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Parametrized tight-binding models fit to first-principles calculations can provide an efficient and accurate
quantum mechanical method for predicting properties of molecules and solids. However, well-tested parameter
sets are generally only available for a limited number of atom combinations, making routine use of this method
difficult. Furthermore, many previous models consider only simple two-body interactions, which limits accuracy.
To tackle these challenges, we develop a density functional theory database of nearly 1 000 000 materials,
which we use to fit a universal set of tight-binding parameters for 65 elements and their binary combinations.
We include both two-body and three-body effective interaction terms in our model, plus self-consistent charge
transfer, enabling our model to work for metallic, covalent, and ionic bonds with the same parameter set. To
ensure predictive power, we adopt a learning framework where we repeatedly test the model on new low-energy
crystal structures and then add them to the fitting data set, iterating until predictions improve. We distribute the
materials database and tools developed in this paper publicly.
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I. INTRODUCTION

With the growth in computing power over the past several
decades, first-principles electronic structure calculations have
come to play an ever larger role in materials physics and
materials design [1,2]. The increasing use of high-throughput
computing techniques has allowed the construction of sev-
eral databases containing calculated properties for thousands
of materials [3–8]. Nevertheless, there remain many types
of calculations that are too computationally expensive to
consider systematically, even at the level of relatively inexpen-
sive semilocal density functional theory (DFT). Examples of
these calculations include harmonic and anharmonic phonons
[9], thermal conductivity [10], thermoelectrics [11], defect
energetics [12], surfaces [13], grain boundaries [14], phase
diagrams [15,16], disordered materials [17], dopants [18],
structure prediction [19], and molecular dynamics [20].

Building models based on DFT calculations is a major
way to bridge the gap between existing databases and new
properties or structures, but models are often developed on a
case-by-case basis for single materials systems, which does
not scale easily for materials design applications. Machine
learning approaches [21] with limited physics built in have
emerged in recent years as a very promising way to incorpo-
rate the large amount of DFT data available, but they can have
difficulty extrapolating beyond their training data to new situ-
ations [22]. In this paper, we aim to develop a physics-based
model of the energy and electronic structure of materials,
which we fit to a large database of DFT calculations using
a combination of traditional and machine-learning-inspired
approaches.

*kevin.garrity@nist.gov

Our underlying model is a tight-binding (TB) model where
the TB Hamiltonian depends on a parametrized function of
the crystal structure [13,21,23–39], including the effects of
charge self-consistency [31,40,41]. This formalism contains
the minimal description of quantum mechanics and electro-
statics necessary to describe chemical bonding. The difficulty
with this approach is producing a model that is both simple
to fit and efficient to evaluate while maintaining predictive
accuracy. Here, we go beyond previous works through a
combination of two ideas. First, in addition to the typical
two-body (two-center) atom-atom interactions, we use three-
body (three-center) terms [42–46] to predict the tight-binding
Hamiltonian from atomic positions. Including explicit three-
body terms allows the Hamiltonian matrix elements between a
pair of atoms to be environment dependent [47–50]. This cre-
ates a more transferable model that can be applied with equal
accuracy to many crystal structures and that better takes ad-
vantage of the abundance of DFT data available from modern
computational resources. Previously, three center expansions
have been used most prominently [44–46] to approximate
the exchange-correlation terms in tight-binding approaches
that expand specific interactions from DFT [24,30,31,43,51].
We instead include three-body interactions as general fitting
parameters for both on-site and intersite matrix elements.

Second, we fit coefficients for 65 elemental systems (the
main group and transition metals) as well as any binary com-
bination of those elements, resulting in 2080 combinations.
Within our framework, materials with three or more elements
can be treated, but they require three-body interactions be-
tween three different elements that go beyond the fitting in this
paper. Our total database consists of over 800 000 DFT calcu-
lations. Furthermore, we employ an active-learning-inspired
approach to continue generating new fitting data until our
model performs well on out-of-sample tests. By fitting our
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model to a wide range of elemental and binary compounds, we
hope to make a model that can be used in high-throughput or
on-demand computing applications that are not possible with
individually fit tight-binding models. Given a crystal structure,
our three-body tight-binding model can calculate the band
structure, total energy, forces, and stresses at a fraction of the
computational cost of a direct DFT calculation. This combina-
tion of built-in physics, accuracy, and scope should allow our
model to be applied for various materials design applications
that are difficult with other techniques.

This work is organized as follows. Section II presents our
tight-binding formalism, Sec. III describes a method to gen-
erate initial TB parameters for a single material via atomic
projection, Sec. IV provides details of the fitting process and
data set generation, Sec. V shows tests of the model energy
and electronic structure, and Sec. VI presents conclusions.

II. TIGHT-BINDING FORMALISM

A. Overview

The basic idea of TB is to perform electronic structure
calculations in a minimal basis [1]. For example, a calculation
of fcc Al will have one s orbital and three p orbitals, for a
total of four basis functions, rather than potentially hundreds
of plane-wave or similar basis functions. Given a DFT calcu-
lation for a particular material, it is possible to use Wannier
functions [52–54] or related techniques [55–57] to generate
tight-binding Hamiltonians for that material. However, our
goal is to predict the Hamiltonian directly from the crystal
structure without performing an expensive DFT calculation
first, allowing us to inexpensively predict the energy, band
structure, and related properties.

Our tight-binding model is largely similar to the formal-
ism from density functional tight binding including charge
self-consistency [31,40,41], as well as the Naval Research
Laboratory (NRL) tight-binding formalism [13]. Here, we
only include a brief overview of standard aspects of tight
binding; interested readers can consult review articles such as
Refs. [25,40,51,58,59] for a more pedagogical introduction.

