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Symmetry of magnetic correlations in spin-triplet
superconductor UTe2
Nicholas P. Butch 1,2✉, Sheng Ran 1,2,3, Shanta R. Saha1,2, Paul M. Neves1,2, Mark P. Zic1,2, Johnpierre Paglione 1,2,
Sergiy Gladchenko1, Qiang Ye1,4 and Jose A. Rodriguez-Rivera 1,4

The temperature dependence of the low-energy magnetic excitations in the spin-triplet superconductor UTe2 was measured via
inelastic neutron scattering in the normal and superconducting states. These excitations have a peak instensity at 4 meV, follow the
Brillouin zone edges near the crystallographic b-axis, obey the paramagnetic structural symmetry, and track the temperature
evolution of the heavy fermion bulk magnetic susceptibility. Thus, the imaginary part of the dynamic susceptibility follows the
behavior of interband correlations in a hybridized Kondo lattice with an appropriate characteristic energy. These excitations are a
lower-dimensional analog of phenomena observed in other Kondo lattice materials, such that their presence is not necessarily due
to dominance of ferromagnetic or antiferromagnetic correlations. The onset of superconductivity alters the magnetic excitations
noticeably on the same energy scales, suggesting that these changes originate from additional electronic structure modification.
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INTRODUCTION
Spin-triplet superconductivity was recently discovered in UTe21.
The superconductivity is characterized by large and anisotropic
upper critical fields that all exceed the paramagnetic limit,
pointing to unconventional spin-triplet pairing1,2. Superconduc-
tivity is limited by a magnetic phase transition at 35 T3,4, and the
field-polarized state contains another reentrant superconducting
phase above 40 T3. Superconductivity in UTe2 is believed to be
topologically nontrivial because of observations of chiral in-gap
surface states5, a double transition in specific heat, and broken
time reversal symmetry as detected by optical Kerr rotation6,
which suggest the presence of a complex, two-component
superconducting order parameter. Consistent with a p-wave
orbital symmetry, the superconducting gap is nodal7–9.
Superconductivity emerges from a renormalized electronic

structure of hybridized f-electrons. UTe2 exhibits archetypal heavy
fermion features, namely a large low-temperature specific heat
and local maxima in temperature-dependent electrical resistivity
and magnetic susceptibility below room temperature1, a Kondo
hybridization gap of 4 meVin scanning tunneling spectroscopy5,
quadratic temperature dependence of low-temperature resistiv-
ity10, linear temperature dependence of thermoelectric power11,
and a Drude peak in optical conductvity12. Angle resolved
photoemission (ARPES) measurements show that the band
structure of UTe2 is dominated by two intersecting one-
dimensional sheets13. The heavy electron states result from
hybridization between these highly-dispersive bands with
f-electron states near the chemical potential, as suggested by
dynamical mean field theory (DMFT) calculations12,13, while
ARPES also reveals an additional Fermi pocket that is three-
dimensional and potentially heavy.
Magnetic interactions play an important role in UTe2. Low-

temperature neutron diffraction demonstrates the lack of long
range magnetic order in the normal state14. Yet several
measurements suggest proximity to a ferromagnetic instability.

A scaling analysis of the magnetization suggests the influence
of ferromagnetic quantum critical fluctuations1. Muon spin
relaxation measurements have shown that significant spin
fluctuations in the normal state strengthen upon cooling into
the superconducting state15. Nuclear magnetic resonance
measurements are difficult at low temperature in the normal
state due to long relaxation times16. Optical Kerr rotation
experiments reveal that vortices consist of magnetically
polarizable normal cores17.
Recent inelastic neutron scattering experiments complicate the

picture, as they have not found obvious signatures of ferromag-
netic fluctuations, but rather magnetic excitations at incommen-
surate wavevectors. These might originate in RKKY interactions or
Fermi surface nesting18, or rod-like excitations due to spin-ladder
interactions19. Intriguingly, a change in the inelastic neutron
scattering emerges in the superconducting state, near energies
of 1 meV20,21, which is suggested to be a type of superconducting
resonance. Recent calculations show that a dominant antiferro-
magnetic susceptibility can be consistent with spin-triplet
superconductivity22.
We performed a series of inelastic neutron scattering experi-

ments in the crystallographic a-b plane that demonstrate the
detailed energy-dependence and anisotropy of the magnetic
excitations. The excitations evolve over a broad range of
temperatures, from the weakly correlated high-temperature state
into the superconducting state below 1.6 K. These excitations are
signatures of the heavy electron band structure, similar to several
other Kondo lattice systems, but with a lower dimensionality due
to the UTe2 structure. They do not a priori imply a tendency
toward a specific type of long-range magnetic order. These
measurements also show that the change in the excitation
spectrum in the superconducting state is a phenomenon that
occurs over energies of several meV, suggesting a substantial
change in magnetic correlations at low temperatures.
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RESULTS AND DISCUSSION
Inelastic neutron scattering
The scattered neutron intensity S, measured as a function of
transfer of momentum Q and energy E, is proportional to a
temperature factor times the imaginary part of the dynamic
magnetic susceptibility χ″, by χ00ðQ; EÞ ¼ ð1� e

