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Abstract
The presence and distribution of hydrogen-bearing materials in meteorites are important constraints on processes in the early solar system, and the delivery of volatile constituents to growing planets. Here, we show that coordinated neutron- and X-ray computed tomography, NXCT, can reveal the presence and distributions of hydrogen-bearing materials in meteorites, and thus help constrain presence and actions of water in the early solar system. NXCT is nearly non-destructive of meteorite samples. Neutron fluence in NXCT is approximately seven orders of magnitude less than in typical instrumental neutron activation analysis (INAA), and so produces little residual radioactivity and currently undetectable changes in isotope ratios. Heating during NXCT is minimal, but NXCT will overprint the record of cosmic ray exposure held in natural thermoluminescence.
Two meteorites were examined. EET 87503 is a howardite, a regolith breccia inferred to be from the asteroid 4 Vesta, and contains fragments of eucrite basalt, diogenite pyroxenite, and H-rich carbonaceous chondrites. With NXCT, the chondrite fragments within the meteorite piece can be clearly located and characterized, in preparation for possible extraction and detailed analyses. GRA 06100 is a CR2 chondrite meteorite that contains abundant iron metal and H-bearing silicates from aqueous alteration. In NXCT, H-bearing altered material is clearly distinguished from metal, and its distribution in three dimensions is revealed as a constraint on the processes of alteration. 



Introduction
	Geological materials are physically and chemically heterogeneous, for examples bubbles in glass, different minerals, chemical zoning in minerals or glasses, etc. The three-dimensional characteristics of this heterogeneity have commonly been characterized by generalization from two-dimensional slices, i.e., the field of stereology (Russ, 1986). Practical examples of geological stereology include analyses of crystal size distributions, CSD (Cashman and Ferry, 1988), and interpretations of chondrule sizes (Eisenhour, 1996). With the advent of tomographic techniques, reconstruction of 3-D density distributions via penetrating radiation, it has become possible to directly access and image the heterogeneous internal structures of geological materials in 3D (Carlson, 2006; Mees et al., 2003). The most common tomographic technique is X-ray computed tomography (XRCT or XCT), in which the degree of X-ray attenuation (absorption and scattering) is mapped; the strength of X-ray attenuation is a monotonic function of atomic number, Figure 1 (Ebel and Rivers, 2007), as X-rays are scattered principally by electrons. 
	X-ray computed tomography (XCT) has found significant use in studies of planetary materials, following the first reported application by Arnold et al. (1983). Ebel and Rivers (2007) and Hanna and Ketcham (2017) have reviewed applications of XCT to planetary materials, most of which have been chondrite meteorites. XCT work on chondrites has included studies of: general textures and fabrics (Duchnik et al., 2012; Ebel et al., 2008; Hezel et al., 2013; Matsumoto et al., 2013; Tait et al., 2014), chondrule sizes (Charles et al., 2018; Friedrich, 2008; Robin and Charles, 2015), sizes and shapes of metal grains (Friedrich et al., 2014; Ruzicka et al., 2015), organic matter (Matsumoto et al., 2013), porosity (Friedrich and Rivers, 2013; Sasso et al., 2009), aqueous alteration (Hanna et al., 2015), and deformation textures (Krzesińska, 2011). [image: Bubble chart  Description automatically generated]Figure 1. Relative attenuation cross-sections of X-rays and thermal neutrons by major elements, shown as effective ‘target’ areas. X-ray cross-sections increase monotonically with atomic number. Hydrogen and Cl have highest neutron cross-sections among the most abundant elements in the Earth’s crust; some trace elements have much higher cross-sections; e.g., the neutron cross-section for Gd would be a circle of 25 times the diameter of that for H. Cross-sections shown at different scales -- the X-ray attenuation cross-section of Fe for 90-KeV X-rays, interpolated from data in Hubbell and Seltzer (1996), is 45 barns (10-24 cm2); the total attenuation cross-section of thermal neutrons in Fe is ~14 barns (Sears, 1992). 

