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Abstract

Applied machine learning has rapidly spread throughout the physical
sciences. In fact, machine learning-based data analysis and experimen-
tal decision-making have become commonplace. Here, we reflect on the
ongoing shift in the conversation from proving that machine learn-
ing can be used, to how to effectively implement it for advancing
materials science. In particular, we advocate a shift from a big data
and large-scale computations mentality to a model-oriented approach
that prioritizes the use of machine learning to support the ecosys-
tem of computational models and experimental measurements. We also
recommend an open conversation about dataset bias to stabilize pro-
ductive research through careful model interrogation and deliberate
exploitation of known biases. Further, we encourage the community
to develop machine learning methods that connect experiments with
theoretical models to increase scientific understanding rather than incre-
mentally optimizing materials. Moreover, we envision a future of radical
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materials innovations enabled by computational creativity tools com-
bined with online visualization and analysis tools that support active
outside-the-box thinking within the scientific knowledge feedback loop.
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1 Introduction

Since Frank Rosenblatt created Perceptron to play checkers [1], machine learn-
ing (ML) applications have been used to emulate human intelligence. The field
has grown immensely with the advent of ever more powerful computers with
increasingly smaller size combined with the development of robust statistical
analyses. These advances allowed Deep Blue to beat Grandmaster Gary Kas-
parov in chess and Watson to win the game show Jeopardy! The technology has
since progressed to more practical applications such as advanced manufactur-
ing and common tasks we now expect from our phones like image and speech
recognition. The future of ML promises to obviate much of the tedium of every-
day life by assuming responsibility for more and more complex processes, e.g.,
autonomous driving.

When it comes to scientific application, our perspective is that current
ML methods are just another component of the scientific modeling toolbox,
with a somewhat different profile of representational basis, parametrization,
computational complexity, and data/sample efficiency. Fully embracing this
view will help the materials and chemistry communities to overcome per-
ceived limitations and at the same time evaluate and deploy these techniques
with the same level of rigor and introspection as any physics-based model-
ing methodology. Toward this end, in this essay we identify four areas in
which materials researchers can clarify our thinking to enable a vibrant and
productive community of scientific ML practitioners:

1. Maintain perspective on resources required
2. Openly assess dataset bias
3. Keep sight of the goal
4. Dream big enough for radical innovation

2 Maintain perspective on resources required

The recent high profile successes in mainstream ML applications enabled by
internet-scale data and massive computation [2, 3] have spurred two lines of
discussion in the materials community that are worth examining more closely.
The first is an unmediated and limiting preference for large-scale data and
computation, under the assumption that successful ML is unrealistic for mate-
rials scientists with datasets that are orders of magnitude smaller than those
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at the forefront of the publicity surrounding deep learning. The second is a ten-
dency to dismiss brute-force ML systems as unscientific. While there is some
validity to both these viewpoints, there are opportunities in materials research
for productive and creative ML work with small datasets and for the “go big
or go home” brute-force approach.

2.1 Molehills of data (or compute) are sometimes better
than mountains

A common sentiment in the contemporary deep-learning community is that
the most reliable means of improving the performance of a deep-learning sys-
tem is to amass ever larger datasets and apply raw computational power. This
sometimes can encourage the fallacy that large-scale data and computation
are fundamental requirements for success with ML methods. This can lead to
needlessly deploying massively overparameterized models when simpler ones
may be more appropriate [4], and it limits the scope of applied ML research in
materials by biasing the set of problems people are willing to consider address-
ing. There are many examples of productive, creative ML work with small
datasets in materials research that counter this notion [5, 6].

In the small-data regime, high-quality data with informative features often
trump excessive computational power with massive data and weakly corre-
lated features. A promising approach is to exploit the bias-variance tradeoff by
performing more rigorous feature selection or crafting a more physically moti-
vated model form [7]. Alternatively, it may be wise to reduce the scope of the
ML task by restricting the material design space or use ML to solve a smaller
chunk of the problem at hand. ML tools for exploratory analysis with appro-
priate features can help us comprehend much higher dimensional spaces even
at an early stage of the research, which may be helpful to have a bird’s-eye
view on our target. For example, cluster analysis can help researchers identify
representative groups in large high-throughput datasets, making the process
of formulating hypotheses more tractable.

