
Implementing an Equation of State Without
Derivatives: teqp

Ian H. Bell,∗,† Ulrich K. Deiters,‡ and Allan M. M. Leal¶

†Applied Chemicals and Materials Division, National Institute of Standards and
Technology, Boulder, CO 80305, USA

‡Institute of Physical Chemistry, University of Cologne, 50939 Köln, Germany
¶Geothermal Energy and Geofluids Group, Institute of Geophysics, ETH Zurich, CH-8092

Zurich, Switzerland

E-mail: ian.bell@nist.gov

Abstract

This work uses advanced numerical techniques
(complex differentiation and automatic differ-
entiation) to efficiently and accurately compute
all required thermodynamic properties of an
equation of state (EOS) without any analytical
derivatives – particularly without any hand-
written derivatives. It avoids the tedious and
error-prone process of symbolic differentiation,
thus allowing for more rapid development of
new thermodynamic models. The technique
presented here was tested with several equa-
tions of state (van der Waals, Peng-Robinson,
Soave-Redlich-Kwong, PC-SAFT, cubic-plus-
association) and high-accuracy multi-fluid
models. A minimal set of algorithms (critical
locus tracing, vapor-liquid equilibrium tracing)
were implemented in an extensible and concise
open-source C++ library: teqp (for Templated
EQuation of state Package). This work demon-
strates that highly complicated equations of
state can be implemented faster yet with min-
imal computational overhead and negligible
loss in numerical precision compared with the
traditional approach that relies on analytical
derivatives. We believe the approach outlined
in this work has the potential to establish a
new computational standard when implement-
ing computer codes for thermodynamic models.

1 Introduction

Thermodynamic equations of state (EOS) are
challenging to implement without making pro-
gramming errors, especially when it comes
to composition derivatives. For instance the
GERG monograph1 painstakingly works out
the derivatives of the multi-fluid GERG model
over the course of more than 40 pages; the im-
plementation of these derivatives in CoolProp2

(just the mixture part) takes on the order of
a thousand lines of code. A similar exercise
for simple cubic EOS3 results in 20 pages of
hand-written derivatives. The EOS derivatives
published along with ThermoPack4,5 are a few
hundred pages in total. These few examples
illustrate that over the last decades, a signifi-
cant amount of human endeavor has been spent
on working out, implementing, and debugging
derivatives of equations of state. And even
with all this effort, novel calculations, for in-
stance tracing critical loci6 and obtaining crit-
ical points7 require significant new work.
Even with careful unit testing, many sub-

tle bugs are possible when implementing EOS.
For instance, when finite differences are used
to test analytic derivative implementations, the
finite differences themselves have error caused
by the precision available in double precision
arithmetic, and step size selection in finite dif-
ferentiation is a non-trivial matter. It there-

1

ian.bell@nist.gov


fore becomes difficult define the “right” value
to compare against in the numerical test. Sub-
tle bugs of this nature may reside in codebases
for many years.
The most direct motivation for this work was

twofold: 1) to enable tracing critical loci6,8

for multi-fluid models which requires high-order
derivatives that cannot feasibly be obtained
from existing computational libraries 2) to pro-
totype mathematical models for fitting mixture
thermodynamic data.
The title of this paper is tongue-in-cheek;

derivatives cannot be avoided in the application
of thermodynamic models. On the other hand,
the goal of this paper is to demonstrate that
the human capital invested in taking deriva-
tives of equations of state need not continue.
At the very least, we show that modern numer-
ical differentiation techniques can dramatically
expedite the process, particularly as pertains to
testing and debugging.
Two parallel development threads are helping

high-level and low-level programming languages
converge. The ubiquity of high-level languages
like Python has brought many high-level user-
friendly concepts into lower-level languages like
C++. Coming from the other direction, com-
pilers are getting much better at supporting the
development of generic code in strongly typed
languages. In C++ templated functions can be
leveraged to handle arbitrary numerical types
without rewriting the code. The ability to write
generic implementations in C++ is heavily used
in this work to calculate thermodynamic prop-
erties.
The longstanding ThermoC program9 has

achieved a similar goal to this work, with mod-
ular implementations of thermodynamic mod-
els in C++ and the use of numeric differen-
tiation. The idea in the current work paral-
lels a few contemporary activities. There is
the Clapeyron.jl library for Julia.10 Preceding
Clapeyron, a set of Julia libraries is available
from Andrés Riedemann (https://github.
com/longemen3000/): LavoisierCore.jl,
ThermoState.jl, and ThermoModels.jl.
There is also a library that uses Rust with
Python wrappers.11

The open-source C++ library developed in

this work, entitled teqp (for Templated EQua-
tion of state Package) is written in a compiled
programming language for speed, and demon-
strates performance competitive with analyti-
cal derivatives. It is furthermore flexible due
to its use of automatic differentiation, and is
also available as a shared library with a C-
compatible interface for integration into other
software tools. This library is well-suited to be-
come the beating heart of other thermodynamic
property libraries.
The outline of this paper is as follows: Sec-

tion 2 describes the necessary conventional
thermodynamics, Section 3 explains the use of
isochoric thermodynamics, Section 4 describes
the differentiation tools used, Section 5 de-
scribes the implementation in code, and Sec-
tion 6 demonstrates results for speed and accu-
racy.

2 Conventional thermody-

namics

Over the years, many different EOS formula-
tions have been developed, some are pressure-
explicit (e.g., van der Waals,12 modified
Benedict-Webb-Rubin,13), others are Gibbs-
energy explicit,14,15 and the most accurate
equations of state available today are of the
multi-parameter Helmholtz energy explicit for-
mulation. It is usually (one exception: Di-
eterici16) possible to convert from pressure-
explicit to Helmholtz-energy-explicit formula-
tions.3,17

In order to develop a consistent library struc-
ture, it is necessary to decide on a single model
formulation and stick with it. So, what ther-
modynamic formulation should be selected? In
principle any of the fundamental potentials
could be selected with no loss in generality,
but the Helmholtz-energy-explicit formulation
is used in all the most accurate thermophysical
property libraries: NIST REFPROP,18 Cool-
Prop,2 and TREND.19 Most other EOS in
use today can also be converted to this form.
Therefore the molar Helmholtz energy a is se-
lected as the fundamental potential, and it is
usually expressed in the form α = a/(RT ), with

2

https://github.com/longemen3000/
https://github.com/longemen3000/


R the molar gas constant and T the tempera-
ture. The independent variables are tempera-
ture, density, and molar composition x⃗.
Further subdividing the total reduced

Helmholtz energy, it is usually expressed as
the sum of ideal-gas (ig) and residual (r) con-
tributions, such that

αtot = αig + αr (1)

where teqp concerns itself mostly with the
residual contribution αr. The standard thermo-
dynamic properties may be expressed in terms
of derivatives of the Helmholtz energy with the
concise nomenclature

Λ∗
ij = (1/T )iρj

(
∂i+j(α∗)

∂(1/T )i∂ρj

)
(2)

where ∗ is ig (ideal gas), r (residual), or tot
(total), and i and j are indices indicating the
derivative order w.r.t. (1/T ) and ρ. A table
of the standard thermodynamic properties in
this format is shown in Section 8.1; some help-
ful relations have also been included from Lem-
mon et al. 20 Conversions between (1/T ) and T
derivatives are described on page 36 of Span.17

In the isochoric thermodynamics formalism
described below, the natural variables are tem-
perature and molar concentrations of the com-
ponents. This approach breaks down in the zero
density limit needed to calculate virial coeffi-
cients because the composition is still meaning-
ful in the zero density limit, but the molar con-
centrations all go to zero, which removes the
information about the composition (the mole
fractions all become undefined values of 0/0).
Therefore, the model must be implemented in
terms of temperature, density, and mole frac-
tions, and additional transformations can be
used to obtain the isochoric thermodynamic
derivatives.
It should also be mentioned at this juncture

that it is common to develop Gibbs-energy-
explicit models, for instance in aqueous sys-
tems or in solid phases. While these models
are less commonly applied to fluid phase prop-
erties for nonreactive systems, a few examples
in the literature exist, especially in the indus-
trial formulation of the properties of water.14

Gibbs-energy-explicit models can also be differ-
entiated in the same manner as applied in this
work.

2.1 Virial coefficients

Virial coefficients represent the information
contained in dilute gas interactions. They rep-
resent one of the elements most strongly linked
with rigorous theory in EOS development. As
such, they are an important element of the ther-
modynamics of pure fluids and mixtures.21

The virial EOS for the compressibility factor
Z = p/(ρRT ) for low-density states is given by

Z = 1 +
∞∑
i=2

Biρ
i−1 (3)

where Bi is the i-th virial coefficient and the re-
duced residual Helmholtz energy obtained from
this virial EOS is given by

αr =

∫ ρ

0

Z − 1

ρ
dρ =

Nmax∑
i=2

Bi
ρi−1

i− 1
(4)

= B2ρ+B3
ρ2

2
+B4

ρ3

3
+ . . . (5)

A Maclaurin series expansion of αr is written in
the form

αr =
Nmax−2∑

i=1

(αr)(i)
ρi

i!
(6)

= (αr)(1)ρ+ (αr)(2)
ρ2

2
+ (αr)(3)

ρ3

6
+ . . . (7)

with the concise derivative

(αr)(i) = lim
ρ→0

(
∂iαr

∂ρi

)
T,x⃗

(8)

thus equating terms, the i-th virial coefficient
is given by the derivative

Bi =
(αr)(i−1)

(i− 2)!
(9)

with the reminder that 0! = 1 and 1! = 1. In
other words, the virial coefficients are related
to the coefficients in the Taylor expansion of
αr at ρ = 0 for the given temperature. In the

3



implementation, calculating the i-th derivative
of αr w.r.t. ρ at ρ = 0 gives all the (0, 1, ... ,
i−1) intermediate derivatives at the same time.
For instance, for the van der Waals EOS given

by αr = − ln(1− bρ)− aρ/(RT ), the virial coe-
ficients are given by:

Bi,vdW =

{
b− a/(RT ) i = 2

bi−1 i > 2
(10)

2.2 Mixtures

Mixtures of components follow the same deriva-
tives as for pure fluids for constant composition
partial derivatives. In general, mixture models
are more complicated (slower) to evaluate, but
the code for pure fluids and mixtures overlaps.
On the other hand, many thermodynamic prop-
erties related to mixture properties invoke com-
position derivatives of the Helmholtz energy, for
instance to evaluate chemical potentials or fu-
gacity coefficients. The formalism of isochoric
thermodynamics allows for a concise represen-
tation of the derivatives needed to obtain these
quantities. Otherwise, there is an enormous ex-
plosion of possible derivatives that can be in-
voked in mixture derivatives because of the new
range of possible variables that can be held con-
stant or allowed to vary in the derivative. As
a brief and by no means exhaustive summary,
two derivatives that appear frequently are(

∂(nαr)

∂ni

)
T,V,nj

, n

(
∂2(nαr)

∂nj∂ni

)
T,V

(11)

Further partial derivatives of Eq. (11) may be
required depending on the set of independent
variables in use:

� Derivative w.r.t. T , with p and composi-
tion fixed

� Derivative w.r.t. p, with T and composi-
tion fixed

� Derivative w.r.t. a single composition,
with all compositions treated as indepen-
dent variables, and T and V held constant

� Derivative w.r.t. a single composition,
with all compositions treated as indepen-
dent variables, and T and p held constant

� Derivative w.r.t. a single composition,
with N − 1 compositions treated as in-
dependent variables, and T and V held
constant

� Derivative w.r.t. a single composition,
with N − 1 compositions treated as inde-
pendent variables, and T and p held con-
stant

� . . .

Working out, implementing, and testing all
possible permutations of mixture derivatives by
hand is not feasible, but can be done in a much
more straightforward way in teqp. Some vari-
able transformations are required, but they are
not as onerous as the more general case. As a
very involved example see Bell and Jäger.7

3 Isochoric Thermody-

namics

3.1 Concept

While thermodynamic states of mixtures are
usually specified by molar volume v or pres-
sure p and mole fractions xi, isochoric thermo-
dynamics uses either amounts of substance, ni,
in a fixed volume V (hence the name) or, if
intensive variables are preferred, molar concen-
trations ρi. The conversion between the two
concepts is straightforward,

ρi ≡
ni

V
=

xi

v
, ρ ≡

N∑
i

ρi =
1

v

xi ≡
ni

n
=

ρi
ρ

.

(12)

In contrast to the xi, the ρi are mutually in-
dependent, which greatly simplifies the use of
vector algebra.
The primary thermodynamic potential of iso-

choric thermodynamics is the Helmholtz energy
density Ψ,

Ψ(ρ, T ) ≡ ρa(ρ, T ) . (13)

4



The ρi are natural variables of Ψ and the chem-
ical potentials µi are obtained by

µ = ∇ρΨ , (14)

where the gradient operator ∇ρ indicates a dif-
ferentiation with respect to all concentrations
ρi at constant temperature.
The pressure is given by

p = −Ψ+ ρ · µ = −Ψ+ ρ · ∇ρΨ (15)

All relevant thermodynamic functions can be
obtained from Ψ by differentiation, as is de-
scribed in Section 8.2. It is advisable, how-
ever, to apply numerical differentiation tech-
niques to its residual part only and to handle
the ideal-gas part (and eventually chemical con-
tributions) analytically.