In addition to the band structure, we need to be able calcu-
late the total energy E . Many tight-binding formalisms make a
distinction between the band structure and non-band-structure
contributions to the total energy, with the latter grouped to-
gether as a repulsive energy contribution, Erep. We instead
follow the NRL philosophy of grouping all the energy terms
together by shifting the DFT eigenvalues, εi,

E =
occ.∑

i

εi + Erep =
occ.∑

i

ε′
i, (1)

ε′
i = εi + Erep/N, (2)

where ε′
i are the shifted eigenvalues and N is the total number

of electrons. After performing this shift, there is no need for
a separate repulsive energy term. Below, we assume this shift
has been done and do not write the prime explicitly.

We use nonorthogonal basis orbitals, where the tight-
binding orbitals φμ have a nontrivial overlap matrix Sμν =
〈φμ|φν〉. The Hamiltonian is also a matrix Hμν = 〈φμ|H |φν〉.
The eigenvectors, ψi = ∑

μ ci
μφμ, with coefficients ci

μ and
eigenvalues εi, come from solving a generalized eigenvalue

equation Hψi = εiSψi. The total energy is

E =
∑

i

fi

∑
μν

ci∗
μ ci

νHμν, (3)

where fi is the occupancy of eigenstate i. For periodic sys-
tems, there is also an average over k points, which is implicit
above.

Once we have the Hamiltonian, solving the model involves
diagonalizing a matrix with four (sp) or nine (spd) basis
functions per atom, which is computationally inexpensive for
small-to-medium-sized systems. The orbitals we chose for
each element are shown in Fig. 1. The overlap matrix can
be fit easily from the atomic orbitals. Thus predicting a set
of matrix elements, Hμν , that accurately reproduce the energy
and band structure directly from the crystal structure is the
main challenge of developing a parametrized tight-binding
model.

B. Charge self-consistency

A major limitation of the above formalism is that it does
not include any explicit role for charge transfer or the re-
sulting long-range Coulomb interaction. While this may be
adequate for elemental systems and some metal alloys, explic-
itly including self-consistent electrostatics greatly improves
fitting for ionic systems, as the remaining interactions become
short ranged [25,31,40,41]. In this paper, we do not consider
magnetism, but spin self-consistency can be included along
similar lines. The cost of including self-consistency is that the
eigenvalue problem will have to be solved several times to
reach convergence, in a manner similar to solving the Kohn-
Sham equations. In practice, the smaller basis sets used in
tight binding reduce the convergence difficulties, and similar
charge-mixing schemes can be employed [60].

The key variable for charge self-consistency is �qI , the
excess charge on ion I , relative to a neutral atom:

qI =
∑

i

fi

∑
μ∈I

∑
ν

1

2

(
ci∗
μ ci

ν + ci
μci∗

ν

)
Sμν, (4)

�qI = qI − q0
I , (5)

where q0
I is the valence ionic charge. �qI enters the expression

for the Coulomb energy ECoul,

ECoul = 1

2

∑
IJ

γIJ�qI�qJ , (6)

where γIJ is the Coulomb operator:

γIJ =
{

UI I = J
erf (CIJ RIJ )

RIJ
I �= J,

(7)

CIJ =
√

π/2

1/U 2
I + 1/U 2

J

. (8)

At long distances, γIJ follows 1/RIJ , where RIJ is the distance
between ions I and J . UI is an on-site Hubbard term, which we
fit to the changes in atomic eigenvalues for different numbers
of electrons. The erf (CIJRIJ ) term reduces the interaction
between nearby orbitals due to orbital overlap and goes to 1 at
long distances; please see details in Refs. [31,40,41].
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FIG. 1. Orbitals used in our tight-binding model: red, s only (hydrogen); blue, sp; yellow, spd; white, not included in the model.

Incorporating the Coulomb term, our expression for the
total energy is now

E =
∑

i

fi

∑
μν

ci∗
μ ci

νHμν + 1

2

∑
IJ

γIJ�qI�qJ , (9)

and the Hamiltonian used to calculate the eigenvectors and
eigenvalues must be modified to

H ′
μν = Hμν + 1

2
Sμν

∑
K

(γIK + γJK )�qK . (10)

C. Two-body intersite interactions

The largest contributions to the intersite Hamiltonian ma-
trix elements Hμν are the two-body interactions between
orbitals μ and ν. Following the Slater-Koster [23] formalism,
these terms can be factored into functions that depend solely
on the distance between the two atoms and symmetry factors
that depend on the orbital types (s, p, or d) and their relative
orientations. The symmetry factors are tabulated by the Slater-
Koster matrix elements Mx

i j , where i and j are the orbitals
and x is an index over a number of components (traditionally
labeled σ , π , and δ):

H2bdy
iI, jJ =

∑
x

f x
iI, jJ (RIJ )Mx

i j . (11)

Here, H2bdy
iI, jJ are the two-body Hamiltonian matrix elements

between orbital i on atom I and orbital j on atom J . These de-
pend on f x(RIJ ), which are functions of the distance between
the atoms. We expand the function of distance in terms of the
Laguerre polynomials Lx(d ) times a decaying exponential:

fiI, jJ (d ) = e−ad
∑

x

f x
iI, jJLx(d ), (12)

where f x
iI, jJ are fitting coefficients that depend on the types

of atoms I, J and the orbital types i, j. a is a universal decay
constant that is set to 2 bohrs ≈1.058 Å. The Laguerre poly-
nomials are chosen because they are complete and orthogonal

with respect to the inner product 〈 f , g〉 = ∫ ∞
0 f (x)g(x)e−xdx

and result in numerically stable fits. We use five terms in
the above expansion to fit the two-body Hamiltonian matrix
elements.

We use an identical formalism to fit the overlap matrix el-
ements, except that we use seven terms as there is less danger
of overfitting. Unlike the Hamiltonian, the overlap matrix el-
ements are approximating overlap integrals that are explicitly
two-body, so there is no need for three-body interactions.