There are also specific ML disciplines aimed at addressing the well-known
issues of small datasets, dataset bias, noise, incomplete featurization, and over-
generalization, and there has been some effort to develop tools to address
them. Data augmentation and other regularization strategies can allow even
small datasets to be treated with large deep-learning models. Another common
approach is transfer learning, where a proxy model is trained on a large dataset
and adapted to a related task with fewer data points [8–10]. Chen et al. [11]
showed that multi-fidelity graph networks could be used in comparatively inex-
pensive low-fidelity calculations to bolster the accuracy of ML predictions for
expensive high-fidelity calculations. Finally, active learning methods are now
being explored in many areas of materials research, where surrogate models are
initialized on small datasets and updated as predictions are used to guide the
acquisition of new data generation, often in a manner that balances exploration
with optimization [12]. Generally a solid understanding of the uncertainty in
the data is critical for success with these strategies, but ML systems can lead
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us to some insights or perhaps serve as a guide for optimization which might
otherwise be intractable.

We assert that the materials community would generally benefit from
taking a more model-oriented approach to applied ML, in contrast to the
popular prediction-oriented approach that many method-development papers
take. With the current prediction-oriented application of ML to the physical
sciences, the primary intent of the model is to obtain property predictions,
often for screening or optimization workflows. We propose that the community
would be better served to instead use ML as a means to generate scientific
understanding, using, for instance, inference techniques to quantify physical
constants from experiments. To achieve the goals of scientific discovery and
knowledge generation, predictive ML must often play a supporting role within
a larger ecosystem of computational models and experimental measurements.
It can be productive to reassess [13] the predictive tasks we are striving to
address with ML methods; more carefully thought out applications may pro-
vide more benefit than simply collecting larger datasets and training higher
capacity models.

2.2 Massive computation can be useful but is not
everything

On the other hand, characterizing brute computation as “unscientific” can lead
to missed opportunities to meaningfully accelerate and enable new kinds or
scales of scientific inquiry [14]. Even without investment in massive datasets
or specialized ML models, there is evidence that simply increasing the scale
of computation applied can help compensate for small datasets. For example,
He et al. [15] show that simply by increasing the number of training itera-
tions, large-object detection and segmentation models trained from random
initialization can match the performance of the conventional transfer learning
approach. In many cases, advances enabled in this way do not directly con-
tribute to scientific discovery or development, but they absolutely change the
landscape of feasible scientific research by lowering the barrier to exploration
and increasing the scale and automation of data analysis.

A perennial challenge in organic chemistry is predicting the structure of
proteins, but recent advances in learned potential methods [16] have pro-
vided paradigm-shifting improvements in performance made possible by sheer
computational power. In addition, massive computation can enable new sci-
entific applications through scalable automated data analysis systems. Recent
examples include phase identification in electron backscatter diffraction [17]
and X-ray diffraction [18], and local structural analysis via extended x-ray
absorption fine structure [19, 20]. These ML systems leverage extensive pre-
computation through the generation of synthetic training data and training
of models; this makes online data analysis possible, removing barriers to more
adaptive experiments enabled by real-time decision making.

In light of the potential value of large-scale computation in advancing fun-
damental science, the materials field should make computational efficiency [21]
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an evaluation criterion alongside accuracy and reproducibility [22]. Compar-
ison of competing methods with equal computational budgets can provide
insight into which methodological innovations actually contribute to improved
performance (as opposed to simply boosting model capacity) and can provide
context for the feasibility of various methods to be deployed as online data
analysis tools. Careful design and interpretation of benchmark tasks and per-
formance measures are needed for the community to avoid chasing arbitrary
targets that do not meaningfully facilitate scientific discovery and development
of novel and functional materials.

3 Openly assess dataset bias

3.1 Acknowledging dataset bias

It is widely accepted that materials datasets are distinct from the datasets
used to train and validate ML systems for more “mainstream” applications in
a number of ways. While some of this is hyperbole, there are some genuine
differences that have a large impact on the overall outlook for ML in materials
research. For instance, there is a community-wide perception that all ML prob-
lems involve data on the scale of the classic image recognition and spam/ham
problems. While there are over 140,000 labeled structures in the Materials
Project Database[23] and the MNIST[24] dataset contains about twice that
amount, other popular ML benchmark datasets are much more modest in size.
For instance, the Iris Dataset contains only 50 samples each of three species
of Iris and is treated as a standard dataset for evaluating a host of clustering
and classification algorithms. As noted above dataset size is not necessarily
the major hurdle for the materials science community in terms of developing
and deploying ML systems; however, the data, input representation, and task
must each be carefully considered.