3.2 Fluid phase equilibrium—
thermodynamic conditions

The necessary and sufficient conditions for equi-
librium between two phases denoted by ′ and ′′

at a given temperature T are the equality of
the chemical potentials of all components and
pressures,

µ′
i = µ′′

i , i = 1, . . . , N

p′ = p′′ .
(16)

Substituting Eqs. (14) and (15) yields the equa-
tions

∇ρΨ
′′ −∇ρΨ

′ = 0

−(Ψ′′ −Ψ′) + (ρ′′ − ρ′) · ∇ρΨ
′ = 0 .

(17)

The first one of these equations is a vector equa-
tion involving N -component vectors. Hence
there are N + 1 equations for 2N concentra-
tions ρ′i, ρ

′′
i . One can therefore, for instance,

set the mole fractions x and solve the system
of equations (17) for ρ′ (a scalar)and ρ′′ (a vec-
tor) using a nonlinear root finder.
Eq. (17) is particularly suitable for imple-

mentation in computer programs if a program-
ming language is used that accommodates vec-
tor arithmetic, e.g., C++.

3.3 Fluid phase equilibria—
curve tracing

The conditions of phase equilibrium can be for-
mulated as algebraic equations (as in the previ-
ous section) or as differential equations. This is
well known for pure compounds; most thermo-
dynamics textbooks mention the Maxwell cri-
terion for the determination of vapor pressures
(algebraic equation) as well as the Clausius–
Clapeyron equation for vapor pressure curves
(differential equation). The corresponding dif-
ferential equations for mixtures, the so-called
Gibbs–Konovalov rules22,23 (modern formula-
tion, see Section 5.5.1 of Ref. 24), never be-
came as popular, because their application to
the computation of phase envelopes is rather
complicated.
It is possible, however, to formulate differ-

ential equations in the framework of isochoric
thermodynamics, which are particularly well
suited for machine computation. For exam-
ple the differential equations for the isothermal
vapor–liquid phase envelope of a binary mixture
can be expressed as(

H ′
1 · ρ′′ H ′

2 · ρ′′

H ′
1 · ρ′ H ′

2 · ρ′

)
dρ′

dp
=

(
1
1

)
H ′′dρ

′′

dp
= H ′dρ

′

dp
,

(18)

where theH i are the row vectors of the Hessian
matrix of Ψ,

H =

 (
∂2Ψ
∂ρ21

) (
∂2Ψ

∂ρ1 ∂ρ2

)(
∂2Ψ

∂ρ1 ∂ρ2

) (
∂2Ψ
∂ρ22

)  . (19)

Both equations are systems of linear equations,
which can be solved for the derivatives dρ′i or
dρ′′i , respectively. Eq. (18) cannot be evalu-
ated directly if one of the concentrations is zero;
in this case the continuous extension can be
used.25 Similar differential equations have been
derived for isobaric and isoplethic cross-sections
of the phase envelope.26,27 Moreover, all these
equations can be extended to multicomponent
mixtures, as explained in the original literature.
The phase envelopes are obtained by integrat-

ing the differential equations, preferably with

5



an adaptive integrator (e.g., the Runge–Kutta–
Fehlberg28 or the Cash–Karp29 method). The
integration requires an initial state. This can,
for instance, be a pure-fluid vapor-liquid equi-
librium state, which can be obtained either by
a separate calculation (for which very robust
algorithms exist) or from “superancillary equa-
tions”.30,31 It should be highlighted that it is
not necessary, at any point of the tracing, to
invert the EOS (i.e., determine the density for
a given pressure). Instead, the pressure is com-
puted from the phase concentrations at the end
of the computation.
At this point one might wonder why differ-

ential equations are proposed when there is al-
ready a set of much simpler algebraic equations
(Eq. (17)) for the problem of phase equilibrium
calculations. These algebraic equations, how-
ever, are nonlinear and can only be numeri-
cally solved by iterative methods. These meth-
ods need initial values and are prone to fail if
these initial values are not good enough. In con-
trast to the use of the algebraic equations, the
differential equations do not require non-linear
rootfinding from potentially insufficiently accu-
rate initial guesses. On the other hand, during
the integration of differential equations numer-
ical errors can accumulate. The method pro-
posed here combines both approaches: Start-
ing from a pure-fluid state, a new equilibrium
state on the phase envelope is obtained by in-
tegrating the differential equation. The result
is then used as initial value for the solver of
the algebraic equations, which eliminates any
accumulated errors and thus “polishes” the in-
tegration result. As the results of the integra-
tion step are usually good to 6 or more decimal
places already, the algebraic solver has no con-
vergence problems. In most cases, a single step
of a Newton–Raphson rootfinder is sufficient to
achieve convergence within machine precision.

3.4 Critical curves—algebraic
equations

The vapor–liquid two–phase region of a pure
compound ends at a critical point. Because of
Gibbs’ phase rule, binary mixtures have crit-
ical curves. These curves, however, are not

the boundaries of vapor-liquid coexistence re-
gions only, but also of liquid–liquid two-phase
regions. The patterns of the critical curves can
be partitioned into several categories, the so-
called phase diagram classes. Understanding
these classes and, in particular, knowing the
number and locations of the critical curves of a
mixture is essential for the correct prediction of
phase equilibria. It is easy to overlook a liquid–
liquid phase split that one does not know to
exist!
This section as well as the next one summa-

rize methods to calculate critical states of mix-
tures that have been explained in more detail
elsewhere.6

For a single-phase state of a mixture that is
stable against splitting into two phases the Hes-
sian matrixH (see Eq. (19)) is positive-definite.
This is equivalent to stating that all eigenvalues
of λk of H are positive. The boundary of sta-
bility is reached when (at least) one eigenvalue
becomes zero. If the eigenvalues are in ascend-
ing order, λ1 < λ2 < · · · , the first criterion for
a critical state, the so-called spinodal criterion,
can therefore be expressed as

λ1(ρ) = 0 . (20)

The second criterion reflects the fact that λ1

has a local minimum in the direction indicated
by the eigenvector u1,

dλ1(ρ)

dσ1

= 0 with ρ = ρc + σ1u1 , (21)

where σ1 is a scalar.
The following presentation of the mathemat-

ics of critical states is considerably simplified if
the ρi coordinates are replaced by transformed
coordinate system whose axes are aligned with
the eigenvectors uk. The transformation is
given by

ρ = ρc +
N∑
k=1

ukσk = ρc +Uσ

σ = UT(ρ− ρc) .

(22)

Here U denotes a matrix whose row vectors are
the eigenvectors uk, k = 1, . . . , N .

6



In the transformed coordinate system, the
Hessian matrix of Ψ is a diagonal matrix,

H =

(
λ1 0
0 λ2

)
, (23)

and the eigenvalues can be expressed as

λk =

(
∂2Ψ

∂σ2
k

)
. (24)

Then the two critical conditions can be ex-
pressed as

λ1 =

(
∂2Ψ

∂σ2
1

)
= 0(

∂λ1

∂σ1

)
σj>1

=

(
∂3Ψ

∂σ3
1

)
= 0 .

(25)

They constitute two nonlinear algebraic equa-
tions, from which the concentrations ρc1 and
ρc2 can be determined for a given temperature.
Eq. (25) is valid for pure compounds and mul-
ticomponent mixtures.

3.5 Critical curves—differential
equations

The system of equations (Eq. (25)) is no-
torious for its difficult convergence. It is
therefore worth-while—in analogy to two-phase
envelopes—to develop differential equations for
critical curves. The formalism of isochoric ther-
modynamics yields a rather compact set of
equations,6

[UT(∇σλ1)]
dρ

dT

∣∣∣∣
c

= − ∂′

∂T

(
∂2Ψ

∂σ2
1

)
[UT(∇′

σ((∇σλ1) · u1))]
dρ

dT

∣∣∣∣
c

= − ∂′

∂T

(
∂3Ψ

∂σ3
1

)
(26)

Together, these two equations constitute a sys-
tem of linear equations, which can be solved for
the concentrations derivatives along the critical

curve. The gradients of λ1 are

∇σλ1 =

 ∂′

∂σ1

(
∂2Ψ
∂σ2

1

)
∂′

∂σ2

(
∂2Ψ
∂σ2

1

) 
∇′

σ((∇σλ1) · u1) =

 ∂′

∂σ1

(
∂3Ψ
∂σ3

1

)
∂′

∂σ2

(
∂3Ψ
∂σ3

1

)  .

(27)

The primes on the outer differentiation opera-
tors indicate that here the eigenvectors change
during the differentiation. Such differentia-
tions can easily be carried out with a finite-step
method. The numerical inaccuracy introduced
is eliminated when the integration step is fol-
lowed by a “polishing step”, i.e., when the re-
sult of the integrator is used as initial value for
a nonlinear rootfinder that solves Eq. (25).
As for the calculation of phase envelopes,

some special measures must be taken if one of
the concentrations becomes zero. But this is
not a difficult obstacle, because the limiting val-
ues of all terms involved can be computed ac-
curately (the reader is referred to the original
publication6). It is therefore possible to start
the calculation of a critical curve at one of the
pure-fluid critical points.

4 Differentiation

As has been seen, derivatives of the Helmholtz
energy expressions are essential to calculating
thermodynamic properties from EOS. This dif-
ferentiation can be done analytically or using
numerical methods.

4.1 Finite differentiation

The classical numerical analysis texts propose
finite differentiation to take numerical deriva-
tives of real-valued functions. For instance, the
centered first finite difference of truncation or-
der two is given by

f ′ ≈ f(x+ h)− f(x− h)

2h
+O(h2). (28)

This approach results in a number of down-
sides: 1) Not easy to know what step size h to

7



take. Heuristics like h ≈
√
εx, with ε the ep-

silon of the numerical type, are acceptable, but
not ideal (What about at x = 0 in our exam-
ple? ) 2) Even when the optimal step size has
been selected, the result still deviates from the
exact solution. Figure 1 demonstrates this for
the function cos(x) sin(x).
The deficiencies of finite differentiation can be

avoided in many cases, as we will show in this
work. An alternative (and not recommended
because it incurs a severe computational speed
penalty31) approach to improve the accuracy
of finite differentiation is to use arithmetic with
more digits of precision, for instance with the
boost::multiprecision library in C++, or
mpmath in Python.

4.2 Into the complex plane

Years from now, it is possible that the blog
post of Higham 32 will be seen as a landmark
in the application of complex mathematics to
the practical differentiation of real functions.
While the ideas in the blog post are not new,
they are explained in a very accessible way. To
summarize: if a function normally takes real
arguments, but you can instead provide com-
plex arguments, that will allow you to get the
derivatives of the function output with respect
to the input argument to numerical precision.
Mathematically, this is

f ′ ≈ ℑ(f(x+ hj))

h
(29)

where ℑ(z) gets the imaginary component of
a complex number z and j is the imaginary
unit (

√
−1). An example in Python demon-

strates the approach; the derivative of the func-
tion cos(x) sin(x) is equal to cos(2x):

BKTQ`i +K�i?

O o�Hm2 �M/ bi2T

t 4 3Xj
? 4 R2@Ryy
O 6mM+iBQM

7 4 H�K#/� t, +K�i?X+QbUtV +K�i?XbBMUtV
O 1t�+i /2`Bp�iBp2

7T`BK2n2t�+i 4 +K�i?X+QbUkXy tVX`2�H
O *QKTH2t bi2T /2`Bp�iBp2

7T`BK2n+b/ 4 7UtYRD ?VXBK�;f?
2`` 4 7T`BK2n+b/ @ 7T`BK2n2t�+i
T`BMiU7^1``Q`, &2``,R3XRe2'^ V
]]] PmiTmi,

1``Q`, yXyyyyyyyyyyyyyyyy2Yyy

]]]

There are two remarkable features of this ap-
proach: 1) the step size h is 10−100 (not a typo)
2) the error is zero (also not a typo). The differ-
ence compared with the evaluation of cos(2x)
in infinite precision is not quite zero, but the
error rounds to zero in the example because
the difference used to obtain err is carried out
in double precision. Therefore, with complex
step derivatives it is possible to calculate nu-
merical derivatives to all of the digits of dou-
ble precision arithmetic (with some manageable
caveats)! The downsides of the complex step
derivative approach are twofold: a) it only al-
lows for first derivatives and b) it is not ex-
tremely computationally efficient (as compared
with hand-written derivatives), although it is
still very computationally efficient (a few times
slower than the evaluation of the function itself,
in general; still much slower than automatic dif-
ferentiation).
The generalization of complex step deriva-

tives to higher-order derivatives is the multi-
complex approach; multicomplex numbers are
generalizations of complex numbers. In anal-
ogy to complex numbers, which comprise two
real numbers,

z = r0 + jr1 , (30)

a multicomplex number of level l comprises two
multicomplex numbers of level l − 1,

m(l) = m
(l−1)
0 + j(l)m

(l−1)
1 , (31)

where j(l) represents the imaginary unit of the
l-th level. A multicomplex number of level 1 is
equivalent to a complex number, and therefore
j(1) ≡ j. A multicomplex number of level l

8



comprises 2l real components. For example, a
multicomplex number of level 2 (also called a
bicomplex number) is given by

m(2) = m
(1)
0 + j(2)m

(1)
1

= r00 + j(1)r01 + j(2)r10 + j(1)j(2)r11 ,

(32)

where the rij are real numbers. It can be shown
that a derivative of arbitrary order of a function
f(x) can be computed as

dnf(x)

dxn
≈ 1

hn
C2n−1

{
f(x+ hj(1) + . . . hj(n))

}
,

(33)

where C2n−1 {} denotes an operator that returns
the last, “most imaginary” component of a mul-
ticomplex number. The exact definition of this
operator is given in another publication.33 As
for the complex step method, the increment h
can be made very small, so that the derivative
is obtained with almost machine precision.
The multicomplex step method can also be

applied to functions of more than one vari-
able, and then can also compute mixed deriva-
tives. Moreover, the multicomplex step method
yields not only the desired derivative, but all
derivatives of lower order, too.33 Deiters and
Bell 33 also discuss alternative differentiation
techniques, for instance techniques based on
Cauchy’s integral theorem. Hyperduals are a
notionally similar construct to multicomplex al-
gebra that allow for exact second partial deriva-
tives like for complex step derivatives34,35

Contemporary compiler implementations do
not contain multicomplex algebra (yet), but
there are multicomplex program libraries avail-
able for Python and C++33 which make it easy
to implement multicomplex differentiation in
existing programs.