	Achondrite meteorites have seen less XCT study, most of which has been on lunar and martian samples. Studies of martian meteorites have emphasized the distribution of alteration materials (‘iddingsite’) in the nakhlites (Needham et al., 2013; Tomkinson et al., 2015). A few studies have looked at mineral and melt abundances and distributions in shergottites (do Nascimento-Dias et al., 2018; Ebel and Rivers, 2007; Gnos et al., 2002; Uesugi et al., 2010). Studies involving lunar samples have emphasized identification and characterization of fragments in breccias (Treiman and Coleff, 2018; Treiman and Semprich, 2019; Zeigler, 2014; Zeigler et al., 2017), and exploration of core samples from the Apollo missions (Jolliff et al., 2021; Zeigler et al., 2020). other studies have used XCT to locate specific crystals in lunar glass spherules (Ebel et al., 2005), and to characterize the 3D shapes of lunar regolith particles (Chiaramonti et al., 2017). XCT studies of other achondrites are few, seemingly limited to evaluation of porosity (Riad et al., 2014), and general investigations of the Almahatta Sitta polymict ureilite (Shaddad et al., 2010; Zolensky et al., 2010).
Neutron computed tomography (NCT) is another important probe of geological materials, in which total attenuation of neutrons (absorption and scattering) can be mapped in three dimensions (Hess et al., 2011; LaManna et al., 2017; Winkler, 2006). Thermal (cold) neutrons are attenuated strongly by hydrogen and chlorine (Fig. 1), making the technique ideal for study of aqueous processes and products in geological materials. NCT of geological materials has, in fact, emphasized the distributions of water and of hydrogen-bearing phases, e.g., Perfect et al. (2014), Anovitz et al. (2016), and Kaloyan et al. (2017). 
There have been significantly fewer studies of geological materials by NCT than by XCT, at least in part because of the relative rarity of neutron sources and tomography laboratories. The techniques are complementary in that X-ray and neutron attenuations show different sensitivities to elements (and isotopes), see Figure 1. Canella et al. (2009) and Hess et al. (2011) gave the first planetary-related examples: a NCT image of a fragment of the Allende chondrite, and NCT and XCT of a tektite. Duchnik et al. (2012) demonstrated NCT and XCT on a fragment of the Allende meteorite. Jenniskens et al. (2012) used XCT and NCT data to explore the interior structure of fragments of the Sutter’s Mill chondrite. Pakhnevich (2016) used NCT’s sensitivity to H to search for water and organic matter in chondrite meteorites, and Treiman et al. (2018) is the precursor to this work. Kichanov et al. (2019) presented several NCT slices through a sample of the newly-fallen Chelyabinsk meteorite (LL5), and used them to locate particles of metal and their chemical interaction (Fe-diffusion) with surrounding silicates. Needham et al. (2020) presented coordinated neutron and X-ray tomographs of fragments of the Murchison (CM2) and Parnallee (LL3) chondrites, and Martell et al. (2021) showed that coordinated neutron and X-ray tomography could be used to locate meteorite fragments in impact ejecta. 
Iron meteorites have also attracted interest, particularly because of neutron tomography’s capability to distinguish between Ni-rich and Ni-poor metals, i.e. taenite and kamacite, see Figure 1 (Caporali et al., 2016; Peetermans et al., 2013). Neutron diffraction has also been used to determine residual stresses in meteoritic iron (Caporali et al., 2018), and the spatial distributions of metal and silicates in a stony iron meteorite (Kichanov et al., 2018).
Meteorite Targets
Here, we target meteorite samples that exemplify two of the most likely uses for coordinated NCT and XCT: the howardite EET 87503 as a meteoritic breccias; and the CR2 chondrite GRA 06100 as an example of aqueous alterations. 
	Most meteorites are fragmental at some level – chondrites are composed of individual chondrules and rock fragments (Briani et al., 2012; Greshake et al., 2002; Rubin and Bottke, 2009), and many achondrite are breccias of related or unrelated fragments. The most common achondrites, the HED meteorites (howardites, eucrites, diogenites), are inferred to be from the asteroid 4 Vesta; they are composed of fragments of its indigenous igneous rocks with some foreign components (Cartwright et al., 2014; Mittlefehldt, 2015; Mittlefehldt et al., 2013; Righter and Garber, 2011). Many HEDs, especially the howardites, contain fragments of carbonaceous chondrites, hydrogen-bearing material from outside the HED parent body (Herrin et al., 2010). These carbonaceous hydrous materials, which provide critical information about mixing early in the evolution of the asteroid belt, should be easily detectable by NCT because of their H contents. Similar fragments are present in some ordinary chondrites (Briani et al., 2012; Greshake et al., 2002; Krzesińska and Fritz, 2014; Rubin and Bottke, 2009), and in polymict ureilite meteorites (Beard et al., 2015; Brearley, 1992; Goodrich et al., 2004; Shaddad et al., 2010). The latter are particularly important, as the ureilites appear to have formed in a region of the early solar system distant from the formation area of carbonaceous meteorites (Warren, 2011). 
	Lunar samples present a different opportunity for NCT and XCT. Lunar regolith, returned samples or meteorites, contains fragments of asteroidal or cometary materials that impacted the moon, and so contain a record of bombardment in the Earth-Moon system (Joy et al., 2012; Zolensky, 1997). Similarly, lunar regolith can contain fragments of rare and significant lithologies, which would be difficult or impossible to locate and characterize without XCT or NCT (Gross et al., 2020; Treiman and Semprich, 2019; Zeigler, 2014; Zeigler et al., 2017; Zeigler et al., 2020). Most recently, XCT has been being used to guide the dissection of an Apollo 11 core tube sample, and pinpoint the larger fragments therein for special care (Jolliff et al., 2021; Zeigler et al., 2020). 
	Many meteorite samples, originally anhydrous, have been subjected to aqueous alteration, which has left water-bearing minerals in its wake. As noted above, the martian nakhlite meteorites contain veinlets and patches of clay minerals and hydrous iron oxides, which formed during aqueous alteration on Mars (Hicks et al., 2014; Lee et al., 2015; Needham et al., 2013; Tomkinson et al., 2015; Treiman et al., 1993). Similarly, many carbonaceous chondrites were affected by aqueous alteration on their asteroidal parent bodies (Abreu and Singletary, 2011; Abreu and Stanek, 2009; Harju et al., 2014). NCT, being sensitive to both hydrogen and chlorine, is an ideal method for locating and characterizing the distributions of these alterations.
Samples and Methods
Samples
EET 87503
	EET 87503 is a howardite meteorite of 1734.5 grams, a regolith breccia from the Eucrite Parent Body, which is generally inferred to be the asteroid 4 Vesta (Cartwright et al., 2014; Mittlefehldt, 2015; Mittlefehldt et al., 2013; Righter and Garber, 2011). It was found on the Elephant Moraine in Antarctica in 1987, and is paired with EET 87513 which was discovered nearby (Mittlefehldt et al., 2013; Righter and Garber, 2011). EET 87503 is typical of howardites, being a breccia composed primarily of fragments of diogenite orthopyroxenite and eucrite basalt. EET 87503 is unusual in containing few fragments of impact breccias, and in containing moderately abundant clasts of carbonaceous chondrite material (Buchanan and Mittlefehldt, 2003; Buchanan et al., 1993). EET 87503 is also rich in solar noble gases (Cartwright et al., 2014), which indicates that it (or its progenitor materials) sat at the surface of Vesta for significant time. 
Most of the carbonaceous chondrite clasts in howardites, including those in EET 87503, are similar to CM2 chondrites like Murchison (Buchanan and Mittlefehldt, 2003; Zolensky et al., 1996), and have been heated to varying degrees. These CM2 fragments contain water-bearing minerals, notably serpentine and serpentine-like phyllosilicates (Zolensky et al., 1996). Other howardites contain clasts of CR2-like material, comparable to the Renazzo chondrite and GRA 06100 described below (Zolensky et al., 1996); none has been reported in EET 87503 (Buchanan and Mittlefehldt, 2003; Buchanan et al., 1993). [image: ]  [image: ]
Figure 2. The studied samples. a) Howardite EET 87503,73. Black fusion crust at top surface, note white fragments of diogenite pyroxene, and small black fragments of carbonaceous chondrite material. b) CR2 chondrite GRA06100,84. Light-colored rounded chondrules in a fine-grained black matrix.

