Materials Testing in Hydrogen

National Institute of Standard and Technology Boulder, Colorado USA

M Connolly, M Martin, D Lauria, P Bradley, R Amaro, Z Buck, A Slifka

PHMSA Pipeline Transportation of Emerging Fuels and R&D Forum Interagency Panel November 30, 2021

* Contribution of the National Institute of Standards and Technology, an agency of the US government; not subject to copyright in the USA.

NIST Material Measurement Laboratory (MML)

- NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.
- MML Mission Statement: "The MML strives to establish relationships that result in advances with broad scientific impact in chemical, biological and materials measurements, and maintain NIST's longstanding role and reputation as a neutral partner."

Project Outline

Measurements

- Tensile
- Fracture
- Fatigue
 - FCGR
 - Strain-life

Microscopy

Modeling

- Pipeline/Pressure Vessel Lifetime
- Code Modification
- Physics-based Fracture and Fatigue Crack Growth Rate Model

Science

- Advanced Correlative Fractography and Metallography
- Neutron and Synchrotron X-ray Experiments
- Tomography
- Deuterium Embrittlement

Project Impact

Measurements

- DOT
 - HAZMAT
 - PHMSA
- DOE
- ASME
- Praxair
- Air Liquide
- Mannesmann
- Europipe
- Emerson/Micromotion
- EVRAZ

Modeling

- ASME B31.12 Code Modifications
 - Pipeline code
- ISO 11114-4
 - Pressure vessel code

Science

- Acta Materialia
- Materials Science and Engineering A
- Review of Scientific Instruments
- Corrosion Science
- International Journal of Fatigue
- Applied Physics Reviews

Investments: Laboratory

• Location:

• Tucked under Boulder's Flatirons in the foothills of the Rocky Mountains

• History:

- Materials testing in hydrogen began in 2012
- \$2M investment for lab + equipment
- \$8.5M investment since start of project

• Safety:

- Control room electronics separate from testing facility
- Testing facility can be monitored remotely

Investments: Testing Facility

	Equipment								
	Load Frame 1	Load Frame 2	Pressure Vessel 1	Pressure Vessel 2					
Capacity	100 kN (22 kip)	250 kN (55 kip)	138 MPa, 20 ksi	34 MPa, 5 ksi					
Features	Strain-life	8 simultaneous FCGR tests	-	-					

	Test Control							
	Strain rate	Frequency						
Tensile	10 ⁻⁶ s ⁻¹	-						
Fatigue	$10^{-6} \mathrm{s}^{-1}$	0.01 - 10 Hz, Fully-reversed						

Supercritical CO₂

Figure 1: Photos of the Supercritical CO₂ Corrosion Test Facility showing the walk-in fume hood setup (left) and the interior lab layout (right).

Clark, Brandi N., et al. "Preliminary Results from the NIST Supercritical Carbon Dioxide Corrosion Test Facility*." *CORROSION 2017*. OnePetro, 2017.

 CO_2

Water

×65 / ×80

0.2

2.1

CO2 Phase Interface Water Phase

8.0

0.7 **Rate (mm/y)** 0.6 0.6 0.7 0.7

0.5 Corrosion 2.0 1.0

00

X65

X65

X80

6.7 6.3

CO₂

 CO_2

 CO_2 / H_2O

 CO_2 / H_2O

H₂O

H₂O

Investments: Chamber for Neutron and High-energy X-ray Diffraction

Experimental setup at the APS 1-ID beamline. The sample chamber was mounted in a hydraulically-driven load frame positioned in the beam on a translation stage.

Key on-going work

Measurements

- Tensile
- Fracture
- Fatigue
 - FCGR
 - Strain-life

Microscopy

Modeling

- Pipeline/Pressure Vessel Lifetime
- Code Modification
- Physics-based Fracture and Fatigue Crack Growth Rate Model

Science

- Advanced Correlative Fractography and Metallography
- Neutron and Synchrotron X-ray Experiments
- Tomography
- Deuterium Embrittlement

Fully-reversed Strain-life Testing in H₂ Gas

- Only facility capable of fully-reversed strain-life testing in H₂ gas on roundbar specimens due to testing difficulty
- Provides huge amount of information compared to stress-life, fatigue, etc.
- Results show drastic differences in plastic and elastic strain damage in H₂

Correlative Fractography: Understanding hydrogen's influence on fracture and deformation