10 16 10 12 10 8 10 4

h

10 20

10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

|f
′ nd

/f
′ ex

ac
t

1|

double

centered, double precision
complex step
centered, extended precision

Figure 1: Absolute value of relative error in
derivatives of cos(x) sin(x) at x = 8.1 with finite
differentiation in double precision via Eq. (28),
complex step derivatives via Eq. (29), and finite
differentiation with 100 digits of working preci-
sion, as a function of step size h. The subscript
nd is for the numerical derivative, and exact is
for the exact solution. The indicated value of
εdouble is the machine precision in double preci-
sion arithmetic.

4.3 Automatic differentiation

Automatic differentiation is yet another com-
putational technique that allows us to compute
function derivatives.36 For a review of auto-
matic differentiation techniques and its miscon-
ceptions, we refer to Güneş Baydin et al..37 It
is a powerful and simpler alternative to numeri-
cal and analytical derivatives that offers perfor-
mance, precision, and convenience when taking
derivatives of functions. It is in general a supe-
rior approach to finite differences, which often
lacks accuracy due to amplified round-off errors.
There are many variations of automatic dif-

ferentiation techniques. Usually they can be
classified in two groups: source code genera-
tion/transformation and operator overloading.
Several computer codes exists in which all
or some of these techniques are implemented.
They include, for example, TAPENADE,38

Stan Math Library,39 CppAD,40 CasADi,41

ADOL-C,42 Clad,43 Adept,44 autodiff.45 We

9



focus below on the description of automatic dif-
ferentiation techniques in which operator over-
loading is used and the derivatives are com-
puted in a forward-mode approach instead of
reverse-mode.
In a forward-mode automatic differentiation

algorithm, the usual floating point type double
in C/C++ is replaced by a special type (com-
monly named dual) that implements, via op-
erator and function overloading, all necessary
arithmetic and mathematical operations on
that type. Thus, variables of this dual type can
be, like variables of double type, added, sub-
tracted, multiplied, divided, and used in math-
ematical functions such as sin, cos, log, exp, etc.
However, this type has also been implemented
to propagate derivatives using the chain rule
of calculus, which yields accurate results up to
machine precision. The output of an automatic
differentiation evaluation is a numerical result,
not a mathematical expression. We list below
an example of a program using the autodiff45

C++ library that illustrates what we explain
here, on a higher level and more practical de-
scription, since the chain rule operations are
hidden away from the user.

OBM+Hm/2 I�miQ/B77f7Q`r�`/f/m�HX?TT=
OBM+Hm/2 IBQbi`2�K=
mbBM; M�K2bT�+2 �miQ/B77c
mbBM; M�K2bT�+2 bi/c

/m�H 7U/m�H t- /m�H vV&
`2im`M bBMUtV +QbUvVc

'

BMi K�BMUV&
/m�H t 4 yXkc
/m�H v 4 yXjc

/m�H mc ff mb2/ �b m 4 7Ut- vV

b22/UtVc
m 4 7Ut- vVc
mMb22/UtVc

+Qmi II ]/mf/t 4 ] II mX;`�/ II bi/,,2M/Hc

b22/UvVc
m 4 7Ut- vVc
mMb22/UvVc

+Qmi II ]/mf/v 4 ] II mX;`�/ II bi/,,2M/Hc

`2im`M yc
'

ff PmiTmi,
ff /mf/t 4 yXNjekNjjej839RNNkj9R
ff /mf/v 4 @yXy83dRy3yReNj3ke8Rdy

The above program implements a function
named f using type dual for its arguments and
return value instead of double and shows how
its derivatives with respect to the arguments are
obtained. The seed operation indicates which
variable we should compute derivatives with re-
spect to (we do this for both x and y individu-
ally). By doing this, the chain rule operations
that happen in the background during the func-
tion evaluation f(x, y) propagates the deriva-
tives of all sub-expressions with respect to the
seeded variable.
An equivalent, higher-level and simplified

program can be obtained in autodiff as shown
next:

10



OBM+Hm/2 I�miQ/B77f7Q`r�`/f/m�HX?TT=
OBM+Hm/2 IBQbi`2�K=
mbBM; M�K2bT�+2 �miQ/B77c
mbBM; M�K2bT�+2 bi/c

/m�H 7U/m�H t- /m�H vV&
`2im`M bBMUtV +QbUvVc

'

BMi K�BMUV&
/m�H t 4 yXkc
/m�H v 4 yXjc

/Qm#H2 /m/t 4 /2`Bp�iBp2U7- r`iUtV- �iUt- vVVc
/Qm#H2 /m/v 4 /2`Bp�iBp2U7- r`iUvV- �iUt- vVVc

+Qmi II ]/mf/t 4 ] II /m/t II bi/,,2M/Hc
+Qmi II ]/mf/v 4 ] II /m/v II bi/,,2M/Hc

`2im`M yc
'

ff PmiTmi,
ff /mf/t 4 yXNjekNjjej839RNNkj9R9
ff /mf/v 4 @yXy83dRy3yReNj3ke8Rdyj

autodiff also offers many other convenience
methods for derivative computations such as:

� autodiff::gradient,

� autodiff::jacobian,

� autodiff::hessian,

� autodiff::taylorseries.

autodiff45 uses advanced template metapro-
gramming techniques to optimize, at compile-
time, expression evaluations to greatly reduce
the overhead of employing a numeric type other
than native floating point types (e.g., float,
double).
We show in the next section the usage of

autodiff for computation of thermodynamic
derivatives that are in general derived by hand
and implemented manually, resulting in ther-
modynamic computer codes that are both com-
plicated and prone to errors that are difficult to
identify when the EOS itself is complicated.
Note: autodiff is also used in Reaktoro46

for the computation of derivatives of thermody-
namic properties with respect to temperature,
pressure and composition for the sake of com-
puting exact Jacobian matrices in its chemical
equilibrium and kinetics solvers as detailed in
Ref. 47. For example, when using Newton’s

method to solve chemical equilibrium, every it-
eration requires derivatives such as (∂µ/∂n)T,p,
(∂µ/∂T )p,n, (∂µ/∂p)T,n, where µ and n are
the vector of chemical potentials and amounts
of all species across all phases in the multi-
phase chemical system. These chemical po-
tentials are computed from equations of state
and activity models for each phase in the sys-
tem. While (∂µ/∂n)T,p is always needed, be-
cause the vector n is always unknown in ev-
ery chemical equilibrium problem, (∂µ/∂T )p,n
and/or (∂µ/∂p)T,n are only evaluated when T
and/or p are also unknown in the problem (e.g.,
chemical equilibrium with specified internal en-
ergy and volume). autodiff has been a reliable
library to compute these derivatives with ma-
chine precision and performance, and is used in
teqp as the default differentiation approach.
We highlight, however, that the goal in this

work is to use higher-order derivatives, rather
than just first-order derivatives for Jacobian
computations, to fully resolve all thermody-
namic properties that can be extracted from the
residual Helmholtz energy function.

5 Implementation

Having laid out the mathematics and thermo-
dynamics, we now pivot to the computational
aspects. In this section we describe the manner
in which the library is practically implemented.
In high level languages without strong typing

(e.g., Python), writing generic models in the
form αr(T, ρ, x) and taking derivatives with the
numerical tools we describe above requires very
little additional code. Here for instance is a
complete example of calculating ∂2p/∂v∂T for
the van der Waals EOS with the multicomplex
package for Python:

11



BKTQ`i KmHiB+QKTH2t

O .27BMBiBQM Q7 KQ/2H
� 4 yXRjeRd8e8kkj3dNkRe
# 4 jXkky99jdkN89jej382@y8
_ 4 3XjR99ekeR3R8jk9 O CfKQHfE
/27 TUh- pV,

`2im`M _ hfUp@#V @ �fp  k

O ai�i2 TQBMi
h 4 jyy O E
p 4 RXk O K�jfKQH

O a2+QM/ +`Qbb /2`Bp�iBp2
/kT/h/p 4 KmHiB+QKTH2tX/B77nK+tLU

H�K#/� hp, TUhp(y)-hp(R)V-
t4(h- p)-
Q`/2`b4(R- R)

V
T`BMiU/kT/h/p- @_fUp@#V  kV O �TT`Qt- 2t�+i
]]]QmiTmi,
@8Xdd9k9kkNe8N3dR8 @8Xdd9k9kkNe8N3dR88
]]]

So, why not develop the entire library in
Python? In short, speed. While developing
in Python would indeed be very convenient,
it would be too slow to be used in any sort
of production code. Besides, if you have ex-
isting code written in Fortran (for instance),
interfacing with Python is a non-starter, but
interfacing with a shared library with a C in-
terface is viable. The goal of this library is
to be computationally efficient enough that it
could replace existing optimized Fortran (REF-
PROP) and C++ (CoolProp) implementations.
As we’ll see, it comes quite close to this goal. As
a result, the decision was made from the outset
to develop in C++.

5.1 C++ Implementation

This section is intended for readers already well
versed in C++, and explains some of the low-
level details. Readers may want to proceed to
the next section to return to the thermodynam-
ics, but before doing so, might want to quickly
peruse the examples.
The generic function for the residual reduced

Helmholtz energy to be implemented in teqp

has the specification

i2KTH�i2IivT2M�K2 hR-
ivT2M�K2 hk-
ivT2M�K2 hj=

�miQ �HT?�`U+QMbi hR� h-
+QMbi hk� `?Q-
+QMbi hj� KQH27`�+V &

XXX
'

for which a few notes are needed:

� the implementation is a pure function
with no side-effects and all arguments are
immutable (are const) and passed by ref-
erence

� no specification of the input and output
types is provided; the method must be
able to handle all different permutations
of numerical types. The vector of mole
fractions is also implemented in a generic
fashion. Even though there are no for-
mal constraints on the types provided to
the function, they must adhere to the ex-
pected interface, i.e. implement arith-
metic operators +, -, *, /, exp, and so
on.

� because the function is generic, all func-
tions called by this function must also be,
and so too any datatypes that store any of
the intermediate calculations, all the way
to the bottom of the call stack.