The decay constant parameter a can be optimized to im-
prove the convergence speed of the Laguerre expansion.
Because the overlaps themselves and the intersite Hamiltonian
are due to orbital overlap, the optimal choice for a is close to
the decay length of the valence atomic orbitals we include.
These decay lengths are set by the valence orbital eigenvalues
and are therefore in the same range for all elements. We find
that any value near 1 Å is reasonable and gives similar re-
sults. We note that by fixing the decay constant, the two-body
Hamiltonian now depends linearly on the fitting coefficients
f x
iI, jJ , which greatly simplifies the fitting procedure. We will

design the other terms in our model such that they are linear
as well.

D. Three-body intersite interactions

Most tight-binding formalisms ignore contributions to the
intersite Hamiltonian matrix elements that go beyond the two-
body terms that we consider above. While this is usually
adequate for fitting to a single structure at various volumes
or with small distortions, it leads to well-known difficulties
when fitting to multiple structures that we discuss further in
Sec. V A. In such situations, the best matrix elements for each
structure cannot be fit with a single function of distance.

While there are various methods to alleviate this prob-
lem by including neighborhood-dependent hoppings [47–50],
here, we directly include three-body terms in our fitting [42].
For example, consider HpzA,sB, the interaction between the pz

orbital on atom A and the s orbital on atom B in Fig. 2. Due to
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FIG. 2. Schematic of three-body terms. The direct two-body in-
teraction between the pz orbital on atom A (left) and the s orbital
on atom B (right), represented by the solid blue line, is zero by
symmetry. However, atom X (top) breaks the mirror symmetry and
allows a nonzero HpzA,sB via the three-body interaction (dashed lines).

the symmetry of the orbitals, the direct two-body interaction
(solid line) is zero. However, the presence of other atoms, in
this case atom X, will modify this interaction. Here, atom X
allows a nonzero interaction by breaking the mirror symmetry
along the line from A to B. This three-body interaction can be
represented as two hoppings (dashed lines in Fig. 2): A to X,
and then X to B. If we assume atom X has the symmetry of an
s orbital, then this pair of hoppings is indeed nonzero. Thus
including three-body interactions in this way allows atom X
to modify the A-B interaction.

We implement this idea in our model by including a con-
tribution to the intersite matrix elements from nearby third
atoms:

H3bdy
iI, jJ =

∑
K

giI, jJ,K (RI , RJ , RK )MisMjs. (13)

Here, the sum over K is a sum over nearby third atoms, and the
symmetry factors are a product of two Slater-Koster symmetry
factors, with the symmetry of the third atom assumed to be
an s orbital, i.e., isotropic. This symmetry assumption can be
viewed either as the simplest assumption or as the first term in
an expansion, and it will not break any symmetries required
by the space group. However, as discussed above, the three-
body term can correctly split certain degeneracies or allow for
nonzero couplings if those “extra” symmetries are artifacts of
assuming a purely two-body interaction.

The fitting function g can in principle depend on a com-
plicated function of the three atom positions, which creates
potential problems with overfitting. In order to make progress,
we make the simplifying assumption that the three-body terms
can be expanded in terms of the three distances RIJ , RIK , and
RJK only, and furthermore, only a few terms are necessary in
the expansion:

giI, jJ,K (RI , RJ , RK )

= e−a(RIK +RJK )[g1L0(RIK )L0(RJK )

+ g2L0(RIK )L1(RJK ) + g3L1(RIK )L0(RJK )

+ g4L0(RIK )L0(RJK )L0(RIJ )e−aRIJ ]. (14)

Here, there are four fitting coefficients gi multiplied by
specific products of Laguerre polynomials times decaying

exponentials. The gi depend on the types of atoms I , J , and K ,
as well as the orbitals i and j, but we suppress these indexes
for clarity. We find through experimentation that these four
terms have the largest contribution in typical cases. In the case
where atoms I and J are the same type, there are only three
independent coefficients, as g2 = g3 by permutation symme-
try. Importantly, the contribution from the third atom decays
exponentially as it moves further away from either of the
primary two atoms, which constrains the contributions to be
short ranged.

We note that the self-consistent electrostatic terms in-
troduced in Sec. II B can also create effective three-body
interactions. However, there is no issue with double count-
ing as the three-body terms introduced in this section are fit
after the effects of charge self-consistency have already been
included.

E. On-site interactions

The on-site matrix elements HiI, jI require significant care
to fit, as they effectively incorporate the contributions from the
normal repulsive energy term (see Sec. II A). The one-body
term is due to the non-spin-polarized spherically symmetric
atomic eigenvalues εiI . The two-body terms modify the orbital
energies due to a single nearby atom. They are split into an
average term and a crystal field term. The former changes the
average eigenvalue of a set of orbitals (e.g., p orbitals) due
to a nearby atom, while the latter can split the degeneracy of
a set of orbitals depending on the site symmetry. Finally, we
include a simple three-body term discussed below:

HiI, jI = εiIδi j + H avg
iI δi j + H cf

iI, jI + H3bdy
I δi j, (15)

H avg
iI =

∑
J

hiIJ (RIJ ), (16)

H cf
iI, jI =

∑
J

hcf
iI, jJ (RIJ )MisMjs. (17)

Here, δi j is the Kronecker delta function, H avg
iI,iI is the average

interaction, H cf
iI, jI is the crystal field interaction, and H3bdy

iI,iI
is the three-body interaction. Like the two-body interatomic
term [see Eq. (12)], the average interaction is expanded as
a Laguerre polynomial times a decaying exponential. The
crystal field term is very similar except that it includes a pair
of symmetry factors. Similar to the three-body intersite case
discussed above, we assume the second atom contributes with
isotropic s-orbital symmetry. The crystal field term allows the
mixing of different orbitals on the same atom (e.g., s and px)
if the atom is on a low-symmetry site.

hiIJ (d ) = e−ad
∑

x

hx
iIJLx(d ), (18)

hcf
iI, jJ (d ) = e−ad

∑
x

hcf,x
iI, jJLx(d ). (19)

hx
iIJ and hcf,x

iI, jJ are the fitting coefficients for the average and
crystal field terms, respectively. We fit them with four terms
in the expansion (x = 1–4).