Viewed as a monolithic dataset, the materials literature is an extremely
heterogeneous multiview corpus with a significant fraction of missing entries.
Even if this dataset were accessible in a coherent digital form, its diversity and
deficiencies would pose substantial hurdles to its suitability for ML-driven sci-
ence. Most research papers narrowly focus on a single or a small handful of
material instances, address only a small subset of potentially relevant prop-
erties and characterization modalities, and often fail to adequately quantify
measurement uncertainties. Perhaps most importantly, there is a strong sys-
temic bias towards positive results [25]. All of these factors negatively impact
the generalization potential of ML systems.

Two aspects of publication bias play a particularly large role: domain bias
and selection bias (Fig. 1b) . Domain bias results when training datasets do
not adequately cover the input space. For example, Jia et al. [26] recently
demonstrated that the “tried and true” method of selecting reagents following
previous successes artificially constrained the range of chemical space searched,
providing the ML with a distorted view of the viable parameter space. Severe
domain bias can lead to overly optimistic estimates of the performance of ML
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systems [27, 28] or in the worst case even render them unusable for real-world
scientific application [29, 30].

Selection bias arises when some external factor influences the likelihood of
a data points inclusion in the dataset. In scientific research, a major source
of such selection bias is the large number of unreported failures (Fig. 1a).
For instance the Landolt-Bornstein collection of ternary amorphous alloys lists
71% of the alloys as being glass formers while the actual occurence of glass-
forming compounds is estimated to be about 5% [31]. This further complicates
the already challenging task of learning from imbalanced datasets by skewing
the prior probability of glass formation through dataset imbalance. Schrier et
al. [32] reported on how incorporating failed experiments into ML models can
actually improve upon the overall predictive power of a model.

Furthermore, the annotations or targets used to train ML systems do not
necessarily represent true physical ground truth. As an example, in the field
of metallic glasses the full width half-maximum (FWHM) of the strongest
diffraction peak at low wavevector is often used to categorize thin-film material
as being metallic glass, nanocrystalline, or crystalline. Across the literature
the FWHM value used as the threshold to distinguish between the first two
classes varies from 0.4 to 0.7 Å−1 (with associated uncertainties) depending
upon the research group. Although compendiums invariably capture the label
ascribed to the samples, they almost ubiquitously omit the threshold used for
the classification, the uncertainty in the measurement of the FWHM, and the
associated synthesis and characterization metadata. Comprehensive studies
often report only reduced summaries for the datasets presented and include
full details only for a subset of “representative data.” These shortcomings
are common across the primary materials science literature. Given that even
experts can reasonably disagree on the interpretation of experimental results,
the lack of access to primary datasets prevents detailed model critique, posing
a substantial impediment to model validation [29, 33]. The push for creating
F.A.I.R. (Findable, Accessible, Interoperable, and Reusable [34]) datasets with
human/computer readable data structures notwithstanding, most of the data
and meta-data for materials that have ever been made and studied have been
lost to time.

Systematic errors in datasets are not restricted to experimental results
alone. Theoretical predictions from high-throughput density functional theory
(DFT) databases, for example, are a valuable resource for predicted material
(meta-) stability, crystal structures, and physical properties, but DFT compu-
tations contain several underlying assumptions that are responsible for known
systematic errors, e.g., calculated band gaps. DFT experts are well aware of
these limitations and their implications for model building; however, scien-
tists unfamiliar with the field may not be able to reasonably draw conclusions
about the potential viability of a model’s predictions given these limitations.
Discrepancy between DFT and experimental data will expand as systems get
increasingly more complex, a longstanding trend in applied materials science.
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A heterogeneous model, in particular, may cause large uncertainty depend-
ing on the complexity of the input structure, and many times little to no
information is detailed about the structure or the rationale for choosing it.

Finally, even balanced datasets with quantified uncertainties are not guar-
anteed to generate predictive models if the features used to describe the
materials and/or how they are made are not sufficiently descriptive. Holis-
tically describing the synthesis, composition, microstructure, macrostructure
of existing materials for their property/performance (Fig. 1b) is a challeng-
ing problem and the feature set used (e.g., microstructure 2-point correlation,
compositional descriptors and radial distribution functions for functional mate-
rials, and calculated physical properties) is largely community driven. This
presupposes that we know and can measure the relevant features during our
experiments. Often identifying the parameters that strongly influence mate-
rials synthesis and the structural aspects highly correlated to function is a
matter of scientific inquiry in and of itself. For example, identifying the impor-
tance of temperature in cross-linking rubber or the effect of moisture in the
reproducible growth of super-dense, vertically aligned single-walled carbon
nanotubes requires careful observation and lateral thinking to connect seem-
ingly independent or unimportant variables. If these parameters (or covariate
features, e.g., chemical vapor deposition system pump curves) are not captured
from the outset, then there is no hope of algorithmically discovering a causal
model, and weakly predictive models are likely to be the best case output.