It is a common paradigm in C++ to define an
abstract base class (ABC) and implementation
classes deriving from this base class, and store
instances of derived classes in smart containers
(e.g., std::vector<std::shared ptr<ABC>>,
with ABC being the base class). Unfortunately,
once templated arguments are used in any vir-
tual function, the polymorphism (deriving from
ABC) approach is no longer possible. For in-
stance this definition of the base class would
NOT be allowed in C++:

+H�bb �"*&
i2KTH�i2IivT2M�K2 hR-

ivT2M�K2 hk-
ivT2M�K2 hj=

pB`im�H �miQ �HT?�`U
+QMbi hR� h-
+QMbi hk� `?Q-
+QMbi hj� KQH27`�+V 4 yc

'c

12



Thus, if the specification defines that the
model has a templated method alphar, an al-
ternative approach is needed to store instances
of the models in a dynamic container (as is
needed for the C interface). Thus, smart point-
ers (std::shared ptr, std::unique ptr, etc.)
cannot be used. Instead, each model instance
may be specified in a std::variant, and the
variants stored in a dynamic container (like a
std::vector or a std::unordered map). The
list of possible model implementations allowed
in the std::variant must be enumerated at
compile time, and in this case is hardcoded.
One implementation downside of this approach
is that the std::variant does not allow for
direct access to the class instance it contains,
rather the compiler needs to use a visitor model
to determine which model is contained in the
variant, and as such, cannot simply return the
model it holds without already knowing what
is to be returned. This is why the templated
function std::get<T>() in the C++ standard
library needs to know the template type T at
compile time. The cost to be paid here is only in
terms of lines of code; the compiler nearly com-
pletely optimizes away the visitor model func-
tions.
In practice, while this all sounds complicated,

and there are indeed a lot of important and
frustrating details to become familiar with, the
implementation of a given model is still nothing
more than filling in the function alphar. Other
details are the responsibility of the library de-
veloper. For simple models, implementing the
function in C++ is trivial; for more involved
models, more effort is required. As an example,
to implement the cubic EOS (Peng-Robinson
and SRK) in their canonical form took the pri-
mary developer a few hours after already learn-
ing how to avoid common pitfalls in model im-
plementation in teqp, and having more than a
decade of daily use of C++. That stands in
marked contrast to the several months spent
working out the hand-written derivatives.3

The complete implementation of the van der
Waals EOS model for a pure fluid could read

OT`�;K� QM+2
OBM+Hm/2 ]i2[TfivT2bX?TT]

+H�bb p/q1PaR &
T`Bp�i2,
/Qm#H2 �- #c

Tm#HB+,
p/q1PaRU/Qm#H2 �- /Qm#H2 #V , �U�V- #U#V &'c

ff 1t�+i p�Hm2 7Q` _- ;Bp2M #v Fn" Ln�
+QMbi /Qm#H2 _ 4 RXj3ye9N2@kj eXykkR9yde2kjc

i2KTH�i2IivT2M�K2 hR- ivT2M�K2 hk- ivT2M�K2 hj=
�miQ �HT?�`U+QMbi hR� h-

+QMbi hk� `?Q-
+QMbi hj� KQH27`�+V +QMbi &

�miQ SbBKBMmb 4 @HQ;URXy @ # `?QVc
�miQ p�H 4 SbBKBMmb @ �fU_ hV `?Qc
`2im`M 7Q`+22p�HUp�HVc

'
'c

Note how no header other than the
types.hpp header (used only to provide the
forceeval function) is needed. There is no in-
heritance, and the model implementation need
not implement a plethora of functions to satisfy
the requirements of the ABC (as is common in
conventional polymorphism).
A comment about forceeval: When

autodiff is used to evaluate expressions, un-
evaluated expressions are obtained from a state-
ment like a+b when a and/or b are autodiff
duals. These unevaluated expressions store
lightweight references to local memory loca-
tions of the variables a and b. It is invalid
behavior to return these expressions from the
function because the memory references become
dangling. The call to forceeval flattens the
expression (resolving all the references) before
the expression falls out of scope and is returned.
Therefore, as is the case for Eigen expressions,
it is necessary to be careful about the use of
auto. The multicomplex implementation does
not have this limitation (the forceeval func-
tion has no effect), so confirming that the same
results are returned with multicomplex and au-
tomatic differentiation can serve as a powerful
check in the debugging workflow.
One limitation of teqp is the rather slow com-

pilation time; this is a consequence of the gen-
erality of the models. The compiler must work
out template instantiations of each combination
of possible arguments to alphar. As an intro-

13



duction to the problem, if the only thing that
you would like to do with the model is to calcu-
late αr and its partial derivative with respect to
density with complex step derivatives, that in-
vokes the templates alphar(double, double,

Eigen::ArrayXd) and alphar(double,

std::complex<double>, Eigen::ArrayXd),
and recursively invokes all templated functions
down the call stack. As more models and higher
derivatives enter into the compilation process,
the number of template instantiations increases
and compilation speed decreases. Models like
the multi-fluid model with nested templated
classes are especially computationally costly to
compile. If the C-language interface is used
in C++, with the JSON interface for model
construction, the compilation cost can be amor-
tized, although a small runtime cost is incurred,
and limited functionality is exposed.
The steps to add a new model are as follows:

1. A class is defined that exposes the alphar
function and any other methods needed to
implement the model

2. An entry is added in the JSON-builder
function in include/teqp/json builder.hpp

(optional)

3. A wrapper of the class is added in the
Python interface in the interface direc-
tory (optional)

5.2 Python wrapper

Although modern C++ is much more user
friendly than its predecessors, it remains the
case that operations like file input/output and
plotting are more convenient in a high-level lan-
guage like Python. Thus, a C++ ↔ Python in-
terface was written with the pybind11 library.48

This Python interface allows for the use of the
models in a close to one-to-one mapping with
the low-level C++ code while not incurring
much computational overhead. The C++ de-
tails are hidden from the user, and the time of
compiling the library must only be paid once.
Metadata interchange, where needed, is in the
JSON format. The binary wheels of teqp are
available in the Python package index (pypi).

The Python wrapper allows for use of this li-
brary in modern languages that support calling
Python, including MATLAB, Julia, R, Scilab,
etc.

5.3 C wrapper

C++ does not interface conveniently with
legacy tools like Fortran or Microsoft Excel. In
order to broaden the range of end users, a C
interface was written that accepts a JSON rep-
resentation of the model parameters as inputs,
as null-terminated strings. All inputs and out-
puts are C data types: int, char*, double,
double*, etc. The caller must be very care-
ful to ensure that memory is managed properly
on the calling side, as memory checking safe-
guards are not possible inside the C functions.
This interface allows for calling from any lan-
guage supporting calling shared libraries. The
models are managed with a std::variant as
described above. Unique keys allow the caller
to know which model is being operated upon.
When no error is produced, evaluation of the
model is approximately as fast as the full C++
interface (example: 0.9 µs/call with PC-SAFT
for Λr

01). Examples demonstrating how to call
the shared library from Python and C++ are
in the source file interface/C.

6 Results and Examples

6.1 Models

As described in the abstract, a number of types
of models are implemented in teqp, sorted
roughly in terms of likely accuracy:

� van der Waals: One of the simplest ther-
modynamic models, primarily useful for
testing purposes. Implementations for
pure fluids and mixtures (with standard
mixing rules).

� canonical cubics (Peng-Robinson and
SRK): As described in Ref. 3, the canon-
ical cubics are benchmark models still
used heavily in industry, in spite of their
weaknesses.

14



� PC-SAFT: The original version of PC-
SAFT as published by Gross and Sad-
owski,49 without any association contri-
bution. An important error from their pa-
per is fixed 1, as noted in the teqp source
code.

� CPA: Cubic-plus-association. Allows for
a variety of association models, and base
thermodynamic models. Currently only
implemented for pure fluids because mix-
tures require iteration for the association
part, while pure fluids are non-iterative.

� multi-fluid: This is the model used in
NIST REFPROP and CoolProp. It is
precisely the same corresponding states
formulation used in the development of
the GERG-2004 model.1,50 It is based
upon highly accurate multiparameter
pure fluid EOS in concert with depar-
ture functions and reducing functions to
account for mixing behaviors.

6.2 Speed

The more derivatives desired, the more com-
putational cost will be incurred. This holds
true both for hand-written derivatives and al-
gorithmic differentiation. The question then is
how competitive these algorithmic differentia-
tion speeds are with the optimized computa-
tional codes.
Each of the timing tests in this section are car-

ried out in a docker container running ubuntu
20.04 running on a Windows host machine. The
compilers used are gfortran for REFPROP
10.0, and clang++ for teqp to yield a fair com-
parison. Note that the docker containers must
be run in privileged mode to yield the same
speedup on all host machines.
Figure 2 shows the timing for propane, for

the multi-fluid model and other models imple-
mented in teqp for the function Λr

0n (defined
in Eq. (2)). The timing baseline is REFPROP
and all calculations are done in C++ to elim-
inate any additional overhead. 106 calls are

1Eqn. A.11 should use the reciprocal of the right-
hand-side

done, and the average of the five fastest re-
peats of the 106 calls are kept as the time for
a particular data point. For the multi-fluid
model, the same models and reducing param-
eters are used in both teqp and REFPROP,
and the same numerical results are obtained
in both libraries to all 16 digits. The other
models (vdW, PR, PC-SAFT) are shown for
comparison. The timing for REFPROP 10.018

of the multi-fluid model is on the order of 0.5
µs/call. REFPROP calculates all of the deriva-
tives up to the third order in temperature and
density with all cross terms; this represents un-
necessary work when only first derivatives are
needed, but is worthwhile when higher deriva-
tives are required. The PC-SAFT model, even
when optimized, is much slower than the mul-
tiparameter model. As a test of overhead, the
van der Waals and Peng-Robinson implementa-
tions show that very simple models are very fast
to evaluate (but are far less accurate than the
multiparameter models). The timing in teqp is
competitive with REFPROP, 1% slower for Λr

02,
and 38% faster for evaluation of αr for the same
model formulation. As described above, many
of the most important thermodynamic proper-
ties (see Section 8.1) require only first deriva-
tives, but more advanced calculations require
additional derivatives.

15



0 1 2 3
n of r

0n

0.0

0.5

1.0

1.5

2.0

2.5

t /
 

s/
ca

ll

0.62× 0.68×
0.81×

2.64×

PCSAFT
PR
multifluid
vdW
REFPROP

Figure 2: Timing of the Λr
0n function for mod-

els for propane with autodiff differentiation.
The multiparameter (and REFPROP function
PHIXdll) results are for the EOS of Lemmon
et al..51 The labels on each multifluid data point
are the ratio relative to the REFPROP timing.

Once additional components are included in
a mixture, the computational cost of algorith-
mic differentiation increases. To demonstrate
this, mixtures with the first M n-alkanes are
modeled, and the Λr

02 derivative is calculated
for each of the mixtures, as presented in Fig. 3.
As before, the timing comparison is against
that of REFPROP with the multi-fluid model.
Across the number of components considered,
teqp is always slightly faster than REFPROP,
although the computational penalty is modest,
and the scaling is qualitatively similar.

1 2 3 4 5 6
M components

0

1

2

3

4

5

t /
 

s/
ca

ll

PCSAFT
PR
multifluid
vdW
REFPROP

Figure 3: Timing of the Λr
02 function for mix-

tures with M alkanes for models from teqp and
REFPROP.

Many common mixture calculations require
composition derivatives. For instance, the
chemical potential of the i-th component is ob-
tained from µi = (∂Ψ/∂ρi)T,ρj ̸=i

, which is the
molar concentration gradient of Ψ with the tem-
perature fixed. The residual portion of the
chemical potential (the most important part for
chemical equilibrium calculations) is given by
µr
i = (∂Ψr/∂ρi)T,ρj ̸=i

. The gradient method
of autodiff allows for a straightforward eval-
uation of the gradient. A wrapper function
(in C++, a lambda function) is written for
the implementation of Psir and then passed
to autodiff::gradient. REFPROP does not
have an identical function for the residual por-
tion of the chemical potential, but it does al-
low for calculation of the fugacity coefficient,
a closely related quantity, obtained from the
FUGCOFdll function. Calculation of the fugac-
ity coefficient involves two parts: the gradient
of Ψr and Λr

01 (see Eq. (59)). Figure 4 shows
the results of the timing. An initially surpris-
ing result, the fugacity coefficient calculations
from teqp are approximately two times faster
than those in REFPROP.

16



1 2 3 4 5 6
M components

0

5

10

15

20

25

30

t /
 

s/
ca

ll

REFPR
OP

0.896

1.604

2.276

3.677

16.626

22668.043

teq
p

0.896

1.604

2.276

3.677

16.626

22668.043

Figure 4: Timing of the fugacity coefficient
function with the multi-fluid model from teqp

and REFPROP.

In summary, in a fair apples-to-apples com-
parison, teqp is faster than REFPROP for cal-
culations of fugacity coefficients and up to first
derivatives of αr.

6.3 Accuracy

Assessing the accuracy of the calculated deriva-
tives is not straightforward. The ground truth
for the comparison is the derivative carried out
in infinite precision arithmetic. Infinite preci-
sion is impossible to achieve in practice, so in-
stead calculations (and derivatives) carried out
with a very large number of digits of precision
are the stand-in for the ground truth. In this
context, accuracy does not mean the difference
between the model and experiments, rather be-
tween the double precision result and the quasi-
infinite-precision result. The comparisons are
further complicated by the fact that some of
the conditions we are testing in this section rep-
resent extremely small numbers, and therefore
results are sensitive to precise details of the im-
plementations, even to the level of the order in
which terms are added together.
As a first test of the teqp approach, the val-

ues of the compressibility factor Z were calcu-
lated at the saturated liquid and vapor den-
sities for propane from the EoS of Lemmon

et al..51 The saturated liquid and vapor densi-
ties were obtained from REFPROP’s saturation
routine (which uses double precision arithmetic
throughout), and for each phase, the compress-
ibility factor Z was obtained from the given
densities. For orientation, Fig. 5 shows the tem-
perature and density values, showing that at
temperatures near that of the triple point, the
ratio of liquid to vapor density is greater than
1010! Numerical peril awaits those who venture
into this region of thermodynamic space.