Finally, there is a three-body average on-site interaction.
To simplify the fitting, we apply this term to all orbitals on an
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atom equally, without an orbital dependence.

H3bdy
I =

∑
JK

h3bdy
IJK (RIJ , RIK , RJK ). (20)

This is again expanded into four terms:

h3bdy
IJK (RIJ , RJK , RIK )

= e−a(RIJ +RIK +RJK )
[
h3bdy

1 L0(RIJ )L0(RJK )L0(RIK )

+ h3bdy
2 L1(RIJ )L0(RJK )L0(RIK )

+h3bdy
3 L0(RIJ )L1(RJK )L0(RIK )

+ h3bdy
4 L0(RIJ )L0(RJK )L1(RIK )

]
. (21)

h3bdy
x are the four fitting coefficients, which depend also on

IJK . In the case where the types of atoms J and K are the
same, only three fitting coefficients are independent due to
permutation symmetry. We discuss the relative magnitudes
of typical three-body terms in an example material in the
Supplemental Material, Sec. S3 [61].

III. ATOMIC PROJECTION OF WAVE FUNCTIONS

A. Projection method

In order to fit the model defined in Sec. II, we need data
from DFT calculations. While we will primarily concentrate
on fitting to energies and eigenvalues as discussed later, we
need a reasonable set of tight-binding parameters to start the
fitting process. A difficulty comes from the fact that even
a set of isolated bands can be described by many different
tight-binding models, as it is always possible to apply uni-
tary transformations to a Hamiltonian without changing the
eigenvalues. Furthermore, the conduction bands we wish to
describe with tight binding are generically entangled with
both higher-energy atomic levels and free-electron bands that
we cannot describe with our model. Maximally localized
Wannier functions and similar methods [52,53,55] are a well-
known way to generate a tight-binding Hamiltonian. However,
because they require an optimization step, they are not guar-
anteed to resemble atomiclike orbitals in general cases, and
they can depend discontinuously on atomic positions, making
them a poor choice for the fitting data we need. Symmetry-
adapted Wannier functions can improve the situation for some
structures, but the same issues remain for broken-symmetry
structures [62].

We want a procedure to generate the best tight-binding
matrix for our goal, which is to serve as the data for fitting
the model described in Sec. II. We therefore use a noniterative
atomic orbital projection procedure. Projection schemes have
the advantage of maintaining the correct symmetry of the
tight-binding Hamiltonian and do not require optimization.
Following similar schemes [63,64], the basic idea involves
projecting the large N-band Kohn-Sham Hamiltonian HKS at
a given k point onto a smaller number of M atomic orbitals:

HTB
α,β = 〈φα|HKS|φβ〉 (22)

≈
∑

n

〈φα|ψn〉En〈ψn|φβ〉, (23)

where φα are atomiclike orbitals and ψn and En are the Kohn-
Sham eigenvectors and eigenvalues in a plane-wave basis.

A difficulty with Eq. (23) is how to select the best M bands
that are appropriate to describe with atomiclike orbitals in
the case of entanglement, which is generic for conduction
bands. We proceed by defining a set of projection coefficients
Bα,n = 〈φα|ψn〉. Then, we consider the projection matrix for
eigenvectors:

(B†B)n,m = 〈ψn|P|ψm〉 = Pn,m. (24)

The diagonal elements of this N × N matrix are the pro-
jectability of each band [63,64].

Our key approximation is to represent the projection matrix
P with a new matrix P̃, created from the M eigenvectors of P
that have the largest eigenvalues.

Pi, j =
N∑

m,n=1

Qi,n pn,m(Qj,m)†, (25)

P̃i, j =
M∑

n=1

Qi,n(Qj,n)†, (26)

P̃ = B̃†B̃. (27)

Here, Qi,n are the N eigenvectors of P, and pn,m are a di-
agonal matrix of eigenvalues. The sum in Eq. (26) is over
the M largest eigenvalues, and Eq. (27) defines B̃, which is
an M × N matrix. P̃ projects onto the highest-projectablity
M-dimensional subspace to represent the M atomic wave
functions. By construction, it has M eigenvalues equal to 1,
with the rest equal to zero. Using P̃, we can now apply the
philosophy of Eq. (23) without difficulty:

HTB = BP̃EP̃†B†, (28)

HTB = BB̃†B̃EB̃†B̃B†. (29)

Here, E is a diagonal N × N matrix of the original eigenval-
ues.

By approximating P with its M eigenvectors with large
eigenvalues, we have effectively selected the M-dimensional
subspace of the original larger Hamiltonian that is best (most
atomiclike), thus avoiding the difficulty of the naive equa-
tion (23). This projection scheme can then be applied to a
grid of k points, and the resulting TB Hamiltonian can be
Fourier transformed onto a real-space grid. Because the origi-
nal atomiclike states are localized in real space, the real-space
Hamiltonian will be localized as well, although not maximally
localized.

B. Implementation details

The projection method described above picks out the high-
est projectability Hamiltonian for the set of M atomic orbitals
and can be used to separate both semicore states and high-
energy states from the valence and conduction bands we wish
to describe. Ideally, it also maintains the symmetry of the
tight-binding Hamiltonian. However, we note that the original
selection of N bands at each k point can be a subtle source
of symmetry breaking, as the N th and (N + 1)th bands can
be degenerate, and selecting only one of these at random
introduces unwanted symmetry breaking. Therefore we make
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sure to throw away the highest eigenvalues at each k point
before projection.

A second problem can occur if the desired set of atomic
orbitals includes high-energy states that are not well described
by the N Kohn-Sham bands in the original DFT calculation.
In this case, the trace of the M × M matrix BB† will be much
less than M. This situation can be monitored and can usually
be solved by increasing N .

A more serious difficulty is that the projection scheme does
not reproduce even the occupied states exactly. While it is
impossible to reproduce the larger set of unoccupied bands
with only tight-binding orbitals, it is desirable to reproduce
the occupied bands, and possibly the lowest conduction bands,
for our eventual fitting procedure. Fortunately, the occupied
orbitals are almost always well described by atomic orbitals,
and our atomic-projected Hamiltonians require only small
adjustments.