For this study, the Meteorite Working Group (MWG) and the Antarctic Meteorite Curator (ARES/JCS) loaned the fragment EET 87305,73 (Figure 2a). It weighs 11.098 grams and appears typical of the whole meteorite. It was returned to Meteorite Curation after tomography.
GRA 06100
	GRA 06100 is a CR2 chondrite, with a total mass of 421.75 grams (Abreu and Bullock, 2013). As a group, CR2 chondrites are rich in Fe-Ni metal, have relatively large chondrules, and show significant alteration of anhydrous silicate minerals to phyllosilicates (serpentines, clays), hydroxides, and amorphous materials that contain H as hydroxyl and/or bound water (Weisberg et al., 2006; Weisberg et al., 1993). There has been little work specifically on GRA 06100, but it has been included in many latitudinal studies of CRs, including those emphasizing: oxygen isotopes (Schrader et al., 2011); oxidation states (Schrader et al., 2013); organic matter (Cooper and Rios, 2016); metal compositions (Briani et al., 2013); water abundance and metamorphism (Garenne et al., 2016); phyllosilicate mineralogy (Howard et al., 2015); and presolar grains (Leitner et al., 2011).
	GRA 06100 is of particular interest because it had been dehydrated and then partially rehydrated. GRA 06100 experienced an early heating event, as evidenced by its nearly anhydrous matrix (Briani et al., 2013; Garenne et al., 2016), textural equilibration in the matrix (Garenne et al., 2016), and lower abundances of C and N than most other CR chondrites (Humayun et al., 2013). Some thin sections of GRA 06100 show evidence of low-temperature water-bearing minerals that appear to post-date this metamorphism (Abreu and Bullock, 2013; Abreu and Singletary, 2011; Abreu and Stanek, 2009), but other sections do not contain water-bearing minerals (Harju et al., 2014). Thus, the distribution of water-bearing minerals may be strongly heterogeneous and of interest for understanding aqueous alteration processes in the CR parent asteroid. 
For this study, the MWG and the Antarctic Meteorite Curator loaned an 8.691 gram fragment GRA 06100,84 (Figure 2b). It appears typical of the meteorite as a whole; the fragment was returned to Meteorite Curation after tomography.    
Methods[footnoteRef:1] [1:  Trade names and company products are mentioned in the text or identified in illustrations in order to adequately specify the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology nor the Lunar and Planetary Institute, nor does it imply that the products are necessarily the best available for the purpose.] 