There is no silver bullet that will solve the issue of dataset bias, but there
are several concrete steps that can be taken to begin addressing it. For instance,
as a community we can commit to re-balancing the data pool against selection
bias by including in our supplementary material one failed (or subpar) result
for every successful result in the main text. Domain bias is best addressed by
first acknowledging its existence and then encouraging researchers (possibly
through funding) to spend time exploring outside of the well known regions
within their respective fields (perhaps resulting in additional data points to
address selection bias). In terms of the need to capture all relevant material
features, we accept that (happily) new insights will constantly crop up, and
when they do, public datasets should be updated to contain the newly impor-
tant features. Even if the new field is left empty for historical records, its
existence will draw attention to its relevance for model builders. Finally, indi-
viduals applying ML in their research should analyze and discuss sources of
bias in the data used to train and evaluate models and their potential impact
on reported results.

3.2 Productivity in spite of dataset bias

Bias in historical and as-collected datasets should be acknowledged, but it
does not entirely preclude their use to train an ML targeted towards scientific
inquiry. Instead one can continue to gain productive insights from ML by
taking the appropriate approach and thinking analytically about the results
of the model.
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Especially with small datasets, it is important to characterize the extent of
dataset bias and perform careful model performance analysis to obtain real-
istic estimates of the generalization of ML models. Rauer and Bereau [28]
provide compelling examples of these effects of dataset bias by comparing the
empirical distribution in chemical space of three similar molecular property
datasets. Dataset bias can cause common measures of a model’s generalization
ability to become overconfident; typically generalization ability is measured
through cross-validation where a portion of the data is withheld from the
training data. Recent research in the chemical and materials informatics liter-
ature has focused on developing dataset unbiasing techniques that aim to find
cross-validation splits that more faithfully serve as a check against overfitting.
For example, the Asymmetric Validation Embedding method [27] quantifies
the bias of a dataset split by using a nearest-neighbor model to memorize the
training data. If the nearest-neighbor lookup can achieve a good validation
accuracy, then the training and validation sets are deemed to be too similar.
Searching for cross-validation splits that minimize this bias metric can improve
the robustness of the benchmark, but the Asymmetric Validation Embedding
metric is specific to classification tasks. In contrast, the leave-one-cluster-out
cross-validation [35] is more general, using only distances in the input space
to define cross-validation groups to reduce information leakage between folds.
Extending these kinds of debiasing methods to additional material classifica-
tion and prediction tasks will have an outsized impact on applied artificial
intelligence for practical scientific advances and discoveries because by nature
these goals depend on excellent generalization and extrapolation performance.

One method for maintaining “good” features and models is to adapt an
active human intervention in the ML loop. For example, we have recently
demonstrated that Random Forest models that are tuned to aggressively maxi-
mize only cross-validation accuracy may produce low-quality, unreliable feature
ranking explainability [36]. Carefully tracking which features (and data points)
the model is most dependent on for its predictions allows a researcher to
ensure that the model is capturing physically relevant trends, identify new
potential insight into material behavior, and spot possible outliers. Similarly,
when physics-based models are used to generate features and training data
for ML models, subsequent comparison of new predictions to theory-based
results offers the opportunity for improvement of both models [37]. The pre-
ceding examples are all a human-initiated post-hoc investigation of model
outputs. Kusne et al. [38] recently demonstrated the inverse example where
the ML model can request expert input, such as performing a measurement or
calculation, that is expected to lower predictive uncertainties.

Dimensionality reduction tools and latent space models are useful to assess
the general distribution of a data set. Visualizations from such models can
illustrate potential bias and unequal distributions of a dataset by inspecting
the internal structure/distribution and the true dimensionality. For instance,
De Breuck et al. [39] used principle component analysis as a method for inves-
tigating the role of dataset bias by investigating the density of data points with



Springer Nature 2021 LATEX template

Big Data vs Big Science 9

scores plots. Gomez-Bombarelli et al. [40] have used variational autoencoders
to identify sparsely sampled regions in the parameter space by pushing them
towards the outside of the latent space distribution. They demonstrated that
variational autoencoders can highlight when the model is incapable of recog-
nizing certain classes, indicating the data is outside of the distribution that
the model was trained on. A holistic analysis helps gain knowledge about both
the ML models and the datasets and thus may lead to more effective research
steps.