50 100 150 200 250 300 350 400
T / K

10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101
102
103
104
105

 / 
m

ol
/m

3

Figure 5: Density of the saturated liquid (solid
curve) and vapor phases (dashed curve) as cal-
culated by REFPROP.

After a phase equilibrium calculation the
pressures should be identical in both phases,
but they will not be because of the loss
in numerical precision. The teqp results
were calculated with autodiff differentia-
tion. The “exact” values were taken with
200 digits of working precision with a stan-
dalone implementation given in the source
file src/sat Z accuracy.cpp. Calculations
of the derivatives were carried out with cen-
tered finite differences of sixth truncation or-
der52 with the numerical type provided by
boost::multiprecision. This combination
required the least reworking of teqp. We may
take these extended precision derivatives as the
ground truth for the derivatives, and compar-
isons may be made against them. While finite
differentiation is not recommended in double
precision, it is acceptable in extended precision
due to the larger amount of working precision

17



available (see for instance Fig. 1). The results
are plotted in Fig. 6. In the vapor phase the
deviations from the exact value are so small
that most round to zero in double precision
(log(0) = −∞) and are not visible in the scale
of the plot. The large densities in the liquid
phase result in severe truncation and signif-
icant errors in Z. REFPROP and teqp are
in excellent agreement with each other, and
suffer the same loss in precision at low tem-
perature (near the maximum density of the
EOS). This analysis is in agreement with simi-
lar issues identified in Ref. 31 when developing
superancillary equations.

10 16

10 12

10 8

10 4

|Z
/Z

ex
ac

t
1|

liquidREFPROP
teqp

50 100 150 200 250 300 350 400
T / K

10 16

10 15

10 14

|Z
/Z

ex
ac

t
1|

vapor

double

Figure 6: Relative deviations between values
of Z = p/(ρRT ) calculated by teqp and REF-
PROP versus those calculated by an extended
precision calculation in teqp for propane.51 The
indicated value of εdouble is the machine preci-
sion in double precision arithmetic.

The deviations for Λr
01 are shown in Fig. 7.

The results for Λr
01 show a much closer agree-

ment with the exact solution than do Z (re-
minder: Z = 1 + Λr

01), which is somewhat sur-
prising since they are related by only the addi-
tion of 1. The deviations for Λr

01 are mostly less
than a part in 1014. So how can we reconcile the
tiny deviations for Λr

01 with the proportionally
larger deviations for Z? The explanation can

be made mathematically. Suppose we have a
quantity Y that has some exact value Yexact and
we know that the actual value is within some
error band of ϵ (in a relative sense). Therefore if
we consider the new quantity Y +1, the relative
deviation in Y + 1 would be

∆ =
Yexact(1 + ϵ) + 1

Yexact + 1
− 1 (34)

which factors to

∆ =
ϵ

1 +
1

Yexact

(35)

and if Yexact is approximately−1+10−9, even if ϵ
is on the order of 10−15, the deviations in Y +1
are still on the order of 10−4. This example
demonstrates how even if the results for Λr

01 are
small, the deviations for other properties may
not be. This limitation is one of mathematics
in general, not of teqp in particular.

10 16

10 15

10 14

10 13

10 12

|
r 01

/
r 01

,e
xa

ct
1|

liquidREFPROP
teqp

50 100 150 200 250 300 350 400
T / K

10 16

10 15

10 14

|
r 01

/
r 01

,e
xa

ct
1|

vapor

Figure 7: Relative deviations between values of
Λr

01 calculated by teqp and REFPROP versus
those calculated by an extended precision cal-
culation in teqp for propane.51

The second density derivative Λr
02 represents

an intermediate case, as shown in Fig. 8. The
results from REFPROP are still mostly in

18



agreement with the exact solution to within ap-
proximately numerical precision. This is good
to see because the calculated thermodynamic
properties (see the equations in Section 8.1) in-
voke no derivatives higher than Λr

02. On the
other hand, the derivatives from teqp are start-
ing to deviate significantly in the vapor phase
at extremely low densities, especially so at low
temperature. Admittedly we are pushing dou-
ble precision arithmetic to its breaking point;
subtle implementation details in the EOS (and
in autodiff) might be responsible. In fact, the
tests of Λr

02 in this section ultimately identified
a deficiency in CoolProp version 6.4.2 caused by
numerical precision lost by intermediate round-
ing for very small density values. Simply re-
arranging the terms eliminated the problem,
highlighting the utility of checking derivatives
with extended precision calculations, even if the
extended precision calculations are not used in
production code.

10 16

10 15

10 14

|
r 02

/
r 02

,e
xa

ct
1|

liquidREFPROP
teqp

50 100 150 200 250 300 350 400
T / K

10 16
10 15
10 14
10 13
10 12
10 11
10 10
10 9
10 8
10 7
10 6

|
r 02

/
r 02

,e
xa

ct
1|

vapor

Figure 8: Relative deviations between values of
Λr

02 calculated by teqp and REFPROP versus
those calculated by an extended precision cal-
culation in teqp for propane.51

REFPROP implements up to Λr
03 so it is

possible to check the obtained values for the
third density derivative in the same manner
as for Λr

01. Figure 9 shows the results of this

comparison. For the third derivative, points
along the saturated liquid phase again show val-
ues in excellent agreement with the exact solu-
tion. On the other hand, the saturated vapor
points correspond to proportionately enormous
errors, especially at low temperatures (corre-
sponding to minuscule densities). It is well
known that taking numerical derivatives is a de-
structive operation from the standpoint of nu-
merical precision. These results also help to
explain why moving to higher-order rootfind-
ing methods like Halley’s method (or more gen-
erally the higher Householder methods53) for
density rootfinding in the gas phase (as was
attempted in CoolProp2) is not necessarily an
improvement on the näıve Newton’s method for
rootfinding if the derivatives themselves deviate
significantly from their exact solution. Cool-
Prop implements up to the fourth derivatives,
which appears to be potentially problematic in
the gas phase because the derivative error in-
creases quickly with the derivative order.

10 16

10 15

10 14

10 13

|
r 03

/
r 03

,e
xa

ct
1|

liquidREFPROP
teqp

50 100 150 200 250 300 350 400
T / K

10 16
10 14
10 12
10 10
10 8
10 6
10 4
10 2
100
102
104

|
r 03

/
r 03

,e
xa

ct
1|

vapor

Figure 9: Relative deviations between values of
Λr

03 calculated by teqp and REFPROP versus
those calculated by an extended precision cal-
culation in teqp for propane.51

Although these results might seem to call into
question the approach proposed in this work for
metrology applications and standards work, it

19



is not obvious that the distinctions in error be-
tween teqp and REFPROP are to be expected.
Further forensic study of the precision lost by
intermediate rounding in teqp would be worth-
while. The key point is that for reasonable state
points, down to perhaps a density of 1000 times
lower than that at the critical point, the loss
in precision is mostly within a part in 1010 for
derivatives up to Λr

03, even for the vapor phase.

6.4 Testing, Verification, and
Documentation

As teqp is a blank-sheet development ef-
fort, software development best practices were
adopted from the outset. The code is un-
der source control, the code is heavily tested,
docker containers are used to assist with re-
producibility of results, and continuous inte-
gration builds are launched at every code com-
mit. A comprehensive suite of tests have been
written with the Catch2 testing library, and
where feasible, a test-driven development style
has been adopted; tests have been written in
concert with new features. In some cases, mul-
tiple derivative methods are compared against
each other (multicomplex, complex step, au-
todiff). Code coverage metrics from the tests
are good, with tests covering more than 85%
of the lines of code, and more than 94% of the
core (a docker container for testing and code
coverage is in dev/docker/gcov). Aside from
the dependencies of the library (e.g., boost,
Eigen, and the C++ standard library), the core
of teqp is concisely written in less than 700
lines of header-only code (the model implemen-
tations are approximately another 1000 lines
of code). All tests pass on the Microsoft and
clang++ C++ compilers. Furthermore, to en-
sure no inappropriate memory access occurs,
the test suite has been run through the valgrind
memory checking tool (a docker configuration is
in dev/docker/valgrind), and no errors were
found. Documentation of the C++ code was
generated with the doxygen library.

6.5 Gallery

In this section we provide some demonstrations
of the capabilities of this library in a literate
programming style; the graphical result is pre-
sented along with the Python code used to
generate it. Inspiration has been taken from
the gallery of the matplotlib plotting library.
Comments have been removed from the source
code for concision.
The recent discussions of entropy scaling ap-

plied to transport properties of associating and
polar fluids54,55 have raised questions about
how well our common EOS are able to repro-
duce the residual entropy. As an exploration
of this question and a demonstration of the
models available in teqp, Fig. 10 shows cal-
culations of the residual entropy. The goal of
this first example is primarily to demonstrate
how to instantiate the models. Under the hood,
s+ is calculated from evaluation in the form
s+ = Λr

00 − Λr
01. The PC-SAFT implementa-

tion in teqp does not include the association
contribution (because the association contribu-
tion invokes iterative calculations for the associ-
ation fractions), so the PC-SAFT results should
be considered as only a demonstration of how
to use PC-SAFT in teqp. If we consider the
IAPWS model for water (the scientific formu-
lation from Wagner and Pruß 56) to be a reliable
baseline for comparison of residual entropy val-
ues, the cubic plus association (CPA) is shown
to yield the best predictions. The canonical cu-
bic EOS (vdW, PR, SRK) yield qualitatively
incorrect predictions. The key point to high-
light in this example is that no derivatives are
explicitly implemented; all are handled by nu-
merical differentiation.
As a tracing example we trace vapor-liquid-

equilibrium (VLE) isotherms of a binary mix-
ture with the isochoric thermodynamics de-
scribed above in Fig. 11. The EOS is Peng-
Robinson with kij = 0 and parametric tracing57

is used. The pure-fluid saturation densities
are obtained from the superancillary curves30

available in teqp. Tracings initiated at each
of the two pure fluids are included, and they
overlay almost perfectly, even without polish-
ing the phase equilibrium solution. A key point

20



0 5000 10000 15000 20000 25000 30000
ρ / mol/m3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

s
+
≡

(s
ig
(T
,ρ

)
−
s(
T
,ρ

))
/R

vdW
PR
SRK
PCSAFT
CPA
IAPWS

time: 1.6 s teqp: 0.7.0
BKTQ`i iBK2Bi- MmKTv �b MT

BKTQ`i K�iTHQiHB#XTvTHQi �b THi

THiXbivH2Xmb2U^+H�bbB+^V
BKTQ`i i2[T

/27 #mBH/nKQ/2HbUV,
h+nE- T+nS�- �+2Mi`B+ 4 e9dXyNe- kkye9yyyXy- yXj99kNky39j

r�i2` 4 &
]�yB f S� K�efKQH�k], yXRkkdd - ]#B f K�jfKQH], yXyyyyR98R8- ]+R], yXedj8N-
]h+ f E], e9dXyNe- ]2Tb�"B f CfKQH], Ree88Xy- ]#2i��"B], yXyeNk- ]+H�bb], ]9*]

'
D 4 &]+m#B+], ]a_E]- ]Tm`2b], (r�i2`)- ]_n;�b f CfKQHfE], 3XjR998N3'

/�i�T�i? 4 i2[TX;2in/�i�T�i?UV
/27 ;2inS*a�6hUV,

+ 4 i2[TXa�6h*Q277bUV
O o�Hm2b 7`QK ?iiTb,ff/QBXQ`;fRyXRyRefDX7HmB/XkyRdXRRXyR8-
O #mi �bbQ+B�iBQM +QMi`B#miBQM Bb B;MQ`2/
+XM�K2 4 ^q�i2`^
+XK 4 kX89dk
+XbB;K�n�M;bi`QK 4 kXRy89
+X2TbBHQMnQp2`nF 4 Rj3Xej
`2im`M i2[TXS*a�6h1PaU+Q277b4(+)V

`2im`M (
U^p/q^- i2[TXp/q1PaU(h+nE)- (T+nS�)VV-
U^S_^- i2[TX+�MQMB+�HnS_U(h+nE)- (T+nS�)- (�+2Mi`B+)VV-
U^a_E^- i2[TX+�MQMB+�Hna_EU(h+nE)- (T+nS�)- (�+2Mi`B+)VV-
U^S*a�6h^- ;2inS*a�6hUVV-
U^*S�^- i2[TX*S�7�+iQ`vUDVV-
U^A�Sqa^- i2[TX#mBH/nKmHiB7HmB/nKQ/2HU(]q�i2`])- /�i�T�i?VV

)

7B;- �t 4 THiXbm#THQibUR-R-7B;bBx24Ud-eVV
h 4 dyy O E
`?Qp2+ 4 MTX;2QKbT�+2UyXR- jy2j- RyyyyV O KQHfK�jc +`BiB+�H /2MbBiv Bb Rd3djX3XXX KQHfK�j
iB+ 4 iBK2BiX/27�mHiniBK2`UV
7Q` �##`p- KQ/2H BM #mBH/nKQ/2HbUV,

bTHmb 4 MTX�``�vU(i2[TX;2inbTHmbUKQ/2H- h- (`?Q)V 7Q` `?Q BM `?Qp2+)V
THiXTHQiU`?Qp2+- bTHmb- H�#2H4�##`p- Hr 4 RX8 B7 �##`p44^A�Sqa^ 2Hb2 RV