�E
kBTÞSðQ; EÞ, where

kB is the Boltzmann constant and T is the temperature. In UTe2, the
dominant feature in χ″ has a well-defined Q-dependence with
peak intensity at E= 4 meV. As shown in Fig. 1, at 5 K these
magnetic excitations essentially form stripes long in the H
direction, the crystallographic a-axis, and modulated along the
K direction, the b-axis. The body-centered orthorhombic crystal
structure of UTe2 is in the space group Immm with lattice
constants a= 4.12 Å, b= 6.08 Å, and c= 13.8 Å at 2.7 K14. The
Immm primitive lattice vectors are along the body diagonals of the
conventional orthorhombic cell and the Brillouin zone (BZ) is not a
rectangular prism. Nearest-neighbor BZ’s along the H and K
directions are displaced in the L direction, resulting in a pattern of
alternating centers and faces in the [H, K, 0] plane.
As the BZ overlays in Fig. 1 make clear, the magnetic excitations

are confined to the edges of the BZ’s, occurring at values of K ¼
0:6 ¼ 1

2 ð1þ b2

c2Þ and symmetrically equivalent values such as K=
1.4 and K= 2.6. However, the excitations are constrained to near
H= 0 and are not detected at the edges of any BZ’s that do not
fall on the K axis, even though these would be expected because
they are symmetrically equivalent. Weak excitations at larger H
values20 are not evident here. There is disagreement over whether
similar excitations extend along the L direction18,19. It is interesting

that the intensity distribution along the BZ edge shows some
dependence on K at low E (Fig. 1): it is stronger in the middle at
K= 0.6 and distributed towards the corners at K= 1.4. This
intensity variation cannot be explained by a standard uranium 5f-
electron form factor, which would monotonically decrease the
intensity at higher Q, or simple spin polarization23, suggesting a
more complicated origin. The majority of the spectral weight sits
at higher energies, and a further comparison above 3 meV of the
K= 0.6 and K= 1.4 excitations is not possible because of the
kinematic scattering limits of the spectrometer.
Looking more closely at the Q-dependence, it is clear that the

excitations disperse asymmetrically. Figure 2 shows contour plots
of χ″ at 5 K, comparing the magnetic dispersion along (a) the
b-axis and (b) the a-axis at the BZ edge. To more easily see the
Q-dependence in the vicinity of [0, 1.4, 0], these data are broken
up into constant-Q scans in Fig. 2c. Fits of Lorentzian lineshapes
can describe the data adequately. The energy of peak intensity
can be tracked as a function of Q (Fig. 2d). There is an obvious,
sharp minimum in the peak position at K= 1.4 with a value of
4 meV, which remains approximately constant as a function of H
along [H, 1.4, 0]. Thus the excitation is not dispersive along the BZ
edge, but only along the perpendicular direction. Note also that
the dispersion along [0, K, 0] is very asymmetric about the
minimum at K= 1.4, with a steeper slope of −16 meV Å at
smaller K and shallower slope of 5.5 meV Å at larger K. This follows
the asymmetry of the paramagnetic body-centered unit cell - note
that the excitations for K < 1.4 actually extend along a BZ face,
while for K > 1.4 they are inside the volume of the BZ as they
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Fig. 1 Imaginary part of the dynamic magnetic susceptibility χ″(Q, E) of UTe2 at 5 K, in the regime of strong hybridization, as measured
by neutron scattering. The susceptibility in the [H, K, 0] plane, corresponding to the crystallographic (a, b) plane is strongest in the energy
intervals (a) 1–2 meV, (b) 2–3 meV, (c) 3–4 meV, (d) 4–5 meV. These inelastic magnetic excitations closely follow the Brillouin zone edges (red)
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are not centered on H= 0. Blue and red circles mark the Brillouin zone centers Γ and Brillouin zone faces Z, respectively, which are neighbors
in the [H, K, 0] plane due to the body-centered crystal structure, shown in (e) three and (f) two dimensions.
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approach the BZ center Γ. Although the Q values of the excitations
are incommensurate with respect to the reciprocal lattice vectors
of the paramagnetic structure, the excitations do coincide with the
BZ edges, so the typical use of the term commensurate may be
confusing in this context.
Another outstanding feature is the width in E of the