A culture of careful model criticism is also important for robust applied
ML research [41]. A narrow focus on benchmark tasks can lead to false incre-
mental progress, where, over time, models begin overfitting to a particular
test dataset and then lack generalizability beyond the initial dataset. Recht
et al. [42] demonstrated that a broad range of computer vision models suf-
fer from this effect by developing extended test sets for the CIFAR-10 and
ImageNet datasets extensively used in the community for model development.
This can make it difficult to reason about exactly which methodological inno-
vations truly contribute to generalization performance. Because many aspects
of ML research are empirical, carefully designed experiments are needed to
separate genuine improvements from statistical effects, and care is needed to
avoid post-hoc rationalization (Hypothesizing After the Results are Known
(HARK) [43]).

That there is historical dataset bias is both unavoidable and unresolvable,
but once identified this bias does not necessarily constrain the search for new
materials in directions that directly contradict the bias [44]. For instance, Jia
et al. [26] identified anthropogenic biases in the design of amine-templated
metal oxides, in that a small number of amine complexes had been used for
a vast majority of the literature. Their solution was to perform 548 randomly
generated experiments to demonstrate that a global maximum had not been
reached but also to erode the systemic data bias their models observed. This
is not to say that such an approach is a panacea for dataset or feature set bias
as such experiments are still designed by scientists carrying their own biases
(e.g. using only amines) and may suffer from uncaptured (but important!)
features. Of course, a question remains how to best remove human bias from
the experimental pipeline.

One potential path forward is deployment of automated systems that per-
form the ultimate selection of the experiment to be performed and manage
data acquisition, functionally to attack the small dataset problem by using
automation to fill in the cracks. Using these tools and adopting objective func-
tions that permit random or maximum expected improvement exploration may
help researchers avoid biasing their research toward particular solutions, allow-
ing them to focus more on higher-level problem formulation and hypothesis
specification. Currently, model prototyping often is done in notebook comput-
ing environments, which are convenient for exploring new ideas but make it
easy to create unsustainable software. More accessible tools for exploring new
ideas while maintaining traceability, reproducibility, flexibility, interactivity,
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and integration with laboratory equipment will help researchers focus on goal
setting, intuition and insights for featurization, and data curation. This is anal-
ogous to ML life-cycle management [45], which is used in industrial settings
to ensure traceability of predictions to specific models formulations.

4 Keep sight of the goal

While the implementation of ML in materials science is often focused on a
push for better accuracy and faster calculations, these are not always the only
objectives or even the most important ones. For the ML novice it is helpful to
remember to keep the scientific aim at the forefront when selecting a model
and then designing training and validation procedures. Consider the trade-
off between accuracy and discovery. If one is optimizing the pseudopotentials
to use for DFT [46, 47], then design may be centered around accuracy of
predicting material characteristics when compared to an existing benchmark
set, and this may lead to better predictions for other known compounds. On
the other hand, one may want to sacrifice accuracy for exploratory studies. The
aforementioned high-accuracy model may fail to predict the novel combination
of physical properties of an undiscovered compound. In fact, even if the phase
had been recently identified and included in the training set, the model may
not be trustworthy due to the inherent lack of benchmark datasets whenever
new science appears.

There are clearly cases where ML is the obvious choice to accelerate
research, but there can be concerns about the suitability of ML to answer
the relevant question. Many applied studies focus only on physical or chem-
ical properties of materials and often fail to include parameters relating to
their fundamental utility such as reproducibility, scalability, stability, produc-
tivity, safety, or cost [48]. While humans may not be able to find correlations
or patterns in high-dimensional spaces, we have rich and diverse background
knowledge and heuristics; we have only just begun the difficult work of invent-
ing ways of building this knowledge into ML systems. In addition, for domains
with small datasets, limited features, and a strong need for higher-level infer-
ence rather than a surrogate model, ML should not necessarily be the default
approach. A more traditional approach may be faster due to the error in the
ML models associated with sample size, and heuristics can play a role even
with larger datasets [49].