The NIST-NeXT System
	The NeXT system provides coordinated neutron and X-ray tomography by simultaneously imaging a sample with beams of thermal (slow) neutrons and X-rays at right angles to each other (LaManna et al., 2020a; LaManna et al., 2020b; LaManna et al., 2017). The NIST-NeXT system is described in detail in LaManna et al. (2017) and LaManna et al. (2020b), and crucial details are repeated here. The NeXT system is on the BT-2 beamline at the NIST Center for Neutron Research (NCNR); Figure 1 of LaManna et al. (2020b) shows its physical layout. The beamline produces thermal neutrons at fluence rates between 3x107 to 8x105 cm-2 s-1 with a beam diameter of 26 cm. The beam is concentrated and collimated, and then apertured to ~ 1 cm before impinging on the target. X-rays from a point source impinge on the sample at right angles to the neutron beam. The bremsstrahlung X-ray beam is polychromatic, with a maximum energy of 90 keV, and a mean energy of 44.33 keV with 2 mm of aluminum filtration. Neutrons and X-rays are detected by different P43 scintillator screens (gadolinium oxysulfide doped with terbium, Gd2O2S:Tb, also known as GadOx), which are imaged with Andor NEO scientific complementary metal oxide semiconductor (sCMOS) cameras. The cameras have 2560 by 2160 square pixels, each being 6.5 μm across, and can provide a neutron image resolution of ~20 μm (limited by the light bloom from the GadOx scintillator screen). To achieve higher spatial resolution, NCNR has developed an infinity corrected macroscope that allows neutron imaging at spatial resolutions less than 10 μm (Hussey et al., 2017; LaManna et al., 2020b). The NCT tomograms reported here, however, have a reconstructed voxel dimension of 15 µm with a minimum resolution of 30 µm.
	Additional data are provided in SOM-1, and the raw image slices for neutron and X-ray tomograms are available in SOM-2. 
Data Processing
	Following computed tomography reconstructions on the XCT and NCT data, the two tomograms were registered using a MATLAB (2021) routine developed at NIST, based on the Matlab multi-modal image registration function “imregister”. The rigid-body registration procedure accounts for: differences in voxel size; the approximately 90° difference between the X-ray and neutron beams and detectors; small differences in pitch and roll; and offsets in the three spatial directions. Because the two CT volumes have different sources of image contrast, the preferred metric for determining the best rigid body registration is maximization of the Mattes mutual information statistic (Mattes et al., 2001) rather than the datasets’ intensity cross-correlation. The tomograms are first registered coarsely, using versions of the tomograms down-sampled by a factor of 5 – 10 (volume reduction of 53 to 103). Down-sampling reduces noise and allows computation times on the order of minutes. The coarse registration is then refined on the full dataset to determine the affine translation parameters and apply them to properly register the tomograms (LaManna et al., 2020b)
Phase Segmentation and Visualization 
Phase segmentation, i.e., identifying and tagging specific materials and groups of materials by their attenuations of X-rays and neutrons, was done using Dragonfly© (DRAGONFLY, 2021). Each pair of registered tomogram image stacks (X-ray and neutron) was uploaded to Dragonfly and examined for structure and consistency. Identification of particular materials or groups of materials was via bivariate histograms, in which the attenuations (i.e., contrast) for X-rays and neutrons of each image voxel are plotted as a point. Dragonfly allows points or groups of points to be selected and tagged (e.g., by color) in this ‘histogram space,’ and simultaneously selected and tagged in ‘image space’ and displayed in two or three dimensions. In this manner, the locations of selected materials in the meteorite samples can be visualized (LaManna et al., 2020a), see Figures 3, 6, S1, and S4 . The bivariate histograms for EET 87503 and GRA 06100 are discussed below.
Results
Our study demonstrates some of the utilities and advantages of coordinated neutron and X-ray tomography in the study of meteorites. In brecciated planetary samples, like EET 87503, it permits the identification and location of unusual fragments, both exogenous and indigenous in the sample. For instance, clasts of carbonaceous chondrite material deep within a meteorite fragment (not exposed at cut or broken surfaces) can be located and characterized to some extent. For other planetary samples, coordinated tomography can permit location of minerals and structures rich in volatile components, i.e., hydrogen and chlorine (Fig. 1). The distributions of water and chlorine in a planetary sample can constrain the alteration processes that introduced these elements, and locate subsamples for additional analyses. [image: Diagram  Description automatically generated]
Figure 3. EET 87503,73. (a) Bivariate histograms of neutron attenuation (x-axis) versus X-ray attenuation (y axis) for the registered tomograms. Color scale on right indicates number of voxels with given neutron- and X-ray attenuations (‘Sand’ palette in Dragonfly) – white circumscribed regions (labelled 1 & 3) have the greatest number of voxels. Negative values of attenuations are not physical, and represent both Poisson counting statistics and effects of flat-fielding. Labelled regions represent: 1, void space, plagioclase feldspar, Al metal packing/support; 2, plastic mounting substrate; 3, anhydrous Mg-rich silicates (diogenitic pyroxene); 4, anhydrous Fe-rich silicates (eucritic pyroxene); 5, hydrous magnesian minerals; 6, Fe-Ti-Cr oxides; and 7, Fe-rich metal and sulfide. See Supplemental Material for presentations in other color palettes.


 