2H�T 4 iBK2BiX/27�mHiniBK2`UV@iB+
THiX�tpHBM2URd3djX3- /�b?2b4(k-k)V
THiXH2;2M/UHQ+4^#2bi^V
THiX;+�UVXb2iUtH�#2H4`^0$`?Q0 f KQHfK0�j0^- vH�#2H4`^0b�Y$2[mBp Ub�&$`K B;'Uh-$`?QV@bUh-$`?QVVf_0^
THiXiB;?inH�vQmiUT�/4yXkV
THiX;+7UVXi2tiUy-y-7^iBK2, &2H�T,yXR7' b^- ?�4^H27i^- p�4^#QiiQK^- 7QMibBx24dV
THiX;+7UVXi2tiUR-y-7^i2[T, &i2[TXnnp2`bBQMnn'^- ?�4^`B;?i^- p�4^#QiiQK^- 7QMibBx24dV
THiXb�p27B;U^bTHmbnr�i2`ndyyEXT/7^V
THiX+HQb2UV

Figure 10: Calculations of s+ for water at a supercritical temperature of 700 K

21



of this figure is to demonstrate how reliable the
method is; it gracefully stops at the critical lo-
cus for supercritical isotherms and there are no
failures of any tracings. Admittedly the Peng-
Robinson EOS is not an extreme test because it
is generally well behaved (in contrast to the crit-
ical region of some of the more accurate EOS7).
But nevertheless, the tracing works well, and is
computationally efficient for this example. The
average time per trace is on the order of 40 mil-
liseconds, including the plotting, JSON conver-
sion, construction of pandas DataFrame, and so
on. For subcritical isotherms, the tracing takes
about 5 milliseconds.
Next, we trace the critical loci originating

from each of the pure species for the binary
mixture of nitrogen + ethane in Fig. 12. The
algorithm is the parametric tracing one of Deit-
ers and Bell,6 with simple Euler integration.
A trace, as described above, is initiated at
each pure component indicated by a diamond
marker. The tracer follows the critical locus
until one of the termination conditions is met.
The adaptive Runge-Kutta integrator is also
available for the integration, but not needed
(or recommended) in this case. The reader is
invited to refer to Fig. 6 from Ref. 7 for a com-
parison with the tracing approach.

22



BKTQ`i DbQM- iBK2Bi

BKTQ`i T�M/�b- MmKTv �b MT- K�iTHQiHB#XTvTHQi �b THi

THiXbivH2Xmb2U^+H�bbB+^V
BKTQ`i i2[T

h+nE 4 (RNyX8e9- R89X83R)
T+nS� 4 (98NNkyy- 8y9k3yy)
�+2Mi`B+ 4 (yXyRR- yXykk)
KQ/2H 4 i2[TX+�MQMB+�HnS_Uh+nE- T+nS�- �+2Mi`B+V
7B;- �t 4 THiXbm#THQibUR-R-7B;bBx24Ud- eV- bm#THQinFr4/B+iUT`QD2+iBQM4^j/^VV
iB+ 4 iBK2BiX/27�mHiniBK2`UV
7Q` B7HmB/ BM (y-R),

KQ/2Hy 4 i2[TX+�MQMB+�HnS_U(h+nE(B7HmB/))- (T+nS�(B7HmB/))- (�+2Mi`B+(B7HmB/))V
7Q` h BM MTXHBMbT�+2URNy- Rky- 8yV,

B7 h = h+nE(B7HmB/), +QMiBMm2

(`?QG- `?Qo) 4 KQ/2HyXbmT2`�M+n`?QGoUhV
`?Qp2+G 4 MTX�``�vU(yXy- yXy)Vc `?Qp2+G(B7HmB/) 4 `?QG
`?Qp2+o 4 MTX�``�vU(yXy- yXy)Vc `?Qp2+o(B7HmB/) 4 `?Qo
QTi 4 i2[TXhoG1PTiBQMbUVc QTiX+�H+n+`BiB+�HBiv 4 h`m2

/7 4 T�M/�bX.�i�6`�K2Ui2[TXi`�+2noG1nBbQi?2`Kn#BM�`vUKQ/2H- h- `?Qp2+G- `?Qp2+o- QTiVV
/7(^iQQn+`BiB+�H^) 4 /7X�TTHvU

H�K#/� `Qr, U�#bU`Qr(^+`BiX +QM/BiBQMb G^)(y)V I 82@3V- �tBb4RV
7B`biniQQn+`BiB+�H 4 MTX�`;K�tU/7(^iQQn+`BiB+�H^)V
/7 4 /7XBHQ+(y,U7B`biniQQn+`BiB+�H B7 7B`biniQQn+`BiB+�H 2Hb2 H2MU/7VV)
HBM2- 4 �tXTHQiUtb4/7(^h f E^)- vb4/7(^tGny f KQH2 7`�+X^)- xb4/7(^TG f S�^)fR2e-

Hr4yXk- +QHQ`4^F^V
�tXTHQiUtb4/7(^h f E^)- vb4/7(^tony f KQH2 7`�+X^)- xb4/7(^TG f S�^)fR2e-

/�b?2b4(k-k)- +QHQ`4HBM2X;2in+QHQ`UV- Hr4yXkV
2H�T 4 iBK2BiX/27�mHiniBK2`UV@iB+
�tXpB2rnBMBiU2H2p4RyX- �xBK4RjyV
�tXb2iUtH�#2H4^0h0 f E^- vH�#2H4^0tnR0 f KQH2 7`�+X^- xH�#2H4^0T0 f JS�^V
7B;Xi2tiUy-y-7^iBK2, &2H�T,yXR7' b^- ?�4^H27i^- p�4^#QiiQK^- 7QMibBx24dV
7B;Xi2tiUR-y-7^i2[T, &i2[TXnnp2`bBQMnn'^- ?�4^`B;?i^- p�4^#QiiQK^- 7QMibBx24dV
THiXiB;?inH�vQmiUT�/4yXkV
THiXb�p27B;U^S_noG1ni`�+2XT/7^V
THiXb?QrUV

Figure 11: Isothermal vapor-liquid equilibria curves traced from the pure fluids for methane +
ethane

23



100 150 200 250 300 350
T / K

100

101

102

103

p
 / 

M
Pa

time: 2.7 s teqp: 0.7.0
BKTQ`i iBK2Bi

BKTQ`i MmKTv �b MT

BKTQ`i K�iTHQiHB#XTvTHQi �b THi

THiXbivH2Xmb2U^+H�bbB+^V
BKTQ`i T�M/�b

BKTQ`i i2[T

/27 ;2in+`BiB+�Hn+m`p2UBTm`2V,
]]] _2im`M +m`p2 �b T�M/�b .�i�6`�K2 ]]]

M�K2b 4 (^LBi`Q;2M^- ^1i?�M2^)
KQ/2H 4 i2[TX#mBH/nKmHiB7HmB/nKQ/2HUM�K2b- i2[TX;2in/�i�T�i?UVV
hy 4 KQ/2HX;2inh+p2+UV(BTm`2)
`?Qy 4 MTX�``�vU(RXyfKQ/2HX;2inp+p2+UV(BTm`2)) kV
`?Qy(R@BTm`2) 4 y
Q 4 i2[TXh*�"PTiBQMbUV
QXBMBin/i 4 RXy O bi2T BM i?2 T�`�K2i2`

QX`2Hn2`` 4 R2@3
QX�#bn2`` 4 R2@8
QXBMi2;`�iBQMnQ`/2` 4 8
QX+�H+nbi�#BHBiv 4 h`m2

QXTQHBb? 4 h`m2

+m`p2CaPL 4 i2[TXi`�+2n+`BiB+�Hn�`+H2M;i?n#BM�`vUKQ/2H- hy- `?Qy- ^^- QV
/7 4 T�M/�bX.�i�6`�K2U+m`p2CaPLV
`?QiQi 4 /7(^`?Qy f KQHfK�j^)Y/7(^`?QR f KQHfK�j^)
/7(^xy f KQH2 7`�+X^) 4 /7(^`?Qy f KQHfK�j^)f`?QiQi
`2im`M /7

B7 nnM�K2nn 44 ^nnK�BMnn^,
7B;- �t 4 THiXbm#THQibUR-R-7B;bBx24Ud- eVV
iB+ 4 iBK2BiX/27�mHiniBK2`UV
7Q` BTm`2 BM (R-y),

/7 4 ;2in+`BiB+�Hn+m`p2UBTm`2V
7B`binmMbi�#H2 4 MTX�`;K�tU�/7(^HQ+�HHv bi�#H2^)V
/7 4 /7XBHQ+(y,U7B`binmMbi�#H2 B7 7B`binmMbi�#H2 2Hb2 H2MU/7VV)
HBM2- 4 THiXTHQiU/7(^h f E^)- /7(^T f S�^)fR2e- ^@^V
THiXTHQiU/7(^h f E^)XBHQ+(y)- /7(^T f S�^)XBHQ+(y)fR2e- ^/^-

+QHQ`4HBM2X;2in+QHQ`UVV

2H�T 4 iBK2BiX/27�mHiniBK2`UV@iB+
THiX;+�UVXb2iUtH�#2H4^0h0 f E^- vH�#2H4^0T0 f JS�^-

tHBK4URyy- j8yV- vHBK4UR- R2jVV
THiXvb+�H2U^HQ;^V
THiXiB;?inH�vQmiUT�/4yXkV
THiX;+7UVXi2tiUy-y-7^iBK2, &2H�T,yXR7' b^- ?�4^H27i^- p�4^#QiiQK^- 7QMibBx24dV
THiX;+7UVXi2tiUR-y-7^i2[T, &i2[TXnnp2`bBQMnn'^- ?�4^`B;?i^- p�4^#QiiQK^- 7QMibBx24dV
THiXb�p27B;U^Lkn2i?�M2n+`BiB+�HXT/7^V
THiX+HQb2UV

Figure 12: Critical curves traced from the pure fluids for nitrogen + ethane

24



7 Caveats and Limitations

While this library is already in production
use,8 two important limitations should be high-
lighted:

� The ideal-gas part of the Helmholtz en-
ergy is not included in teqp. This is be-
cause there is historically a diverse set of
terms that have been used, and including
all of them is difficult to do in a generic
manner. α(ig) (and its derivatives) may
be defined in the same manner as αr and
can be included in the teqp architecture
without much additional complication.

� Phase equilibria calculations and iterative
calculations are essential but are not in-
cluded. An example of an iterative cal-
culation is to calculate density given the
temperature, pressure, and composition.
Iterative and phase equilibrium calcula-
tions are error-prone (especially for mix-
tures), and require excellent starting val-
ues to stand a chance of converging to the
correct solution. Methods are available58

to make some parts of that calculation ex-
tremely reliable, but the generic density
rootfinding problem is non-trivial. Phase
equilibria for mixtures are even more chal-
lenging, especially so for mixtures that are
non-Type I according to the classification
of van Konynenburg and Scott.59

Conclusion

The results in this work demonstrate that the
use of numerical differentiation can allow for
the development of very flexible thermody-
namic property libraries quite closely reproduc-
ing the reference implementation in REFPROP.
The computational speed penalty is modest at
worst, and faster than the reference implemen-
tation in some cases. A few lines of code are all
that is required to implement a new thermo-
dynamic model. The derivative algorithms are
agnostic as to what model is being used, which
will allow for a new generation of very modu-
lar thermodynamic calculation libraries. The

selection of implemented algorithms give a fla-
vor of what is possible in further development
efforts.
The code of teqp is included in the NIST

data repository https://doi.org/10.18434/

mds2-2483 and the working repository of the
code is at https://github.com/usnistgov/

teqp. The release used for this paper corre-
sponds to the version indicated in the figures in
the gallery.
The vision is that the scope of teqp will

include as many equations of state as the
community would like to implement. It is
planned to develop (but probably not within
teqp) new algorithms and phase equilibrium
routines taking advantage of innovations in su-
perancillary equations30,31 and one-dimensional
rootfinding.58 This combination (along with the
isochoric tracing approaches described above),
should make for very reliable thermodynamic
calculations that are also computationally effi-
cient.

Acknowledgments

The authors thank: Tobias Loew for laying the
groundwork for the object model used in the
C++ implementation, Pierre Walker and Jef-
frey Young for detailed reviews and discussion,
Andreas Jaeger and David Zhu for help with
implementing CPA.