One alternative is to employ a hybrid method which may include a Bayesian
methodology to analysis [50] or may use ML to guide the work through selec-
tive intervention [51]. ML is only a means to model data, and a good fit to the
dataset is no guarantee that the model will be useful since it may have little
to no relationship to actual science as it attempts to emulate apparent corre-
lations between the features and the targets (Fig. 2). To provide some insight
into this issue, Lee and Lundberg [52] developed Shapley additive explanations
based on game theory to assess the impact of each feature on ML predictions.
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A corollary is that any ML predictions, especially when working with small
datasets, may be unphysical. Again, we stress that it doesn’t imply that we
should never use ML for small datasets. As demonstrated by Maffettone et
al. [53], non-negative matrix factorization can be constrained to provide pre-
dictions only within physical spaces. In any case, we need to employ ML tools
judiciously and understand their limitations in the context of our scientific
goals. For instance, while most ML models are reasonably good at interpola-
tion [54], ML is not nearly as robust when used for extrapolation, although
this can be mitigated to some extent by including rigorous statistical analyses
on the predictions [55].

A discussion of errors and failure modes can help one understand the
bounds of the validity of any ML analysis although it is often lacking or
limited. An honest discourse includes not only principled estimates of model
performance and detailed studies of predictive failure modes but also notes
how reproducible the results within and across research groups. Explanation of
model failure modes is required for validating the use of ML for any application.

Finally, one of the biggest potential pitfalls that can occur, even for large,
well-curated datasets, is that one can lose sight of the goal by focusing on the
accuracy of the model rather than using it to learn new science. There is a
particular risk of the community spending disproportionate effort incremen-
tally optimizing models to overfit against benchmark tasks [42], which may
or may not even truly represent meaningful scientific endeavors in themselves.
We note that in the case of the MatBench benchmark dataset and ML chal-
lenge [56], many of the top performing models are neural networks. While
these models have impressive predictive capability their interpretability (and
thus their ability to inform scientific progress) is limited. This is also the case
for the Open Catalyst Challenge [57].

The objective should not be to identify the one algorithm that is good at
everything but rather to develop a more focused effort that addresses a specific
research question. For ML to reach its true potential to transform research and
not just serve as a tool to expedite materials discovery and optimization, it
needs to help provide a means to connect experimental and theoretical results
instead of simply serving as a convenient vehicle to describe them.

5 Dream big enough for radical innovation

To date, ML has increased its presence in materials science for mainly three
applications: 1) automating data analysis that used to be done manually; 2)
serving as lead-generation in a materials-screening funnel, illustrated by the
Open Quantum Materials Database and Materials Project; and 3) optimizing
existing materials, processes, and devices in a broadly incremental manner.
While these applications are critically important in this field, radical innova-
tion historically has often been accomplished outside of the context of these
three general research frameworks, driven by human interests or serendipity
along with stubborn trial and error. For instance, graphene was first isolated
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during Friday night experiments when Geim and Novoselov would try out
experimental science that was not necessarily linked to their day jobs. Esco-
bar et al. [58] discovered that peeling adhesive tape can emit enough x-rays to
produce images. Shirakawa [59] discovered a conductive polyacetylene film by
accidentally mixing doping materials at a concentration a thousand times too
high.

Design research has argued that every radical innovation investigated was
done without careful analysis of a person’s or even a society’s needs [60].
If this is the case, an ultimate question about ML deployment in materials
science would be, can ML help humans make the startling discovery of “novel”
materials and eventually new science? The new science often relies on a discrete
discovery possibly outside the context of an existing theory, which is noticeably
different from current ML applications which tackle problems like chess and
Jeopardy!.

According to a proposed categorization in design research [60], one can
position their research based on scientific and application familiarity (Fig. 3a).
Here, incremental areas (blue region) can provide easier data acquisition and
interpretation of results but may hinder new discovery. In contrast, an unex-
plored area may more likely provide such unexpected results but presents a
huge risk of wasting research resources due to the inherent uncertainty. Self-
aware resource allocation and inter-area feedback will be needed to balance
novelty with the probability of successful research outcomes. Although there
is currently a lack of ML methods that can directly navigate one in the radi-
cal change/radical application region to discover new science, we expect that
there are methodologies that can harness ML to increase the chance of radical
discovery.

5.1 Active outside-the-box exploration driven by
ML-assisted knowledge acquisition

Human interests motivate outside-the-box research that may lead to a radi-
cal discovery, and these interests are fostered by theoretical or experimental
knowledge acquisition. Therefore, any applied ML and automated research
systems may contribute to discrete discovery by accelerating the knowledge
feedback loop (Fig. 3b). Such ML-involved research loop can include a proposal
of hypotheses, theoretical and experimental examination, knowledge extrac-
tion, and generalization, which may lead to an opportunity for radical thinking.
Analysis and online visualization tools can help better interpret the result
and mechanism of ML-involved research, which facilitates new hypotheses and
generalization through knowledge extraction. Such interactive analysis/visual-
ization can be implemented in various steps of the research loop such as feature
selection, ML model investigation, and ML interpretation.