We perform this adjustment by first deciding on an energy
range below which the eigenvalues should be exact by defin-
ing a smooth cutoff function f (E ) that is 1 below some cutoff
energy and that goes to zero at higher energies. Then, we can
adjust the TB eigenvalues to match the DFT eigenvalues while
keeping the TB eigenvectors unchanged:

HTB = 
ETB
†, (30)

H adj = 
E adj
†. (31)

Here, 
 are the eigenvectors, and ETB and E adj are diagonal
matrices of tight-binding and adjusted eigenvalues. The ad-
justed eigenvalues are

εadj
n = f

(
εDFT

n

)
εDFT

n + (
1 − f

(
εDFT

n

))
εTB

n , (32)

where ε
adj
n , εTB

n , and εDFT
n are the adjusted, tight-binding, and

DFT eigenvalues, respectively. For this procedure to work,
it is necessary to identify which DFT eigenvalue should be
matched with each TB eigenvalue. We do this by comparing
the energies and the eigenvector projections on the DFT bands
to find the best match. We take the cutoff energy to be the
lowest eigenvalue above the Fermi level, and the cutoff range
is 3 eV.

In Fig. 3, we show a comparison between the DFT
eigenvalues for silicon in the diamond structure and our
atomic-projected tight-binding model, using the method de-
scribed in this section. We can see that there is excellent
agreement for the occupied eigenvalues, even for k points
along high-symmetry lines, but not in our original grid. How-
ever, there is much worse agreement for the conduction bands,
with the tight-binding bands only tracing the general shape
of the conduction bands. This is because there is significant
mixing between these states and various unoccupied Si s∗
and d states and other states that are not part of our model,
which limits our ability to describe these states using solely
atomiclike s and p orbitals. It may be possible to improve this
agreement by including more orbitals, but this will increase
the cost of the tight-binding calculations, undercutting the
main motivation for using tight binding in the first place. We
leave models with more orbitals or other approaches to future
work.

FIG. 3. Band structure comparison between DFT (blue) and
atomic-projected tight binding (proj-tb; orange) for Si in the diamond
structure. The zero of energy is the valence band maximum.

IV. FITTING

We fit tight-binding matrix elements to a set of DFT calcu-
lations by first doing a least-squares fit to the set of initial DFT
Hamiltonian matrix elements (see Sec. III). This is followed
by another fit to the total energies and eigenvalues. A key
part of our procedure is our recursive generation of new DFT
fitting data to improve the model. We discuss these ideas in
the following sections. To orient the reader, an overview of
our procedure is presented in Fig. 4.

A. Initial fitting

Our initial fit is to the atomic-projected Hamiltonian matrix
elements for a set of DFT calculations. Each DFT calculation
contributes nkM2 matrix elements, where nk is the number of

FIG. 4. Overview of the fitting process. Here, calcs., calculations.
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symmetry-reduced k points and M is the number of orbitals.
The number of independent matrix elements is reduced by
the Hermitian symmetry and any crystal symmetries. These
matrix elements are arranged into a long vector of length
NTB. The charge self-consistency contributions (Sec. II B) are
subtracted from the matrix elements.

The set of descriptors is an NTB × nparam matrix, where
nparam are the number of tight-binding model parameters that
are relevant to the DFT calculations. These parameters include
two-body terms [Eq. (12)], three-body terms [Eq. (14)], and
on-site terms [Eqs. (18)–(21)]. The entries of this matrix come
from Fourier-transforming the tight-binding model of Sec. II
for each material.

As noted in Sec. II C, all of our fitting parameters are
linearly related to the Hamiltonian. The initial set of coeffi-
cients then comes from a simple linear least-squares fit of the
model coefficients to the Hamiltonian matrix elements. This
fit is generally good enough to produce reasonable-looking
band structures, but the total energies are not very accurate. A
major difficulty with the fitting of total energies is that the
bandwidth of a given material can be a dozen eV, but the
energy differences between chemically relevant structures are
on the order of 0.1 eV/atom, making it necessary to include
the total energy directly in the fitting instead of indirectly
through the Hamiltonian. We discuss this further in the next
section.

We also fit the overlap matrices with the same procedure,
except that the overlaps are purely two-body interactions. The
overlaps are simple to fit and are fixed for the rest of the fitting.

B. Self-consistent fitting

Starting from our initial fitting described above, we seek to
improve the model by focusing more directly on the observ-
ables we care most about, namely, the total energies and the
occupied eigenvalues. Unlike the Hamiltonian itself, which as
discussed in Sec. III can always be arbitrarily modified by
a choice of unitary transformation or disentanglement proce-
dure, the energies and occupied eigenvalues are well-defined
observables. Unfortunately, unlike the Hamiltonian matrix el-
ements, our model is not linearly related to the energy or
eigenvalues, which appears to pose a major difficulty for the
efficiency of the fitting.

In order to overcome this difficulty, we first note that the
eigenvalues εnk can be linearly related to the Hamiltonian if
we already know the eigenvectors |ψnk〉:

εnk = 〈ψnk|Hk|ψnk〉. (33)

Therefore we adopt a procedure where we use our current
set of parameters to generate and diagonalize the current
Hamiltonians for each material in our data set, and then we
use the resulting eigenvectors to generate the new set of
descriptors, using the eigenvalues as the target data rather
than the Hamiltonian. By adopting this approach, we can fit
the eigenvalues using linear fitting. The problem is that the
eigenvectors of the old parameters will not generally match
the eigenvectors of the new parameters. Therefore this pro-
cedure must be repeated many times to reach consistency
between the eigenvectors and eigenvalues. As usual for self-
consistent equations, we find that mixing the previous and new

FIG. 5. Comparison of atomic-projected DFT intersite s-s
Hamiltonian matrix elements for three hydrogen structures (blue
symbols) with the (a) two-body model, orange line, and (b) three-
body model (TB3), orange symbols. The three-body model points in
(b) are almost on top of the DFT results. See Sec. V A.

coefficients results in a more stable approach to the solution.
Armed with the eigenvalues and eigenvectors, the total energy
[Eq. (9)] of each material can also be incorporated into the
fitting straightforwardly.