8 Appendix

8.1 Conventional derivatives

Mirroring Table 3.9 from Span,17 we explicitly
use molar density ρ, and R is the molar univer-
sal gas constant.60 The nomenclature uses the
derivative term defined in Eq. (2)
Pressure (p ≡ −(∂a/∂v)T ):

p

ρRT
= 1 + Λr

01 (36)

Internal energy (u = a+ Ts):

u

RT
= Λtot

10 (37)

25

https://doi.org/10.18434/mds2-2483
https://doi.org/10.18434/mds2-2483
https://github.com/usnistgov/teqp
https://github.com/usnistgov/teqp


Enthalpy (h = u+ p/ρ):

h

RT
= 1 + Λr

01 + Λtot
10 (38)

Entropy (s ≡ −(∂a/∂T )v):

s

R
= Λtot

10 − Λtot
00 (39)

Gibbs energy (g = h− Ts):

g

RT
= 1 + Λr

01 + Λtot
00 (40)

Derivatives of pressure:(
∂p

∂ρ

)
T

= RT (1 + 2Λr
01 + Λr

02) (41)

(
∂p

∂T

)
ρ

= Rρ (1 + Λr
01 − Λr

11) (42)

Isochoric specific heat (cv ≡ (∂u/∂T )v):

cv
R

= −Λtot
20 (43)

Isobaric specific heat (cp ≡ (∂h/∂T )p; see Eq.
3.56 from Span17 for the derivation):

cp
R

= −Λtot
20 +

(1 + Λr
01 − Λr

11)
2

1 + 2Λr
01 + Λr

02

(44)

Speed of Sound

w2 ≡ − v2

M

(
∂p

∂v

)
s

=
1

M

(
∂p

∂ρ

)
s

=
cp

Mcv

(
∂p

∂ρ

)
T

(45)
where M is the molar mass and ρ and v are
specific.

8.2 Isochoric derivatives (Pure
fluid)

Helmholtz energy:

a =
Ψ

ρ
(46)

Pressure:

p =

(
∂Ψ

∂ρ

)
T

ρ−Ψ (47)

Internal energy:

u =
1

ρ

(
Ψ− T

(
∂Ψ

∂T

)
ρ

)
= −T 2

ρ

(
∂(Ψ/T )

∂T

)
ρ

(48)
Enthalpy:

h =

(
∂Ψ

∂ρ

)
T

− T

ρ

(
∂Ψ

∂T

)
ρ

(49)

Entropy:

s = −1

ρ

(
∂Ψ

∂T

)
ρ

(50)

Chemical potential (equal to Gibbs energy for
pure substance):

µ =

(
∂Ψ

∂ρ

)
T

(51)

Isothermal rigidity:(
∂p

∂ρ

)
T

=

(
∂2Ψ

∂ρ2

)
T

ρ (52)

Isochoric tension:

βV ≡
(
∂p

∂T

)
ρ

=

(
∂2Ψ

∂T∂ρ

)
ρ−

(
∂Ψ

∂T

)
ρ

(53)

Isothermal compressibility:

κT ≡ − 1

Vm

(
∂Vm

∂p

)
T

=
1

ρ

(
∂ρ

∂p

)
T

=
1(

∂2Ψ

∂ρ2

)
T

ρ2

(54)
Isobaric expansivity:

αp ≡
1

Vm

(
∂Vm

∂T

)
p

=

(
∂Ψ

∂T

)
ρ

−
(

∂2Ψ

∂T∂ρ

)
ρ(

∂2Ψ

∂ρ2

)
T

(55)
Isochoric heat capacity:

cv = −T

ρ

(
∂2Ψ

∂T 2

)
ρ

(56)

26



Isobaric heat capacity:

cp = cv +
T

ρ
κTβ

2
V (57)

8.3 Mixture derivatives

Residual part of chemical potential (Eq. 7.69
of GERG-200450)

µr
i = RT

(
∂(nαr)

∂ni

)
T,V,nj

=

(
∂Ψr

∂ρi

)
T,ρj

(58)

Fugacity coefficient (Eq. 7.27 of GERG-200450)

ln(φi) =

(
∂(nαr)

∂ni

)
T,V,nj

− lnZ (59)

=
1

RT

(
∂Ψr

∂ρi

)
T,ρj

− ln (1 + Λr
01) (60)

Fugacity (Eq. 5.42 of GERG-200450)

fi = ρiRT exp

((
∂(nαr)

∂ni

)
T,V,nj

)
(61)

Literature Cited

(1) Kunz, O.; Klimeck, R.; Wagner, W.;
Jaeschke, M. The GERG-2004 Wide-
Range Equation of State for Natural Gases
and Other Mixtures ; VDI Verlag GmbH,
2007.

(2) Bell, I. H.; Wronski, J.; Quoilin, S.;
Lemort, V. Pure and Pseudo-pure Fluid
Thermophysical Property Evaluation and
the Open-Source Thermophysical Prop-
erty Library CoolProp. Ind. Eng. Chem.
Res. 2014, 53, 2498–2508, DOI: 10.1021/
ie4033999.

(3) Bell, I. H.; Jäger, A. Helmholtz Energy
Transformations of Common Cubic Equa-
tions of State for Use with Pure Fluids and
Mixtures. J. Res. Nat. Inst. Stand. Tech-
nol. 2016, 121, 238, DOI: 10.6028/jres.
121.011.

(4) Hammer, M.; Aasen, A.; Wilhelm-
sen, Ø. ThermoPack. online, 2022 (ac-

cessed March 23, 2022); https://

github.com/SINTEF/thermopack.

(5) Wilhelmsen, Ø.; Aasen, A.; Skaugen, G.;
Aursand, P.; Austegard, A.; Aursand, E.;
Gjennestad, M. A.; Lund, H.; Linga, G.;
Hammer, M. Thermodynamic Modeling
with Equations of State: Present Chal-
lenges with Established Methods. Ind.
Eng. Chem. Res. 2017, 56, 3503–3515,
DOI: 10.1021/acs.iecr.7b00317.

(6) Deiters, U. K.; Bell, I. H. Calculation of
Critical Curves of Fluid Mixtures through
Solution of Differential Equations. Ind.
Eng. Chem. Res. 2020, 59, 19062–19076,
DOI: 10.1021/acs.iecr.0c03667.

(7) Bell, I. H.; Jäger, A. Calculation of criti-
cal points from Helmholtz-energy-explicit
mixture models. Fluid Phase Equilib.
2017, 433, 159–173, DOI: 10.1016/j.

fluid.2016.10.030.

(8) Bell, I. H.; Riccardi, D.; Bazyleva, A.;
McLinden, M. O. Survey of Data and
Models for Refrigerant Mixtures Contain-
ing Halogenated Olefins. J. Chem. Eng.
Data. 2021, 66, 2335–2354, DOI: 10.

1021/acs.jced.1c00192.

(9) Deiters, U. K. A Modular Program
System for the Calculation of Thermo-
dynamic Properties of Fluids. Chem.
Eng. Technol. 2000, 23, 581–584,
DOI: 10.1002/1521-4125(200007)23:

7<581::aid-ceat581>3.0.co;2-p.

(10) Walker, P. J.; Yew, H.-W.; Riedemann, A.
Clapeyron.jl: An extensible, open-source
fluid-thermodynamics toolkit. Ind Eng.
Chem. Res. 2022, submitted,

(11) Rehner, P.; Bauer, G. Application of
Generalized (Hyper-) Dual Numbers in
Equation of State Modeling. Frontiers in
Chemical Engineering 2021, 3, DOI: 10.
3389/fceng.2021.758090.

(12) van der Waals, J. D. Over de Continuiteit
van den Gas- en Vloeistoftoestand. Ph.D.
thesis, University of Leiden, 1873.

27

http://dx.doi.org/10.1021/ie4033999
http://dx.doi.org/10.1021/ie4033999
http://dx.doi.org/10.6028/jres.121.011
http://dx.doi.org/10.6028/jres.121.011
https://github.com/SINTEF/thermopack
https://github.com/SINTEF/thermopack
http://dx.doi.org/10.1021/acs.iecr.7b00317
http://dx.doi.org/10.1021/acs.iecr.0c03667
http://dx.doi.org/10.1016/j.fluid.2016.10.030
http://dx.doi.org/10.1016/j.fluid.2016.10.030
http://dx.doi.org/10.1021/acs.jced.1c00192
http://dx.doi.org/10.1021/acs.jced.1c00192
http://dx.doi.org/10.1002/1521-4125(200007)23:7<581::aid-ceat581>3.0.co;2-p
http://dx.doi.org/10.1002/1521-4125(200007)23:7<581::aid-ceat581>3.0.co;2-p
http://dx.doi.org/10.3389/fceng.2021.758090
http://dx.doi.org/10.3389/fceng.2021.758090


(13) Outcalt, S. L.; McLinden, M. O. A Mod-
ified Benedict-Webb-Rubin Equation of
State for the Thermodynamic Properties
of R152a (1,1-difluoroethane). J. Phys.
Chem. Ref. Data 1996, 25, 605–636, DOI:
10.1063/1.555979.

(14) IAPWS, Revised Release on the IAPWS
Industrial Formulation 1997 for the Ther-
modynamic Properties of Water and
Steam, revision 7. 2012.

(15) Wagner, W.; Cooper, J. R.; Dittmann, A.;
Kijima, J.; Kretzschmar, H.-J.; Kruse, A.;
Mareš, R.; Oguchi, K.; Sato, H.;
Stöcker, I.; Šifner, O.; Takaishi, Y.; Tan-
ishita, I.; Trübenbach, J.; Willkommen, T.
The IAPWS Industrial Formulation 1997
for the Thermodynamic Properties of Wa-
ter and Steam. J. Eng. Gas Turbines
Power 2000, 122, 150–184, DOI: 10.

1115/1.483186.

(16) Dieterici, C. Ueber den kritischen Zus-
tand. Ann Phys Chem (Wiedemanns Ann)
1899, 69, 685–705.

(17) Span, R. Multiparameter Equations of
State - An Accurate Source of Thermo-
dynamic Property Data; Springer-Verlag,
Berlin, 2000.

(18) Lemmon, E. W.; Bell, I. H.; Hu-
ber, M. L.; McLinden, M. O. NIST Stan-
dard Reference Database 23: Reference
Fluid Thermodynamic and Transport
Properties-REFPROP, Version 10.0, Na-
tional Institute of Standards and Technol-
ogy. http://www.nist.gov/srd/nist23.cfm,
2018.

(19) Span, R.; Beckmüller, R.; Hielscher, S.;
Jäger, A.; Mickoleit, E.; Neumann, T.;
Pohl, S.; Semrau, B.; Thol, M. TREND.
Thermodynamic Reference and Engineer-
ing Data 5.0. 2020.

(20) Lemmon, E. W.; Jacobsen, R. T.; Penon-
cello, S. G.; Friend, D. G. Thermodynamic
Properties of Air and Mixtures of Nitro-
gen, Argon, and Oxygen from 60 to 2000

K at Pressures to 2000 MPa. J. Phys.
Chem. Ref. Data 2000, 29, 331–385, DOI:
10.1063/1.1285884.

(21) Jäger, A.; Breitkopf, C.; Richter, M. The
Representation of Cross Second Virial Co-
efficients by Multifluid Mixture Models
and Other Equations of State. Ind. Eng.
Chem. Res. 2021, 60, 9286–9295, DOI:
10.1021/acs.iecr.1c01186.

(22) Konowalow, D. Über die Dampfspannun-
gen der Flüssigkeitsgemische. Ann. Phys.
1881, 250, 34–52; 219–226, Volume also
cited as Wied. Ann. 14.

(23) Gibbs, J. W. In The Scientific Papers of
J. Willard Gibbs ; van Name, R. G., Bum-
stead, H. A., Eds.; Dover Publications,
New York, 1961; Vol. 1: Thermodynam-
ics; reprint of a book of 1906 containing
articles originally published in 1876–1878.

(24) Deiters, U. K.; Kraska, T. High-Pressure
Fluid Phase Equilibria—Phenomenology
and Computation; Supercritical Fluid Sci-
ence and Technology (E. Kiran, ed.); El-
sevier, Amsterdam, 2012; Vol. 2.

(25) Deiters, U. K. Differential equations for
the calculation of fluid phase equilibria.
Fluid Phase Equilib. 2016, 428, 164–173,
DOI: 10.1016/j.fluid.2016.04.014.

(26) Deiters, U. K. Differential equations for
the calculation of isopleths of multicom-
ponent fluid mixtures. Fluid Phase Equi-
lib. 2017, 447, 72–83, DOI: 10.1016/j.
fluid.2017.03.022.

(27) Bell, I. H.; Deiters, U. K. On the con-
struction of binary mixture p-x and T -
x diagrams from isochoric thermodynam-
ics. AIChE J. 2018, 64, 2745–2757, DOI:
10.1002/aic.16074.

(28) Runge–Kutta–Fehlberg method (RK45).
2022 (accessed September 12, 2020);
https://en.wikipedia.org/wiki/

Runge\OT1\textendashKutta\OT1\

textendashFehlberg_method.