excitatations in UTe2, which is comparable to the peak excitation
energy, even at Q values where the excitations are sharpest.
Despite these large widths, which imply substantially shortened
excitation lifetimes or a distribution of transitions, the excita-
tions are clearly peaked at nonzero E - therefore, these are
inelastic features that are separated from the ground state by a
finite energy gap. The peak energy of 4 meV matches well the
hybridization gap determined in scanning tunneling spectro-
scopy measurements5, suggesting a connection to the electro-
nic structure.

Signatures of hybridization
The temperature dependence of the excitations at K= 1.4 is
shown in Fig. 3. Cooling below 5 K into the superconducting state
yields an excitation spectrum that appears to remain mostly the
same. In contrast, on warming from 5 to 20 K, the intensity
decreases and the peak position increases slightly, but the

excitations maintain their Q-dependence and energy gap.
Importantly, they do not move to lower E and become
quasielastic, as might occur to magnetic correlations at tempera-
tures above a magnetic phase transition. However, by 60 K the
excitations are not discernable over the background. This
temperature trend follows closely the low-field magnetic
susceptibility along the crystallographic b-axis, whose peak at
40 K is a signature of the low-temperature development of the
renormalized heavy fermion or hybridized electron state in UTe2.
Multiple signatures of hybridization share a 4 meV energy scale:
the temperature of the peak in the magnetic susceptibility1, the
temperature below which a sharp Drude peak develops in the
optical conductivity12, the hybridization gap determined from
scanning tunneling spectroscopy5, and the magnetic gap
measured by inelastic neutron scattering. One might then expect
quasielastic neutron scattering at temperatures above the
coherence temperature, but there is no observed movement of
spectral weight to lower energy in the 20 K or 60 K data (Fig. 3).
This may be related to the observation based on the optical
conductivity that the formation of the heavy fermion state is
associated primarily with a reduction in scattering rate, rather
than redistribution of optical spectral weight12.
Very similar inelastic BZ edge magnetic excitations are seen in

the paramagnetic state in the heavy fermion superconductor
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URu2Si224. There, the energy scale of the excitations is comparable
to those in UTe2, and the anistropy of the dispersion is analogous:
the slopes are shallower along the BZ edge and steeper
perpendicular to the edge. Both uranium compounds exhibit
heavy fermion behavior, reflected in peaks in the electrical
resistivity and magnetic susceptibility as a function of tempera-
ture, large Sommerfeld coefficients, and comparable spectro-
scopic gaps, signifying similar hybridization energy scales.
Although the magnetic excitations in URu2Si2 fall at incommen-
surate Q vectors, they arise from interband scattering25, as has
been observed in other Kondo lattice compounds26. A key
geometric difference is that although both materials have body-
centered crystal structures, URu2Si2 is tetragonal and its magnetic
excitations follow the square BZ edges, while lines of excitations
along only one rectangular edge are observed in orthorhombic
UTe2. Therefore, anisotropy plays a central role in hybridization,
and accurately determining the electronic structure is vital27. In
URu2Si2, the onset of long-range hidden order opens a gap in the
BZ edge excitations, but does not change their Q-dependence,
because the long-range order maintains the heavy fermion state.
Most importantly, the BZ edge excitations are remarkably robust,
and even in chemically-tuned URu2Si2, they persist regardless of
whether the ordered state is hidden order24, antiferromagnet-
ism28, or ferromagnetism29. Consistent with this interpretation,
UTe2 lacks the additional zone-face excitations associated with
hidden order and antiferromagnetism in URu2Si2.
Therefore, the presence of incommensurate excitations in UTe2

is insufficient to draw conclusions about incipient static magnetic
order. Calculations do not provide strong constraints, as the
dominant magnetic interactions in UTe2 are easily tuned from
ferromagnetic to antiferrogmagnetic30. Many experiments suggest
ferromagnetic interactions: muon spin relaxation15 and optical
Kerr rotation experiments6,17 are consistent with low-temperature
ferromagnetic correlations. As noted previously18,19 the absence
of clear neutron scattering intensity near BZ centers as is seen in
UCoGe31 suggests that any magnetic fluctuations in UTe2 that
might be associated with an incipient order parameter or