One final difficulty is that when including charge self-
consistency as in Sec. II B, each material must be self-
consistently solved with the current set of coefficients as an
inner loop within our overall self-consistent procedure for
fitting the coefficients.

C. Generation of DFT data sets

The fitting procedure described above requires a data set
of DFT calculations to fit. First, we generate data sets for
the elemental systems and fit the elemental coefficients. Each
element is fit separately. Then, keeping the elemental coeffi-
cients fixed, we generate data sets of binary compounds and
fit the binary coefficients. The flexibility of our model enables
us to fit binary compounds without sacrificing our ability to
describe elements. In each case, we generate an initial data
set and then supplement it using a simple learning strategy to
generate relevant new low-energy structures.

To generate the elemental data sets, we begin by substitut-
ing each element into a series of common elemental structures
or molecules with small unit cells, e.g., fcc, diamond, etc., as
well as a dimer. All structures have eight or fewer atoms, with
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TABLE I. Summary of model accuracy on bulk structures from
the JARVIS-DFT database. The columns show the absolute errors in
atomization energy (eV/atom), volume (percent error), bulk modulus
(percent error), bandwidth (eV), and band gap (eV). Results are split
into elements (in-sample) and small binary (two to six atoms, in-
sample) and large binary (nine to ten atoms, out-of-sample) unit cells.

Energy Volume Bulk mod. Bandwidth Gap
(eV/atom) (%) (%) (eV) (eV)

Elements 0.022 2.1 27 0.29
Binary, two 0.018 2.0 17 0.30 0.46

to six atoms
Binary, nine 0.052 2.3 14 0.41 0.61

to ten atoms

one or two atoms being the most common. For each structure,
we consider a series of three to five volumes within ±10%
of the equilibrium volume, for a total of ≈100 structures. We
fit an initial set of coefficients to this data set. Unfortunately,
it is impossible to ensure a priori that any such data set
has sufficiently varied structures so that the resulting model
both (a) describes low-energy structures accurately and (b)

has no unphysical low-energy structures. We therefore adopt
a recursive learning strategy to systematically improve the
model (see Fig. 4). We use the current model to search for
new low-energy structures and add them to the data set.

Specifically, for each element, we generate several new
structures with random lattice vectors and random atomic
positions, ensuring that no atoms overlap [65]. These new
structures have two or three atoms per unit cell, and we relax
them using the tight-binding model. For each of the new
relaxed structures, we perform a new DFT calculation and
compare the new DFT energy with the TB energy. If the total
energy per atom differs by more than a tolerance of roughly
0.1 eV/atom, we add the new structures to the data set and
restart the fitting. We continue adding new structures in this
way until the out-of-sample performance on these low-energy
structures improves.

The procedure for binary compounds is similar, except that
we have to consider differing stoichiometries as well. We
start our data set with a few common structural prototypes
at a range of stoichiometries (e.g., rocksalt and CaF2). We
add a few extra common structures at chemically relevant
stoichiometries for that binary pair, as well as any matching
structures from the Joint Automated Repository for Various
Integrated Simulations–DFT (JARVIS-DFT) database [7,66]

FIG. 6. Comparison of DFT and tight-binding properties for elemental systems: (a) atomization energies (eV/atom), (b) occupied
electronic bandwidth (eV; see text), (c) volume (absolute error percentage), and (d) bulk modulus (absolute error percentage).
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Bandwidth

FIG. 7. Comparison of DFT and TB properties for in-sample binary compounds with two to six atoms per unit cell: (a) atomization energies
(eV/atom), (b) occupied electronic bandwidths in blue and band gaps in orange (eV; see text), (c) volume (absolute error percentage), and
(d) bulk modulus (absolute error percentage).

with small unit cells. Finally, we include a dimer at several
bond lengths, for a total of ≈100 starting structures. We again
employ recursive learning, generating two or three new ran-
dom structures at the following compositions: 2/2, 1/2, 2/1,
1/3, and 3/1. These structures are relaxed with the model and
then compared with new DFT calculations. The process is iter-
ated until the out-of-sample energies improve. In many cases,
certain stoichiometries we consider may not be chemically
relevant in equilibrium, but we want the model to give rea-
sonable results for as wide of a range of materials as possible.

This entire process results in a large data set of DFT struc-
tures.

D. First-principles details

Our first-principles DFT calculations are performed using
QUANTUM ESPRESSO [67] code using the Perdew-Burke-
Ernzerhof functional revised for solids (PBEsol) [68], which
predicts accurate lattice constants and elastic properties of
solids [69]. We describe atomic regions using slightly mod-
ified Garrity-Bennett-Rabe-Vanderbilt (GBRV) pseudopoten-
tials [70,71] as distributed with the code. The modifications
are which atomic orbitals are included in the pseudopoten-

tial files for the purposes of the atomic projections, as well
as minor modification of the oxygen pseudopotential. We
perform calculations using a 45 Ry (≈610 eV) plane-wave
cutoff energy. We use k-point grids with a linear density of
at least 29 per Å−1 and Gaussian smearing with an energy of
0.01 Ry (≈0.136 eV), which we also set as the defaults for
our tight-binding code. We perform only non-spin-polarized
calculations. We use the JARVIS-TOOLS [7] package to generate
surface and vacancy structures.

