Maxwell criteria has a single solution at a given temperature. The

critical isotherm should exhibit a zero slope and zero inflection in the slope at the critical point,(
∂p
∂v

)
T=Tc

= 0 (29)
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and (
∂2 p
∂v2

)
T=Tc

= 0. (30)

Applying Eqs. (29) and (30) to the new equation of state, the critical temperature and density are

calculated as

Tc,calc = 438.86000 K and ρc,calc = 3.7040000 mol dm−3. (31)

These values are almost exactly the same as the critical temperature and density used as the re-

ducing parameters due to additional digits in the coefficients of the third and fourth terms of the

polynomial terms.

The behavior of derived properties in the critical and extrapolated regions were also constrained

while fitting. Figure 16 shows the residual isochoric heat capacities cr
v (= cv − c◦v) versus temper-

ature along the saturation lines, isobars, and the critical isochore. The critical isochore is the line

from the critical point to higher temperatures with a density equal to the critical density. Fig-

ure 17 depicts the residual isobaric heat capacities cr
p (= cp − c◦p) versus temperature along the

saturation lines and isobars over a broader range of temperature. These figures demonstrate rea-

sonable behavior of the new equation of state not only within the range of the experimental data,

but also for extrapolated states at higher temperatures and pressures, and lower temperatures. The

very steep positive gradients in cr
v along the saturation lines in the critical region come from the

last two Gaussian terms. The critical isochore monotonically decreases from the critical point to

higher temperatures, which means that temperature derivatives of the residual Helmholtz energy

are properly correlated because the isochoric heat capacity is calculated only from the second

partial derivative of the Helmholtz energy with respect to temperature. An upward trend in cr
p is

observed in the liquid region at low temperatures below 200 K. This is common among accurate

equations, e.g., the equation for nitrogen43 and that for propane;15 however, this cannot be proved

experimentally for R1233zd(E) because this occurs below the triple-point temperature (165.75 K).

Figure 18 shows the sound speed w versus temperature along the saturation lines and isobars. The

saturated liquid line in this figure is a smooth arc when displayed on a logarithmic scale, and there

is no physically incorrect behavior over wide ranges of temperature and pressure.

The phase identification parameter (PIP),40 which was originally used to distinguish whether

a state point is in the vapor or liquid phase, has often been used to inspect the behavior of the

equation. The PIP can highlight incorrect behavior in an equation of state, since it is calculated
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from higher-order derivatives of the Helmholtz energy. The PIP is defined as

PIP = 2 − ρ


∂2 p
∂ρ∂T(
∂p
∂T

)
ρ

−

(
∂2 p
∂ρ2

)
T(

∂p
∂ρ

)
T

 . (32)

Figure 19 shows the PIP versus temperature along isobars from 0.5 MPa to 1000 MPa, and Fig-

ure 20 depicts the PIP versus density along isotherms from 100 K to 5000 K. The saturation lines,

isobars, and isotherms are smooth over wide ranges of temperature and pressure, and no unrea-

sonable behavior is observed.

FIG. 9. Values of (Z − 1)/ρ calculated from the equation of state along isotherms in the vapor phase.
Isotherms are shown between 320 K and 1000 K with an interval of 20 K.
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FIG. 10. Second, third, and fourth virial coefficients (B, C, and D) versus temperature. In this plot, the
values along the y-axis are equal to the value of B, the value of 10 C, and the value of 100 D. The units of
B, C, and D are (dm3 mol−1), (dm6 mol−2), and (dm9 mol−3), respectively.

.

FIG. 11. Temperature versus density along isobars at 0.1, 0.5, 1, 1.5, 2, 3, pc, 4, 5, 10, 20, 50, 100, 500, and
1000 MPa. RD: Rectilinear diameter.
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FIG. 12. Pressure versus density along isotherms at Ttp, Tc, 103, 104, 105, 106, 107, 108, and 109 K.

FIG. 13. Four characteristic curves and the vapor pressure curve (PV). ID: ideal curve; BL: Boyle curve;
JT: Joule-Thomson inversion curve; JI: Joule inversion curve.
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FIG. 14. Saturation boundary and critical isobar (p = pc) in the vicinity of the critical point. RD: Rectilinear
diameter.

FIG. 15. Saturation boundary and several isotherms, including the critical isotherm (T = Tc). RD: Rectilin-
ear diameter.
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FIG. 16. Residual isochoric heat capacity (cr
v) versus temperature along isobars at 0.5, 1, 1.5, 2, 3, 4, 5, 10,

20, 50, 100, 500, and 1000 MPa, and the critical isochore (ρ = ρc).

FIG. 17. Residual isobaric heat capacity (cr
p) versus temperature along isobars at 0.5, 1, 1.5, 2, 3, 4, 5, 10,

20, 50, 100, 500, and 1000 MPa.
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FIG. 18. Sound speed (w) versus temperature along isobars at 0, 0.5, 1, 1.5, 2, 3, 4, 5, 10, 20, 50, 100, 500,
and 1000 MPa.