For ML to play a meaningful role in expediting this loop, one also should
maintain exploratory curiosity at each step and be inspired or guided by
any outputs while attentively being involved in the loop. Additionally, at the
very beginning of proof-of-concept research, either in a current research loop
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or outside-the-box search, the fear of reproducibility should not prevent the
attempt at new ideas because the scientific community needs to integrate
conflicting observations and ideas into a coherent theory [61].

One can harken back to Delbruck’s principle of limited sloppiness [62],
which reminds us that our experimental design sometimes tests unintended
questions, and hidden selectivity requires attention to abnormality. In this
context, ML may help us notice the anomaly or even hidden variables with a
rigorous statistical procedure, leading to new pieces of knowledge and outside-
the-box exploration. For instance, Nega et al. [63] used automated experiments
and statistical analysis to clarify the effect of trace water (a hidden variable)
on crystal/domain growth of halide perovskite (an important property), which
had often been communicated only in intra-lab conversation. Since such cor-
relation analysis can only shed light on a domain where features are input,
researchers still need comprehensive experimental records containing both data
and metadata to be fed, possibly regardless of their initial interests. Also, an
unbiased and flexible scientific attitude based upon observation may be crucial
to reforming a question after finding the abnormality.

5.2 Deep generative inverse design to assist in creating
material concepts

Functionality-oriented inverse design [64] is an emerging approach for search-
ing chemical spaces [65] for small molecules and possibly solid-state com-
pounds [66]. Here, generative models simultaneously learn how to map existing
materials to a set of few key variables and how to generate “new” materi-
als from those key “latent” variables. One can then optimize a material by
finding latent variables that should maximize the property and then generat-
ing a new material from those coordinates. Novel compounds likely to have
desired properties can then be sampled from the generative model [67]. While
the design spaces, such as the 166 billion molecules mapped by chemical
space projects [68], are far beyond the human capability to understand them
comprehensively, ML may distill patterns connecting functionalities and com-
pound structures spanning the space. This approach can be a critical step in
conceptualizing materials design based upon desired functionalities and fur-
ther accelerating the ML-driven research loop. One application of such inverse
design is to create a property-first optimization loop which includes defin-
ing a desired property, proposing a material and structure for that property,
validating the results with (automated) experiments, and refining the model.

While these generative methods may start to approach creativity, they
still explicitly aim to learn an empirical distribution based on the available
data. Therefore, extrapolation outside of the current distribution of known
materials is not guaranteed to be productive. For instance, these methods
would probably not generate a carbon nanotube given only pre-nanotube-era
structures for training or generate ordered superlattices if there is none in the
training data. In addition, these huge datasets are mainly constructed based
on simulation, and we need to be careful about a gap between simulated and
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actual experimental data as discussed previously. Still, a new concept extracted
from inverse design may inspire researchers to jump into a new discrete subfield
of material design by actively interpreting the abstracted property-structure
relationship.

5.3 Creative artificial intelligence for materials science

The essence of scientific creativity is the production of new ideas, questions,
and connections [69]. The era of artificial intelligence as an innovative investi-
gator in this sense has yet to arrive. However, since human creativity has been
captured by actively learning and connecting dots highlighted by our curios-
ity, it may be possible that machine “learning” can be as creative as humans
in order to reach radical innovation.

While conventional supervised natural language processing [70] has
required large hand-labeled datasets for training, a recent unsupervised learn-
ing study [71] indicates the possibility of extracting knowledge from literature
without human intervention to identify relevant content and capturing pre-
liminary materials science concepts such as the underlying structure of the
periodic table and structure-properties relationships. This unsupervised learn-
ing was demonstrated by encoding latent literature into information-dense
word embeddings, which recommended some materials for a specific appli-
cation ahead of human discovery. Since the amount of currently existing
literature is too massive for human cognition, such generative artificial intel-
ligence systems may be useful to suggest a specific design or concept given
appropriately defined functionalities.