Damage Mechanism

- Example: Strain-life testing of pressure vessel steel
 - Fracture features are more brittle with H₂
 → different fracture process
 - **Microstructure** shows **less rearrangement** with H₂
 - \rightarrow H₂ impacts deformation processes

Success: Modifications to ASME B31.12 Pipeline code

- Fatigue crack growth rate (FCGR) is increased in H₂ environment compared to air
- H susceptibility in fatigue does not have same correlation with strength as under tensile loading

- Data collected for ASME B31.12 code modification
 - 10 air tests
 - 74 H₂ tests

Success: Modifications to ASME B31.12 Pipeline code

- Fatigue crack growth rate (FCGR) enhanced in H₂ environment compared to air
- H susceptibility in fatigue does not have same correlation with strength as under tensile loading

- Data collected for ASME B31.12 code modification
 - 10 air tests
 - 74 H₂ tests

Success: Unification of ISO 11114-4 Tests for Hydrogen Pressure Vessels

Cumulativo Damago Paramotor (Air)											
Cumulative Damage Parameter (Air)											
ТО											
		Burst Disk	CT-LC	CT-DC	Tensile	IS 0.038%	IS 0.08%	IS 0.1%	IS 0.375%	IS 0.5%	
FROM	Burst Disk	1	0.11	0.02	0.11	2.90E-08	1.43E-04	4.01E-04	0.01	0.03	MULTIPLY BY
	CT-LC	9.47	1	0.19	1.00	2.75E-07	1.36E-03	3.80E-03	0.08	0.30	
	CT-DC	48.90	5.17	1	5.14	1.42E-06	7.01E-03	0.02	0.43	1.56	
	Tensile	9.51	1.00	0.19	1	2.76E-07	1.36E-03	3.82E-03	0.08	0.30	
	IS 0.038%	3.44E+07	3.64E+06	7.04E+05	3.62E+06	1	4.93E+03	1.38E+04	3.03E+05	1.10E+06	
	IS 0.08%	6.98E+03	737.26	142.72	734.07	2.03E-04	1	2.80	61.43	223.10	
	IS 0.1%	2.49E+03	263.21	50.96	262.07	7.24E-05	0.36	1	21.93	79.65	
	IS 0.375%	113.63	12.00	2.32	11.95	3.30E-06	0.02	0.05	1	3.63	
	IS 0.5%	31.29	3.30	0.64	3.29	9.09E-07	4.48E-03	0.01	0.28	1	

CT-LC: compact tension specimen, load-controlled test

CT-DC: compact tension specimen, displacement-controlled test

IS: in-service condition

Success: Unification of ISO 11114-4 Tests for Hydrogen Pressure Vessels

Cumulative Damage Parameter (Air)											
ТО											
		Burst Disk	CT-LC	CT-DC	Tensile	IS 0.038%	IS 0.08%	IS 0.1%	IS 0.375%	IS 0.5%	
FROM	Burst Disk	1	0.11	0.02	0.11	2.90E-08	1.43E-04	4.01E-04	0.01	0.03	
	CT-LC	9.47	1	0.19	1.00	2.75E-07	1.36E-03	3.80E-03	0.08	0.30	
	CT-DC	Modeling to Unify Tests under ISO 11114-4									۶۲
	Tensile										LY E
	IS 0.038%										TIP
	IS 0.08%	6.98E+03	737.26	142.72	734.07	2.03E-04	1	2.80	61.43	223.10	١IJ١
	IS 0.1%	2.49E+03	263.21	50.96	262.07	7.24E-05	0.36	1	21.93	79.65	2
	IS 0.375%	113.63	12.00	2.32	11.95	3.30E-06	0.02	0.05	1	3.63	
	IS 0.5%	31.29	3.30	0.64	3.29	9.09E-07	4.48E-03	0.01	0.28	1	

CT-LC: compact tension specimen, load-controlled test

CT-DC: compact tension specimen, displacement-controlled test

IS: in-service condition

Hydrogen Pipeline Safety Team at NIST-BoulderImage: Safet

- Funding from
 - US Department of Energy: FCTO, "Fatigue performance of high-strength pipeline steels and their welds in hydrogen gas service"
 - US Department of Transportation: DTPH56-15-X00015, "Modeling of current standards for selecting pressure vessel steels (DOT packaging) to transport hydrogen-bearing gases"