FIG. 19. Phase identification parameter versus temperature along isobars at 0.5, 1, 1.5, 2, 3, 4, 5, 10, 20,
50, 100, 500, and 1000 MPa.
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FIG. 20. Phase identification parameter versus density along isotherms at 100, 150, 200, 250, 300, 350,
400, 450, 500, 600, 700, 1000, 2000, and 5000 K.
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3.5. Ancillary equations

Ancillary equations are presented for the vapor pressure and saturated liquid and vapor densi-

ties. These equations were formulated based on calculated values with the final equation of state.

They provide rapid calculations of very close estimates of the saturation properties and give ex-

cellent initial guesses for the iterative process to find rigorous solutions for the saturation state

from the full equation of state based on the Maxwell criterion. The equations presented here meet

the requirements for the ancillary equations stated by Lemmon and Goodwin44 and Gao et al.19

Coefficients ni of each equation are given in Table VII.

The vapor pressure ps is correlated with the equation

ln
(

ps

pc

)
=

Tc

T

(
n1θ + n2θ

1.5 + n3θ
2.39 + n4θ

4.53
)
, (33)

where Tc and pc are the critical temperature (438.86 K) and pressure (3.5828 MPa), and θ =

1 − T/Tc. The saturated liquid and vapor densities (ρ′ and ρ′′) are represented as

ρ′

ρc
= 1 + n1θ

0.22 + n2θ
0.55 + n3θ

0.94 + n4θ
1.4 + n5θ

6.8, (34)

and

ln
(
ρ′′

ρc

)
= n1θ

0.24 + n2θ
0.59 + n3θ + n4θ

2.2 + n5θ
4.7 + n6θ

9, (35)

where ρc is the critical density (3.704 mol dm−3). Average deviations between calculated values

with Eqs. (33), (34), and (35) and the rigorous Maxwell solutions with the full equation of state

from the triple-point temperature to the critical temperature are 0.0056 %, 0.0081 %, and 0.040 %,

respectively.

TABLE VII. Coefficients of Eqs. (33), (34), and (35).

Eq. (33) Eq. (34) Eq. (35)
n1 −7.4798 0.61448 −0.80785
n2 1.5791 2.6345 −3.2355
n3 −1.7959 −1.316 −2.7567
n4 −3.6716 0.86885 −10.863
n5 0.34071 −33.456
n6 −69.31
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4. CONCLUSIONS: ESTIMATED UNCERTAINTIES IN CALCULATED

PROPERTIES

A new Helmholtz energy equation of state has been developed for R1233zd(E) in this work,

which is expressed with temperature and density as independent variables. The experimental data

used in the development of the new equation of state are located at temperatures from 215 K to

444 K and pressures up to 35 MPa. In this range, typical uncertainties (expanded uncertainty with

a coverage factor of k = 2) in calculated properties from the new equation are 0.07 % for vapor

pressures at temperatures above the normal boiling point temperature (≈ 291 K), 0.2 % for vapor

pressures at lower temperatures, 0.05 % for liquid densities, 0.15 % for vapor densities, 0.1 %

for saturated liquid densities, 0.05 % for liquid-phase sound speeds, and 0.08 % for vapor-phase

sound speeds. They are tabulated in Table VIII.

Plots of constant-property lines on several thermodynamic coordinates demonstrate that the

new equation is capable of successfully extrapolating to higher temperatures and pressures, and

to lower temperatures; therefore, we conclude that the new equation is applicable to temperatures

from the triple-point temperature (165.75 K) to 450 K and pressures up to 100 MPa with reasonable

uncertainties. Uncertainties in the expanded region are larger than the typical uncertainties in the

region of experimental data. The new equation of state does not include the effects of dissociation,

which begins around 450 K. The thermal stability of R1233zd(E) is discussed in the literature.45–48

The new equation of state for R1233zd(E) has been recommended as an international standard

formulation by the ISO working group presently revising ISO 17584.23 As an aid in computer

implementation, calculated property values from the new equation of state are given in Table IX.

A fluid file (R1233ZDE.FLD) for use in REFPROP49 and TREND,50 a fluid file (R1233ZDE.json)

for use in CoolProp,51 and Python code to display the values in Table IX are given in the supple-

mentary material.
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TABLE VIII. Typical uncertainties (k = 2) in calculated properties from the new equation of state for

R1233zd(E).

Range: 215 K ≤ T ≤ 444 K, p ≤ 35 MPa

Property Uncertainty Remark

Vapor pressure 0.07 % T > Tb (≈ 291 K)

0.2 % T < Tb

Liquid density 0.05 %

Vapor density 0.15 %

Saturated liqiud density 0.1 %

Liquid-phase sound speed 0.05 %

Vapor-phase sound speed 0.08 %

TABLE IX. Calculated property values from the new equation of state for R1233zd(E) to verify computer

code.

T ρ p cv cp w

(K) (mol dm−3) (MPa) (J mol−1 K−1) (J mol−1 K−1) (m s−1)

300 0 0 93.7166 102.031 144.257

300 10 18.20558 107.988 150.070 797.711

300 0.05 0.1192035 94.9935 105.252 138.949

400 8 10.79073 122.693 176.124 441.123

400 0.8 1.791900 121.820 171.027 116.943

439 3.8 3.591512 151.871 56925.2 77.5936
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