28

http://dx.doi.org/10.1063/1.555979
http://dx.doi.org/10.1115/1.483186
http://dx.doi.org/10.1115/1.483186
http://dx.doi.org/10.1063/1.1285884
http://dx.doi.org/10.1021/acs.iecr.1c01186
http://dx.doi.org/10.1016/j.fluid.2016.04.014
http://dx.doi.org/10.1016/j.fluid.2017.03.022
http://dx.doi.org/10.1016/j.fluid.2017.03.022
http://dx.doi.org/10.1002/aic.16074
https://en.wikipedia.org/wiki/Runge\OT1\textendash Kutta\OT1\textendash Fehlberg_method
https://en.wikipedia.org/wiki/Runge\OT1\textendash Kutta\OT1\textendash Fehlberg_method
https://en.wikipedia.org/wiki/Runge\OT1\textendash Kutta\OT1\textendash Fehlberg_method


(29) Cash, J. R.; Karp, A. H. A variable-
order Runge–Kutta method for initial-
value problems with rapidly varying right-
hand sides. ACM Trans. Math. Software
1990, 16, 201–222, DOI: 10.1145/79505.
79507.

(30) Bell, I. H.; Deiters, U. K. Superancillary
Equations for Cubic Equations of State.
Ind. Eng. Chem. Res. 2021, 60, 9983–
9991, DOI: 10.1021/acs.iecr.1c00847.

(31) Bell, I. H.; Alpert, B. K. Efficient and Pre-
cise Representation of Pure Fluid Phase
Equilibria with Chebyshev Expansions.
Int. J. Thermophys. 2021, 42, 75, DOI:
10.1007/s10765-021-02824-x.

(32) Higham, N. Differentiation
With(out) a Difference. 2018 (ac-
cessed June 1, 2018); https:

//sinews.siam.org/Details-Page/

differentiation-without-a-difference.

(33) Deiters, U. K.; Bell, I. H. Precise numeri-
cal differentiation of thermodynamic func-
tions with multicomplex variables. J. Res.
NIST 2021, 126, 126033, DOI: https:

//doi.org/10.6028/jres.126.033.

(34) Fike, J.; Alonso, J. The Develop-
ment of Hyper-Dual Numbers for Ex-
act Second-Derivative Calculations. 49th
AIAA Aerospace Sciences Meeting in-
cluding the New Horizons Forum and
Aerospace Exposition. 2011; DOI: 10.

2514/6.2011-886.

(35) Fike, J. A. Multi-objective Optimization
Using Hyper-dual Numbers. Ph.D. thesis,
Stanford University, 2013.

(36) Rall, L. B. Automatic differentiation:
Techniques and applications (Lecture
Notes in Computer Science), 1st ed.;
Springer, Berlin, Germany, 1981; p 166.

(37) Güneş Baydin, A.; Pearlmutter, B. A.;
Andreyevich Radul, A.; Mark Siskind, J.
Automatic differentiation in machine
learning: A survey. J. Mach. Learn. Res.
2018, 18, 1–43.

(38) Hascoet, L.; Pascual, V. The Tape-
nade automatic differentiation tool. ACM
Transactions on Mathematical Software
2013, 39, 1–43, DOI: 10.1145/2450153.
2450158.

(39) Carpenter, B.; Hoffman, M. D.;
Brubaker, M.; Lee, D. D.; Li, P.;
Betancourt, M. The Stan Math Library:
Reverse-Mode Automatic Differentiation
in C++. CoRR 2015, abs/1509.07164,
DOI: 10.48550/arXiv.1509.07164.

(40) Bell, B. CppAD: a package for C++ al-
gorithmic differentiation. 2021 (accessed
Oct 29, 2021); http://www.coin-or.

org/CppAD.

(41) Andersson, J. A. E.; Gillis, J.; Horn, G.;
Rawlings, J. B.; Diehl, M. CasADi: a soft-
ware framework for nonlinear optimiza-
tion and optimal control. Mathematical
Programming Computation 2019, 11, 1–
36, DOI: 10.1007/s12532-018-0139-4.

(42) Griewank, A.; Juedes, D.; Utke, J. Algo-
rithm 755: ADOL-C. ACM Transactions
on Mathematical Software 1996, 22, 131–
167, DOI: 10.1145/229473.229474.

(43) Vassilev, V.; Vassilev, M.; Penev, A.;
Moneta, L.; Ilieva, V. Clad — Auto-
matic Differentiation Using Clang and
LLVM. Journal of Physics: Conference
Series 2015, 608, 012055, DOI: 10.1088/
1742-6596/608/1/012055.

(44) Hogan, R. J. Fast Reverse-Mode Au-
tomatic Differentiation using Expression
Templates in C++. ACM Transactions on
Mathematical Software 2014, 40, 1–16,
DOI: 10.1145/2560359.

(45) Leal, A. M. M. autodiff, a modern, fast
and expressive C++ library for automatic
differentiation. 2018 (accessed Oct 29,
2021); https://autodiff.github.io/.

(46) Leal, A. M. Reaktoro: A unified frame-
work for modeling chemically reactive sys-
tems. 2015 (accessed Oct 29, 2021); www.
reaktoro.org.

29

http://dx.doi.org/10.1145/79505.79507
http://dx.doi.org/10.1145/79505.79507
http://dx.doi.org/10.1021/acs.iecr.1c00847
http://dx.doi.org/10.1007/s10765-021-02824-x
https://sinews.siam.org/Details-Page/differentiation-without-a-difference
https://sinews.siam.org/Details-Page/differentiation-without-a-difference
https://sinews.siam.org/Details-Page/differentiation-without-a-difference
http://dx.doi.org/https://doi.org/10.6028/jres.126.033
http://dx.doi.org/https://doi.org/10.6028/jres.126.033
http://dx.doi.org/10.2514/6.2011-886
http://dx.doi.org/10.2514/6.2011-886
http://dx.doi.org/10.1145/2450153.2450158
http://dx.doi.org/10.1145/2450153.2450158
http://dx.doi.org/10.48550/arXiv.1509.07164
http://www.coin-or.org/CppAD
http://www.coin-or.org/CppAD
http://dx.doi.org/10.1007/s12532-018-0139-4
http://dx.doi.org/10.1145/229473.229474
http://dx.doi.org/10.1088/1742-6596/608/1/012055
http://dx.doi.org/10.1088/1742-6596/608/1/012055
http://dx.doi.org/10.1145/2560359
https://autodiff.github.io/
www.reaktoro.org
www.reaktoro.org


(47) Leal, A. M. M.; Kulik, D. A.;
Smith, W. R.; Saar, M. O. An overview of
computational methods for chemical equi-
librium and kinetic calculations for geo-
chemical and reactive transport modeling.
Pure and Applied Chemistry 2017, 89,
597–643, DOI: 10.1515/pac-2016-1107.

(48) Jakob, W.; Rhinelander, J.; Moldovan, D.
pybind11 – Seamless operability be-
tween C++11 and Python. 2016;
https://github.com/pybind/pybind11.

(49) Gross, J.; Sadowski, G. Perturbed-Chain
SAFT: An Equation of State Based on a
Perturbation Theory for Chain Molecules.
Ind. Eng. Chem. Res. 2001, 40, 1244–
1260, DOI: 10.1021/ie0003887.

(50) Kunz, O.; Wagner, W. The GERG-2008
Wide-Range Equation of State for Nat-
ural Gases and Other Mixtures: An Ex-
pansion of GERG-2004. J. Chem. Eng.
Data 2012, 57, 3032–3091, DOI: 10.

1021/je300655b.

(51) Lemmon, E. W.; McLinden, M. O.; Wag-
ner, W. Thermodynamic Properties of
Propane. III. A Reference Equation of
State for Temperatures from the Melt-
ing Line to 650 K and Pressures up to
1000 MPa. J. Chem. Eng. Data 2009, 54,
3141–3180, DOI: 10.1021/je900217v.

(52) Fornberg, B. Generation of finite differ-
ence formulas on arbitrarily spaced grids.
Math. Comp. 1988, 51, 699–699, DOI:
10.1090/s0025-5718-1988-0935077-0.

(53) Householder, A. S. The numerical treat-
ment of a single nonlinear equation;
McGraw-Hill: London, 1970.

(54) Lötgering-Lin, O.; Fischer, M.; Hopp, M.;
Gross, J. Pure Substance and Mixture
Viscosities Based on Entropy Scaling and
an Analytic Equation of State. Ind. Eng.
Chem. Res. 2018, 57, 4095–4114, DOI:
10.1021/acs.iecr.7b04871.

(55) Yang, X.; Xiao, X.; May, E. F.; Bell, I. H.
Entropy Scaling of Viscosity—III: Appli-
cation to Refrigerants and Their Mixtures.
J. Chem. Eng. Data 2021, 66, 1385–1398,
DOI: 10.1021/acs.jced.0c01009.

(56) Wagner, W.; Pruß, A. The IAPWS For-
mulation 1995 for the Thermodynamic
Properties of Ordinary Water Substance
for General and Scientific Use. J. Phys.
Chem. Ref. Data 2002, 31, 387–535, DOI:
10.1063/1.1461829.

(57) Deiters, U. K.; Bell, I. H. Calculation of
phase envelopes of fluid mixtures through
parametric marching. AIChE J. 2019, 65,
e16730, DOI: 10.1002/aic.16730.

(58) Bell, I. H.; Alpert, B. K. Exceptionally re-
liable density-solving algorithms for mul-
tiparameter mixture models from Cheby-
shev expansion rootfinding. Fluid Phase
Equilib. 2018, 476B, 89–102, DOI: 10.

1016/j.fluid.2018.04.026.

(59) van Konynenburg, P. H.; Scott, R. L.
Critical Lines and Phase Equilibria in Bi-
nary Van Der Waals Mixtures. Philos.
T. R. Soc. A 1980, 298, 495–540, DOI:
10.1098/rsta.1980.0266.

(60) Mohr, P. J.; Newell, D. B.; Taylor, B. N.;
Tiesinga, E. Data and analysis for the CO-
DATA 2017 special fundamental constants
adjustment. Metrologia 2018, 55, 125–
146, DOI: 10.1088/1681-7575/aa99bc.

30

http://dx.doi.org/10.1515/pac-2016-1107
http://dx.doi.org/10.1021/ie0003887
http://dx.doi.org/10.1021/je300655b
http://dx.doi.org/10.1021/je300655b
http://dx.doi.org/10.1021/je900217v
http://dx.doi.org/10.1090/s0025-5718-1988-0935077-0
http://dx.doi.org/10.1021/acs.iecr.7b04871
http://dx.doi.org/10.1021/acs.jced.0c01009
http://dx.doi.org/10.1063/1.1461829
http://dx.doi.org/10.1002/aic.16730
http://dx.doi.org/10.1016/j.fluid.2018.04.026
http://dx.doi.org/10.1016/j.fluid.2018.04.026
http://dx.doi.org/10.1098/rsta.1980.0266
http://dx.doi.org/10.1088/1681-7575/aa99bc


TOC Graphic

( T )

( )T

( 2

T2)

( 2
2)T

( T )

( )T

( 2

T2)

( 2
2)T

( T )

( )T
( 2

T2)

( 2
2)T( T )

( )T

( 2

T2)

( 2
2)T

( T )

( )T

( 2

T2)
( 2

2)T

( T )

( )T
( 2

T2)

( 2
2)T

( T )

( )T ( 2

T2)

( 2
2)T

( T )
( )T

( 2

T2)

( 2
2)T

( T )

( )T

( 2

T2)
( 2

2)T

( T )

( )T ( 2

T2)

( 2
2)T

( T )

( )T
( 2

T2)

( 2
2)T

( T )
( )T

( 2

T2)

( 2
2)T

( T )

( )T( 2

T2)
( 2

2)T

( T )

( )T

( 2

T2)

( 2
2)T

( T ) ( )T

( 2

T2)

( 2
2)T ( T )

( )T

( 2

T2)

( 2
2)T ( T )

( )T ( 2

T2)
( 2

2)T

( T )
( )T

( 2

T2)

( 2
2)T

( T )

( )T

( 2

T2)

( 2
2)T

( T )

( )T

( 2

T2)( 2
2)T

( T )

( )T

( 2

T2)
( 2

2)T

( T )

( )T

( 2

T2) ( 2
2)T( T )

( )T

( 2

T2) ( 2
2)T

( T )
( )T

( 2

T2)

( 2
2)T

( T )
( )T

( 2

T2)

( 2
2)T

( T ) ( )T

( 2

T2)

( 2
2)T

( T )

( )T( 2

T2)

( 2
2)T

( T )
( )T

( 2

T2)

( 2
2)T

( T )

( )T

( 2

T2)

( 2
2)T

( T )

( )T
( 2

T2)

( 2
2)T

All you need is

EOS(T, , x) !

31


	Abstract
	Introduction
	Conventional thermodynamics
	Virial coefficients
	Mixtures

	Isochoric Thermodynamics
	Concept
	Fluid phase equilibrium—thermodynamic conditions
	Fluid phase equilibria—curve tracing
	Critical curves—algebraic equations
	Critical curves—differential equations

	Differentiation
	Finite differentiation
	Into the complex plane
	Automatic differentiation

	Implementation
	C++ Implementation
	Python wrapper
	C wrapper

	Results and Examples
	Models
	Speed
	Accuracy
	Testing, Verification, and Documentation
	Gallery

	Caveats and Limitations
	Conclusion
	Acknowledgments
	Appendix
	Conventional derivatives
	Isochoric derivatives (Pure fluid)
	Mixture derivatives

	Literature Cited