Planetary Breccia: EET 87503
	EET 87503, a howardite (Fig. 2a), exemplifies the value of coordinated NXCT for breccia samples like most meteorites and lunar materials. As with other howardite meteorites, EET 87503 is a breccia containing a wide range of materials: magnesian to ferroan orthopyroxenes derived from diogenites, basaltic fragments of many textures, impact melts, and carbonaceous chondrite (CC). Most CC contain hydroxyl-bearing minerals and have been used to help understand the distribution and isotopic compositions of hydrogen (i.e., water) in the early solar nebula. NXCT is ideally suited to locate CC clasts in howardites, and thus allow their extraction for coordinated chemical and isotopic analyses. 
	The bivariate histogram for EET 87503,73 shows a clear separation of materials according to their attenuations, Figure 3 (see SOM1 for details of the histographic regions). In that Figure, area #1 (minimal attenuation of both X-rays and neutrons) represents open space around the sample and anhydrous packing material (like aluminum). The small amount of plastic supporting the sample appears as area #2 -- low X-ray attenuation (~0.2) due to the low average atomic number and density and moderate neutron attenuation (to 2.5) due to the hydrogen in the plastic. Most of the meteorite plots as area #3, which is inferred to represent diogenitic, magnesian pyroxene (Mittlefehldt et al., 2013; Righter and Garber, 2011). The meteorite contains a small proportion of basaltic, eucritic material, with more ferroan pyroxene, which is identified as the region #4. EET 87503 contains small proportions of pyrrhotite (FeS), ilmenite (FeTiO3), and chromite spinel (ideally FeCr2O4), which appear in Figure 3 as region #6 – the iron in these minerals contributes to its neutron attenuation (Fig. 1), while the Ti and Cr contribute to X-ray attenuation without significant neutron attenuation. Finally, the meteorite contains scattered small grains of Fe-rich metal, and pixels containing them (and other phases) spread up to area #7, with high X-ray attenuation and intermediate neutron attenuation. The distinct peak at #5, with moderate X-ray attenuation and very high neutron attenuation, is correlated to hydrous ferroan silicates like serpentines and smectites. In EET 87503, this latter material occurs only in fragments of CM-like carbonaceous chondrites, (Buchanan and Mittlefehldt, 2003; Buchanan et al., 1993); see Figures 4 and 5. The points between regions #5 and #3 represent voxels that contain both carbonaceous chondrite and diogenitic pyroxene.[image: A picture containing text, indoor, computer  Description automatically generated]
Figure 4. EET 87503,73 - a planar slice of the X-ray tomogram (in gray), with phases segmented according to the bivariate histogram of Figure 3 (contrast enhanced). Scale bar is 1 cm. Hydrous carbonaceous chondrite material (region 5) in green; Fe-rich eucritic pyroxene (region 4) in purple; Fe-Ti-Cr oxides (region 6) in orange. See Supplemental Materials for segmentation definitions on the bivariate attenuation histogram.

	Figure 4 shows a fairly typical plane through the EET 87503,73 sample, with materials segmented according to Figure 3. The matrix shows no obvious structure (besides a little streaking that arises from the rotation of the tomography scan), which is consistent with observations that the meteorite lacks internal layering. The slice crosses one large angular fragment of hydrogen-bearing carbonaceous chondrite, in green. This fragment shows no internal structure (e.g., chondrules) suggesting that it could be CI- or CM-related, consistent with identification of CC fragments as CM-like (Buchanan and Mittlefehldt, 2003; Zolensky et al., 1996). The slice cuts through two eucrite fragments (higher Fe pyroxene, in purple); the irregular shape of the upper large eucritic pyroxene is consistent with it having a poikilitic texture (typical for pyroxene in basalt). The slice also shows several grains of Fe-Cr-Ti oxides (in orange), randomly distributed throughout the meteorite. [image: ]
Figure 5. EET 87503,73 – Anaglyph of two NCT views (contrasts enhanced), separated by 8° view angle, for viewing with red-green glasses. The dark areas (high neutron attenuation, are CC fragments. The largest of them (top center) appears in Figure 4.

	Figure 5 shows an anaglyph of neutron attenuation for the whole EET 87503 sample; the dark masses are nearly all hydrogen-bearing CC fragments, as the meteorite contains little metallic iron. From the anaglyph, one can see that the CC fragments are scattered randomly through the sample, and that most are angular. The anaglyph hints at some properties of the CC  that could be recovered by NCXT, for instance: size distribution, roundness/sphericity in relation to size, and spatial distribution, which can be analyzed quantitatively to describe the texture (cf. Anovitz et al., in submission). While one expects CC fragments in a breccia like this to be randomly distributed, other objects in other meteorites might show non-random distributions. SOM-3 contains a movie of EET 87503,73 rotating, in neutron attenuation. 

2

Aqueous Alteration: GRA 06100
GRA 06100 is a CR2 carbonaceous chondrite (Fig. 2b) – a type that contains abundant metal, and also abundant hydrogen as hydroxyl and bound water in minerals (Weisberg et al., 2006; Weisberg et al., 1993). As such, it provides a good demonstration of NXCT’s capabilities for visualizing and interpreting the distributions of Fe and H in primitive meteorites. 
The bivariate histogram for GRA 06100,84 (Fig. 6) is for a subset of the original tomogram; the bivariate histogram of the full tomograms showed an extended field of points at X-ray attenuations near zero and neutron attenuations up to 20 (see SOM 1). These points all mapped to a single rounded object on the aluminum mesh that supported the sample. We interpreted this object as a fragment of plastic and cropped both tomograms to remove it. The bivariate histogram of Figure 6 and following figures are for the cropped tomograms.
The bivariate histogram for the cropped GRA 06100,84 tomogram (Fig. 6) shows fewer clearly defined fields than does the howardite histogram (Fig. 3). This paucity of clearly defined fields reflects the facts that the meteorite contains a wide variety of anhydrous particles (chondrules and rock fragment), contains abundant matrix with grain sizes much smaller than the voxel size of the tomograms, and has experienced variable degrees of aqueous alteration. The major concentration of points in region #3 is interpreted as magnesian silicate minerals (olivine and pyroxenes) in chondrules and matrix (see SOM 1 for details of the histographic segmentation regions). Region #3 grades into regions #4 and #5 by increasing neutron attenuation, and these are interpreted as mixtures of the anhydrous silicates of region #3 with hydrous material of greater neutron attenuation and similar X-ray attenuation. Region #6 appears distinct from the group of regions #3 – #5 in having both greater X-ray and neutron attenuations. Based on the attenuations and its association with iron metal, region #6 material is interpreted to be composed of iron oxy-hydroxides. Finally, the concentration of points at high attenuations, region #7, represents Fe-Ni metal – an abundant constituent of CR chondrites. 