V. RESULTS

A. Pedagogical example

We begin with a simplified pedagogical example that il-
lustrates the power of the three-body tight-binding approach.
For this example, we consider hydrogen atoms in three simple
crystal structures, face-centered cubic, body-centered cubic,
and simple cubic (fcc, bcc, and sc), at five volumes each. We
describe hydrogen with a single isotropic s orbital, and for this
example we fit directly to the atomic-projected Hamiltonian
matrix elements per Sec. III A. These Hamiltonian matrix
elements are plotted as a function of distance in Figs. 5(a) and
5(b) with blue symbols. We can see that there is strong decay
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Bandwidth

FIG. 8. Comparison of DFT and TB properties for out-of-sample binary compounds with nine to ten atoms per unit cell: (a) atomization
energies (eV/atom), (b) occupied electronic bandwidth in blue and band gaps in orange (eV; see text), (c) volume (absolute error percentage),
and (d) bulk modulus (absolute error percentage).

with distance, but there is also a nearly 1.0 eV spread between
the matrix elements of the three different cubic structures at
similar distances. Even within a single structure, the different
shells of neighbors do not follow a single line versus distance.

If we fit a tight-binding model using purely two-body
interactions as in Eqs. (11) and (12), the resulting intersite
interactions between s orbitals depend solely on distance. As
shown in Fig. 5(a), it is clearly not possible to describe all
of these interactions accurately with purely two-body terms.
However, by including three-body interactions as in Eqs. (13)
and (14), the model can describe the additional variation in
the matrix elements that comes from the differing local envi-
ronments of the bonds. This can be seen in Fig. 5(b), which
shows almost perfect agreement between the three-body tight-
binding model and the DFT matrix elements. This increase in
flexibility and accuracy requires only three additional param-
eters in this case.

B. Bulk structures

We now present results demonstrating the accuracy of our
model in reproducing and predicting bulk energies, volumes,
bulk moduli, bandwidths, and band gaps. See Supplemental

Material, Sec. S4, for details on each structure we test. We
separate our results into elemental systems, binary systems
with small unit cells (two to six atoms), and binary systems
with large unit cells (nine to ten atoms), only the last of
which is an out-of-sample test. The structures we consider are
the relevant bulk structures from the JARVIS-DFT database
[7], which includes experimentally observed structures and
other structures that are close to thermodynamic stability. We
include a summary of these results in Table I. The electronic
bandwidth is defined as the difference between the valence
band maximum and the lowest occupied states we include
in our model. For ease of computation, the volume and bulk
modulus are calculated for fixed internal atomic coordinates,
i.e., unrelaxed, and as in the entire paper, all calculations are
non-spin-polarized.

We start by considering elemental structures. Because
there are relatively few unique elemental structures that are
observed experimentally, we do not have a separate test
and training set for bulk elements (although see Sec. V D).
In Fig. 6, we present a comparison between the DFT and
TB atomization energies, occupied state bandwidth, volume,
and bulk modulus. The structures we consider are three-
dimensional elemental solids.
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As can be seen in Fig. 6(a), there is excellent agreement
between the model and DFT atomization energies, which are
a direct part of the fitting process. Figure 6(b) shows that
the TB model can also reproduce basic features of the band
structure such as the bandwidth. In Figs. 6(c), we see that
there is good agreement for the volumes, with most structures
having less than 3% error, which corresponds to only 1% error
in lattice constants. The bulk modulus, shown in Fig. 6(d),
shows significantly more error. The bulk modulus is computed
from six energy calculations between 94 and 106% of the
equilibrium volume, and maintaining agreement with the first-
principles results over such a wide range is more challenging.
In addition, some elemental structures include weak bonding
between molecules, which is challenging for either our model
or the underlying DFT to capture accurately.

We move on to consider binary compounds. First, we con-
sider binary compounds with two to six atoms per unit cell
from the JARVIS-DFT database, which are again in-sample
for our fitting procedure. The results, shown in Fig. 7, are
again very promising, with excellent agreement for energies
and bandwidths, good agreement for volumes, and reasonable
agreement for the bulk modulus. In addition, in Fig. 7(b),
we show results for band gaps. Because our fitting procedure
emphasizes the occupied eigenvalue and total energies, with
a lower weight on unoccupied bands, the band gaps are more
challenging to fit quantitatively. Nevertheless, we find reason-
able agreement between the DFT and TB band gaps.

Finally, we consider results for binary compounds with
nine to ten atoms per unit cell from the JARVIS-DFT
database, as shown in Fig. 8. None of these crystal structures
is included in our fitting in any way, as we include only
structures with eight or fewer atoms. Still, we find levels
of agreement that are similar to our in-sample results. We
find that the atomization energies [Fig. 8(a)] are excellent,
and the band gaps and bandwidths [Fig. 8(b)] are very good.
The volume and bulk modulus errors [Figs. 8(c) and 8(d)]
are also comparable to the in-sample data from Figs. 6 and
7. These results demonstrate the predictive power of our fit
model over a wide range of chemistries, bonding types, and
crystal structures.

C. Band structures

As discussed above, Figs. 6(b), 7(b), and 8(b) include sta-
tistical evidence of the accuracy of our model in reproducing
electronic properties such as the bandwidth and band gap. In
this section, we present a few example comparisons between
band structures calculated with tight binding or directly with
DFT. In Fig. 9, we show band structures for Rh in the fcc
structure as well as ZnSe in the zinc blende structure. These
simple materials are both included in the relevant fitting data
sets and thus are in-sample predictions. As can be seen in
the figure, we reproduce the occupied bands very well. The
relatively localized d states of Rh are very well described.
The occupied Se p states and lower-energy Zn d states again
match the DFT band structure, although the Zn d states are
shifted slightly. We also show reasonable agreement for the
unoccupied bands, but the fit is less quantitatively accurate.

In Fig. 10, we show band structures for three materials with
larger unit cells that are out-of-sample predictions: Ga4Te6

FIG. 9. In-sample band structure comparison between DFT
(blue) and tight binding (orange) for (a) Rh in the fcc structure, and
(b) ZnSe in the zinc blende structure.

(Cc space group, JVASP-22549), Ca5P8 (C2/m, JVASP-
12962), and Au2Bi8 (Fd-3m, JVASP-101068). Despite not
being fit to these crystal structures, we are able to produce
reasonable band structures in all three cases. Some of the
bands are reproduced almost quantitatively, while others are
shifted somewhat, but the averaged electronic properties are
well reproduced with far less computational effort than full
DFT calculations.