quantum criticality are weak, but this is consistent with the bulk
magnetization.
To account for this hybridization, it will be necessary to carry out

further electronic structure and magnetic susceptibility calcula-
tions with higher energy resolution. Available calculations suggest
that the strongest atomic exchange interaction in UTe2 is
ferromagnetic, between uranium dimers, with antiferromagnetic
correlations parallel to the chains along the a-axis13,32, but this
does not readily explain the measured χ″(Q, E). The observed
b-axis modulation has been considered to arise from the
electronic structure, either Fermi surface nesting or RKKY
exchange18. However, calculations to date have not yet addressed
an important experimental point, namely that the measured
χ″(Q, E) is peaked at small but finite energy, not at zero energy, the
latter condition relevant to static magnetic order. Generally, given
that these excitations appear to follow the temperature depen-
dence of the b-axis bulk magnetic susceptibility, we expect that
they will be quite robust as a function of magnetic field and could
play a role in the magnetic transition at 35 T, and by extension, in
the magnetically ordered phase above 1.5 GPa33–35.

Superconducting state
The situation at lowest temperatures, in the superconducting
state, brings an interesting twist. As Fig. 3 shows, the magnetic
excitation spectrum is similar at 0.2 K and 5 K. Indeed, a significant
difference is not expected at these energies, given the 1.6 K critical
temperature and 0.25 meV gap observed in STM5. Therefore, the
recently reported feature at 1 meV in the superconducting
state20,21 suggests either a very large energy excitation of the
superconducting state, or a modification of the established low-
energy spin-fluctuations. In our measurements, it is not possible to
conclusively identify the 1 meV feature at K= 0.6 because of the
high background in that Q range, but it is not resolved at K= 1.4.
Yet this feature is connected to the broader magnetic excitation
and other changes in the magnetic spectrum are observed at 0.2
K. First, the dispersion along [0, K, 0] is steeper for K < 1.4 and
slightly gentler for K > 1.4 (Fig. 4a–d) than at 5 K. In fact, the
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dispersion is weakly temperature-dependent at least to 20 K.
Second, a slight decrease in intensity is observed near [0, 1.4, 0] in
the superconducting state (Fig. 4e, f), when compared to the data
at 5 K (Fig. 2).
This behavior suggests that in the superconducting state,

χ″ changes on energy scales even larger than 1 meV, and that
previously reported feature reflects a larger change in the
magnetic excitation spectrum. Such a broad change is difficult
to reconcile with an interpretation in terms of a superconducting
spin resonance. Since these magnetic excitations have their origin
in the heavy fermion band structure, low-temperature changes in
the electronic structure are likely responsible, and this is evidence
that the superconducting state involves heavy quasiparticles. The
change in the magnetic excitations may additionally correlate
with low-temperature changes in the magnetic response in muon
spin relaxation15 and nuclear magnetic resonance36 inside the
superconducting state.
In summary, inelastic neutron scattering measurements reveal

magnetic excitations that are consistent with Kondo lattice
phenomena. Specifically, the excitations follow BZ edges, obey
the paramagnetic structural symmetry, and the temperature
evolution of the heavy fermion bulk magnetic susceptibility along
the b-axis. By analogy with other Kondo lattice compounds, these
excitations are not directly related to an incipient magnetic
ordered state. In the superconducting state, the magnetic

excitations near [0, 1.4, 0] decrease in intensity, likely related to a
change in the electronic structure.

METHODS
Sample synthesis
Single crystals of UTe2 were synthesized by the chemical vapor transport
method using iodine as the transport agent37. The crystals are from
synthesis batches that have been previously characterized1,3 and exhibit
consistent properties.

Neutron experiment and analysis
Crystal orientation was determined by Laue x-ray diffraction performed
with a Photonic Science x-ray measurement system. 1.2 g of single
crystals, ranging in mass from 0.01 g to 0.1 g were coaligned and affixed
to two copper plates using CYTOP fluoropolymer and Fomblin fluorinated
grease. The crystalline mosaic is shown in Supplementary Fig. 1. Inelastic
neutron scattering experiments were performed on the MACS spectro-
meter and preliminary measurements on the DCS spectrometer at the
NIST Center for Neutron Research. Background subtraction and symme-
trization are elaborated upon in Supplementary Methods.

DATA AVAILABILITY
The data that support the results presented in this paper and other findings of this
study are available from the corresponding author upon reasonable request.
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