[image: Chart, diagram  Description automatically generated]
Figure 6. GRA 06100, 84.  Bivariate histograms of neutron versus X-ray attenuation. Colors (‘Sand’ palette) indicates abundances of voxels with that combination of neutron and X-ray attenuations. White circumscribed regions (#1 & #3) have the greatest number of voxels, see Fig. 3 for color palette. Negative values of attenuations are not physical, and represent both Poisson counting statistics and effects of flat-fielding. Numbered regions are: 1, void space, plagioclase feldspar & support material; 2, plastic substrate; 3, anhydrous Mg-rich silicates; 4, low-hydration magnesian material; 5, intermediate-hydration magnesian material; 6, hydrated ferroan material; and 7, Fe-rich metal. See Supplemental Material for other color palettes.

[image: A close-up of a crystal  Description automatically generated with low confidence]
Figure 7. GRA 06100,84 – a slice of the X-ray tomogram, contrast enhanced, with phases segmented according to the bivariate histogram of Figure 6. Scale bar is 1 cm. The gray background is the X-ray tomogram, showing Mg-rich (Type-1) chondrules in black, more ferroan matrix in gray, and iron-rich material in light gray. Overlain with segmentation of Figure 6: pink - Fe-rich metal (region 7); green - low-hydration material (region 4); and blue - more hydrated material (region 5); and purple - Fe-rich hydrated material (region 6). Arrows denote largest areas of Fe-rich hydrated material. See Supplemental Materials for segmentation definitions on the bivariate attenuation histogram.


Figure 7 shows a plane section through the GRA 06100,84 tomogram; the gray background is X-ray attenuation, and the colored areas represent segments defined in Figure 6 (see SOM 1 for details). Metal (pink in Fig. 7) occurs mostly as spherical chondrules and as spherical shells in and around chondrules; Fe-rich hydrous material (purple in Figure 7) occurs near many (but not all) masses if Fe-metal. 
Of more interest are the magnesian H-bearing materials, which appear on the bivariate histogram as a continuum from anhydrous silicates of region 3 to increasing neutron attenuations in regions 4 and 5. These regions likely represent mixtures of anhydrous silicates with serpentines and smectcite clays, as identified in petrographic studies (Abreu and Bullock, 2013; Abreu and Singletary, 2011; Abreu and Stanek, 2009). These materials are common in parts of the rock (e.g., upper and right sides of Fig. 7) and completely absent in others (Harju et al., 2014). The material richer in H (blue in Fig. 6), i.e. more aqueously altered, is always surrounded by less H-rich material (green in Fig. 6), suggesting that alteration was focused in certain areas, and spread out from them. This interpretation is consistent with the three-dimensional distribution of aqueously altered material; Figure 8 shows that the most aqueously altered material (in blue) is concentrated on planar surfaces in the meteorite. This pattern suggests that the alteration arose from fluid flowing along cracks, and penetrating from them into the surrounding, relatively porous, rock. SOM-4 contains a movie of GRA 06100,84 rotating, in neutron attenuation. [image: Chart, scatter chart  Description automatically generated]
Figure 8. GRA 06100,84: XCT view (gray shading) with areas segmented as in Figure 6; oriented to show its planar concentrations of hydrated material. Scale bar is 1 cm. Areas of more hydrated material are blue (region 4, Figure 6); areas of iron metal are red (region 7). Hydrated material is concentrated along planar zones in the meteorite (arrows); outside these zones, the meteorite contains little hydrous material (i.e., it is minimally altered). See Supplemental Materials for segmentation definitions on the bivariate attenuation histogram.