D. Defects and surfaces

Thus far, we have only considered near-equilibrium prop-
erties of bulk materials. In this section, as a first step beyond
these limitations, we consider vacancy formation energies and
(111) surface energies of elemental solids. For computational
convenience, we only consider unrelaxed geometries. How-
ever, we also provide comparisons with calculated relaxed
structures and experimental measurements in the Supple-
mental Material when available [72–88], which show that
relaxation effects are generally small in elemental systems.
We note that none of the vacancy structures and none of the
specific surfaces considered here are included in our fitting
data set, making these structures an out-of-sample test of the
model. Our data set does include thinner three-to-five-atom
slabs in the fcc and bcc structures.
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FIG. 10. Out-of-sample band structure comparison between
DFT (blue) and tight binding (TB3, orange) for (a) Ga4Te6,
(b) Ca5P8, and (c) Au2Bi8 (see text).

We generate vacancy structures by first creating a supercell
of the elemental ground-state structure as necessary to ensure
that the defects are separated by at least 10 Å, and then
deleting an atom. We calculate the vacancy formation energy
as

Vf = Edefect − Eideal + μ. (34)

where Edefect and Eideal are the energies of the defect and
ideal structures, respectively, and μ is the chemical potential
of the element in the same structure. A comparison between
the DFT results and the tight-binding calculations is shown in
Fig. 11(a), which shows good agreement in most cases across
a wide range of defect energies.

Next, we calculate the (111) surface energies of the el-
emental solids in their respective reference structures and
compare them with DFT data in Fig. 11(b). We generate
surfaces with a 10 Å slab thickness and 15 Å vacuum padding
during surface structure creation. We note that real surfaces
can display significant reconstructions, but here we only con-
sider ideal unrelaxed surfaces with a specific structure. We
calculate surface energies as

γ = (Esurf − μNat )/(2A), (35)

where Esurf is the surface energy, Nat is the number of atoms in
the surface unit cell, A is the surface area, and the factor of 2 is
because slabs have two surfaces. As shown in Fig. 11(b), we
again find good agreement between the tight-binding results
and the DFT surface energies. The raw data from the Fig. 11
as well as a comparison with previous calculations and exper-
iments are available in the Supplemental Material, Sec. S5.

VI. DISCUSSION AND SUMMARY

The results of Sec. V demonstrate that we are able to pre-
dict DFT energies and band structures using our parametrized
tight-binding model including three-body interactions and

FIG. 11. Comparison of DFT and tight-binding calculations for unrelaxed (a) point vacancy formation (form.) energy (eV) and (b) (111)
surface energies (J/mm2) of elemental solids.
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self-consistent charges, with much reduced computation time
(see Sec. S1). This success shows that our parsing of
first-principles electronic structures into at most three-atom
effective interactions is a useful way to understand materials
chemistry. In addition, we have indirectly demonstrated that
the space of minimal atomic Hamiltonians is a smooth func-
tion of atomic positions even across a wide range of materials,
which makes it possible to fit to our parametrized model in
the first place. Also, because basic quantum mechanics and
electrostatics are built directly into the formalism, we expect
reasonable predictions when extrapolating beyond the training
data. We note that the accuracy of our model in predicting
the energies of bulk materials is comparable to state-of-the-art
nonparametric machine learning models that do not directly
include quantum mechanics [21,89–93]. It may be possible to
improve predictions by combining the best features of both
approaches, which has already been explored in a few studies
[94–96].

Still, our model has several shortcomings. First, for
simplicity we currently include only non-spin-polarized cal-
culations, although there is no obvious problem with applying
the approach to magnetic systems. Similarly, long-range Lon-
don dispersion forces are missing from our underlying PBEsol
DFT calculations and thus not well described by our model,
but this is not inherently problematic to the formalism. Sec-
ond, there are remaining limitations of accuracy, especially
in describing conduction bands or crystal structures that are
very different from those in the training data. Finally, a more
fundamental issue is that our use of three-body interactions
means that applying our formalism to ternary (or quaternary,
etc.) materials requires the inclusion of three-body terms be-
tween three different atom types. Such terms are not included
in our current fitting set, which includes elemental and binary
combinations only. We expect the importance of these terms to
vary according to crystal structure, as we find that such three-

body interactions are short ranged. Adding ternary materials
to our data set systematically would require adding roughly an
order of magnitude of DFT calculations to our already large
data set, but we may pursue a subset of materials.

In summary, we have developed a tight-binding formal-
ism that predicts the atomic-orbital Hamiltonian in terms
of two-body and three-body interactions. The inclusion of
three-body terms increases the model transferability and al-
lows us to apply the same model to 65 elemental systems
and any binary combination of those elements. We fit the
model to a large data set of DFT calculations, and we sys-
tematically generate new crystal structures until our model
performs well on out-of-sample tests. To initialize the fitting
process, we also develop a technique to generate an atomic-
projected tight-binding model for a single band structure. We
demonstrate the effectiveness of this model in calculating total
energies, volumes, elastic properties, and band structures of
materials, as well as defects and surfaces. To enhance the
utility and reproducibility of the current method, we pro-
vide software packages for the user either to directly use the
current model parametrization for energy and band structure
calculations or to fit their own model. Finally, we have de-
veloped a publicly available database of the underlying DFT
calculations.

We distribute a publicly available implementation of the
present work and the fitting parameters [97] in the JULIA

programming language, as well as a PYTHON interface [98].
The documentation is available [99], including examples.
We make the DFT calculations available on the JARVIS–
QUANTUM ESPRESSO tight binding (JARVIS-QETB) website
[100]. Details of the data set generation and recursive proce-
dure, including the prototype crystal structures for the initial
data set generation, are available on the THREEBODYTB.JL code
web page [97] and in the documentation [99]. The fitted data
sets themselves are available [101].
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