Discussion
Significance for Meteorite Studies
	We have shown that coordinated X-ray and neutron tomography of meteorite samples can provide information that is unavailable by other means. The two methods together can image the interiors of meteorite samples, detect the presence of water-bearing (and chlorine-rich) materials, and delimit their distribution. Although we have focused on H-bearing materials, Cl-rich materials should also be detectable in NXCT, as Cl and H have similarly high neutron attenuation coefficients (Fig. 1). Alteration rinds on calcium-aluminum inclusions (CAIs) in chondrites commonly contain the Cl-rich mineral sodalite (Na4Al3Si3O12Cl), and should, therefore, be detectable by NXCT. Chlorine-rich apatite should also be detectable with NXCT, and this approach provide tests of hypotheses about its spatial distributions, e.g., Treiman et al. (2014) and Treiman and Irving (2008). It is also conceivable that NXCT could be used to detect locations and distributions of minerals rich in rare-earth elements (REE); some REE isotopes have elements have enormous neutron attenuations (Table 1).
	With proper calibration and amenable samples, it should be possible to distinguish different varieties of carbonaceous chondrite fragments within a meteorite, based on the fragments’ neutron attenuations (i.e., proportions of hydrogen), metal, and chondrule abundances and sizes. The CM-like chondrite fragments in EETA 87503 contain no metal and few detectable chondrules; both are consistent with their CM classification. On the other hand, CI chondrites contain H2O equivalents of ~20% and few chondrules and CO3 chondrites contain ~0.3-3% H2O equivalents (Weisberg et al., 2006). These different H2O contents should be detectable in NCT, although data for EET 87503 show only one group (Fig. 3, area #5). Once identified by NCT, addition of XCT would allow estimation of the proportions and sizes of chondrules and metal, which should thereby allow classification to CC group (Weisberg et al., 2006).
Other meteorite breccias would also be good targets for coordinated NXCT – the more complex the breccia, the more useful NXCT could be. For example, the polymict ureilite meteorites, including Almahatta Sitta (Bischoff et al., 2010), contain clasts of a wide range of non-ureilitic material, including: carbonaceous chondrites, ordinary and Rumuriti chondrites, Fe-Ni metal, and plagioclase-rich achondrites (Beard et al., 2015; Boleaga and Goodrich, 2019; Boyle et al., 2017; Brearley, 1992; Goodrich et al., 2004; Goodrich et al., 2016; Goodrich et al., 2019a; Goodrich et al.; Kebukawa et al., 2019; Shaddad et al., 2010). The carbonaceous chondrite clasts, in particular, have significant implications for material distribution in the early solar nebula, and significant masses of them are needed for isotopic analysis (Yin et al., 2018). NXCT is an ideal tool for locating these clasts in situ. The ultimate meteorite breccia is Kaidun (MacPherson et al., 2009; Zolensky and Ivanov, 2003), which contains a bewildering array of chondritic and achondritic material (Ivanov et al., 2003; Ivanov et al., 1996; Ivanova et al., 2005; Zolensky et al., 1996). NXCT of such breccias would allow location and characterization of such and other significant clasts in situ, and facilitate identification, analyses, and conservation of these rare materials.	
Effects on Samples 
Neutron capture & transmutation 
	In neutron tomography, some neutrons will be captured by atomic nuclei in the sample creating neutron-richer isotopes, thus increasing their abundances and reducing the abundances of the neutron-capturing isotopes (Leya and Masarik, 2013). In tomography here, the samples experienced a thermal (E~25 meV) fluence of ~4x1011 neutron-cm-2. For comparison, typical neutron activation analyses involve neutron fluences of ~2x1016 to ~5x1018 cm‑2 , e.g. Kallemeyn (1993) and Korotev et al. (2009). From the low neutron fluences in tomography, one should expect minimal transformations into new isotopes or elements, but some high-precision isotopic analyses could be affected. Table 1 shows expected isotopic effects of neutron tomography on a rock of CI composition on those isotopes with the highest capture cross-sections. The most strongly affected isotope ratios would be changed by less than a part per million, which could still be significant for some analyses like cosmic ray exposure conditions and ages (Avila et al., 2016; Hidaka et al., 2020). A spreadsheet showing these calculations is available as SOM-5.
	However, the importance of neutron capture effects during NCT must be considered for individual rock or mineral types. The most significant effect described in the literature of natural neutron fluence is on the halfnium-tungsten (Hf-W) chronometer system in lunar samples. Hf-W is an extinct chronometer, in which 182W (half-life of 9 million years) was created from 182Hf by the nuclear reaction 182Hf(-)182Ta(-)182W. Mineral or rock isochrons from Hf-W give the time of metal segregation (i.e., planetary core formation) relative to the formation of solids in the solar system (Kleine and Walker, 2017). However, the chronometer can be confounded by transmutation of 181Ta via 181Ta(n,g)182Ta(b-)182W, which can thus cause the chronometer to give anomalously old apparent ages (Lee et al., 2002; Leya and Masarik, 2013; Leya et al., 2000; Sprung et al., 2013). To estimate the effect of our neutron tomography on the Hf-W chronometer, we calculate the proportion of 181Ta that would be produced in a Ta-rich material, for which we take the ilmenite of lunar basalt 15555 (Lee et al., 2002). Lee et al. (2002) analyzed the ilmenite and other phases of 15555 for abundances of W and Ta and isotope ratios of W and Hf (nearly all Ta is 181Ta) and found that the rock had no evidence for natural production of 182W from 181Ta. Using the isotope ratios and element abundances of Lee et al. (2002), and taking the neutron absorption cross-section for 181Ta for the thermal neutrons used in NXCT (Sears, 1992), we find that NXCT as performed here would change the ilmenite’s 182W abundance by about one part in 10-8, and change the 182W/184W ratio by a few parts in 10‑7, or ~0.003 e units, which is smaller than the ~0.1  units uncertainty in current 182W/184W analyses (Kruijer et al., 2017; Peters et al., 2021). Even so, we recommend that high-precision isotopic analyses avoid samples that have experienced neutron tomography. Table 1. Most Significant Neutron Capture Effects from Neutron Tomography – CI Chondrite 
Isotope
Capture
cross-section*
Isotope
Ratio
Isotope Ratio Change



fraction
µ units†
157Gd
259000
158/157Gd
2.24 x10-7
0.224
149Sm
42080
150/149Sm
3.64 x10-8
0.036
155Gd
61100
156/155Gd
2.64 x10-8
0.026
113Cd
20600
114/113Cd
1.78 x10-8
0.018
10B
3835
11/10B
3.31 x10-9
0.003
151Eu
9100
153/151Eu
2.50 X10-9
0.003
6Li
940
7/6Li
8.12 x10-10
0.001
50V
60
50/51V
-2.39 x10-11
0.000
35Cl
44.1
35/37Cl
-7.84 x 10-11
0.000
50Cr
15.8
50/54Cr
-6.50 x10-12
0.000
53Cr
18.1
53/54Cr
-4.60 x10-12
0.000
48Ti
7.84
48/47Ti
-2.86 x10-12
0.000
* In barns, = 10-24 cm2 (Sears, 1992).  
Calculated for a target of CI composition, elemental and isotopic (Lodders, 2021), and a thermal neutron fluence of 4.32x1011 cm-2 as used here (Treiman et al., 2018). Isotope ratio normalizes to an abundant isotope with a low capture cross-section, or the captured-neutron isotope. 
† µ units are parts per million difference from the ratio of the isotope standard (ratio in CI meteorites unless otherwise specified (Lodders, 2021). 


Residual Radioactivity
	The neutron irradiation in coordinated tomography will produce some radioactivity in a sample, but the neutron fluence (as noted above) is far lower than for typical chemical analyses by neutron activation. For most natural samples, the most significant source of residual radioactivity is 24Na, which is produced by neutron capture on 23Na. The half-life of 24Na is 15 hours, so essentially all of its radioactivity will decay away in the first week after irradiation (>10 half-lives). In any case, all radiation facilities will retain samples subjected to tomography until their radioactivity levels are below Department of Transportation exempted quantity limits for shipping. 
Heating 
	Neutron and X-ray tomography are expected to cause minimal heating of the sample. Assuming that all the incident neutrons are absorbed by a sample, the NIST-NeXT system is estimated to deposit <1x10-6 Watt-cm-2 in the sample. Resultant heating of the sample will be insignificant for nearly every analysis, except those of the most volatile organic compounds.  
Thermoluminescence
	Analysis of thermoluminescence, light emitted by a sample as it is heated, can provide information about the sample’s exposure to ionizing radiation in space and on Earth (Benoit et al., 1993; Benoit and Sears, 1997). These ionizing radiations can displace electrons from their normal sites to ‘traps’ elsewhere in the crystal structure; light is emitted as they return to their normal sites. Sears et al. (2018) have shown that X-ray computed tomography can overprint a sample’s natural thermoluminescence and destroy whatever information could have been garnered. This overprinting will certainly occur during NXCT, with the added complication that the neutron fluence will likely induce additional centers of luminescence. So, as Sears et al. (2018) note, one must be aware that a sample subjected to NXCT will lose memory of its thermoluminescence history of natural ionizing radiation.
Conclusion
	The results of this study have demonstrated the potential utility of NXCT imaging, not only for meteoritic materials, but also for a wide range of geologic and other samples (e.g. ceramics, steels, concretes etc.). These data both provide a guide to more specific sampling and direct determination of three-dimensional structures prior to more quantitative textural analysis (cf. Anovitz et al., in subm.).
	While beyond the scope of this paper, several additional approaches may further enhance this technique. Ongoing efforts to improve the resolution and sensitivity of neutron imaging (Hussey et al., 2021; Trtik et al., 2015) will make the neutron data more comparable to those obtained using X-rays, and correlation and addition of results from neutron Bragg-edge imaging (Vitucci et al., 2018) may add a third variable, correlated with large crystal structure or potentially strain in the sample, to results from neutron and X-ray attenuation. In addition, the histogram-based segmentation techniques employed here, while sufficient for the purposes of this paper, can be enhanced to better separate the various phases involved, in part by taking advantage of their three-dimensional spatial associations, using one or more cluster analysis techniques (e.g. K-means, K-medians, mean-shift, density-based spatial clustering of applications with noise (DBSCAN), Expectation–Maximization (EM) Clustering using Gaussian Mixture Models (GMM), Agglomerative Hierarchical Clustering (HAC) etc.). Regardless of the approach used, or of future improvements or additions, however, it is clear from the results presented here that NXCT provides a highly useful approach to the three-dimensional imaging and analysis of many types of solid materials.
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Supplemental Online Materials 
SOM 1: Supporting texts and figures. 
A) Tables of contents of SOMs. 
B) Table S1. Calculated and measured attenuation coefficients 
C) Fig. S1. EET bivariate histogram with segmentation fields. 
D) Fig. S2. EET bivariate histograms in different color palettes. 
E) Fig. S3 Bivariate histogram for full GRA including weird blob. 
F) Fig. S4 Bivariate histogram for cropped GRA in different color palettes. 
G) Details of isotope effect calculations for Table 1, and of lunar ilmenite.  
SOM 2: Zip archives of the NCT and XCT image slices, from which the 3-D tomograms were constructed. 
SOM 3: Movie of EET 87503 rotating.
SOM 4: Movie of GRA 06100 rotating. 
SOM 5. EXCEL Spreadsheet of isotope effect calculations for Table 1 of main text.
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