Beyond latent variable optimization, one may consider computational cre-
ativity, which is used to model imagination in fields such as the arts [72],
music [73], and gaming. This endeavor may start with finding a vector space to
measure novelty as a distance [74]. A novelty-oriented algorithm searches the
space for a set of distant new objects that is as diverse as possible as to max-
imize novelty instead of an objective function [75]. Since there would be some
bias for measuring the distance along with exploratory space, deep learning
novelty explorer (DeLeNox) was recently proposed [76] as a means to dynam-
ically change the distance functions for improved diversity. These approaches
could be applied to materials science to diversify research directions and help
us pose and consider novel materials and ideas though measuring novelty may
be subjective and most challenging for the community, and one always needs
to be mindful of ethical and physical materials constraints.

6 Outlook

Machine learning has been effective at expediting a variety of tasks, and the
initial stage of its implementation for materials research has already confirmed
that it has great promise to accelerate science and discovery [77]. To realize
that full potential, we need to tailor its usage to answer well defined ques-
tions while keeping perspective of the limits of the resources needed and the
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bounds of meaningful interpretation of the resulting analyses. Eventually, we
may be able to develop ML algorithms that will consistently lead us to new
breakthroughs. In the meantime, a complementary team of humans, ML, and
robots has already begun to advance materials science.
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Figures

Fig. 1 Impact of datasets and feature sets in implementing ML for materials
research (a) Materials literature with a heterogeneous dataset due to domain bias and
selection bias. Domain bias results when training datasets do not adequately cover the
research space. Selection bias arises when some external factors such as questionability and
inexplicability restrict the likelihood of a data inclusion in the datasets; such data can be
either experimental, theoretical, or computational. (b) Holistic description of the synthesis,
composition, microstructure, and macrostructure of materials, which are related to material
properties and performance. Identifying a sufficient feature space with essential variables
such as synthesis parameters requires careful observation and lateral thinking.



Springer Nature 2021 LATEX template

Big Data vs Big Science 17

Fig. 2 Comparison of theoretical and ML Models of the Hall-Petch effect The
success of a given ML model may have little or no relationship to the actual physical pro-
cesses as the model is merely interpolating between observations. For example, a Gaussian
Process model can “capture” the changeover in the behavior of the flow stress in met-
als from being dependent on grain boundary density in large-grain metals [78] to being
dominated by grain boundary sliding in nanocrystalline alloys [79] even though the model
is unaware of either mechanism. However, outside the range of acquired data the lack of
encoding scientific understanding results in rapidly increasing uncertainties, even in well-
calibrated systems. Code for reproducing this figure is available at https://github.com/
usnistgov/ml-materials-reflections [80].

Fig. 3 Use of outside-the-box thinking in advancing scientific research with ML
(a) Conceptual research domain defined by a scientific concept and an applicational goal
where the arrows represent a radical shift in research driven by outside-the-box thinking
and/or creative artificial intelligence (AI) (b) Machine-learning-involved research loop in
conjunction with possible generalization and outside-the-box thinking pathways. Blue arrows
illustrate research flows in an incremental domain, green arrows show knowledge-based new
research steps, and orange arrows illustrate radical shifts based on new hypotheses and
generalizations in the loop.

https://github.com/usnistgov/ml-materials-reflections
https://github.com/usnistgov/ml-materials-reflections
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mation potentials: The accuracy of quantum mechanics, without the
electrons. Physical Review Letters 104(13) (2010). https://doi.org/10.
1103/physrevlett.104.136403. URL https://doi.org/10.1103/physrevlett.
104.136403

[48] E.A. Olivetti, J.M. Cullen, Toward a sustainable materials system. Sci-
ence 360(6396), 1396–1398 (2018). Discusses materials research in a
more general context than simply material properties.

https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1145/3317287.3328534
https://doi.org/10.1145/3317287.3328534
http://arxiv.org/abs/1904.07633
{1904.07633}
{1904.07633}
https://doi.org/10.1021/acscatal.0c04629
https://doi.org/10.1021/acscatal.0c04629
https://doi.org/10.1021/acscatal.0c04629
https://doi.org/10.1109/SEAA53835.2021.00050
https://doi.org/10.1109/SEAA53835.2021.00050
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevlett.104.136403


Springer Nature 2021 LATEX template

24 Big Data vs Big Science

[49] J. George, G. Hautier, Chemist versus machine: Traditional knowledge
versus machine learning techniques. Trends in Chemistry 3(2), 86–95
(2021). https://doi.org/10.1016/j.trechm.2020.10.007. URL https://doi.
org/10.1016/j.trechm.2020.10.007. Discussion of tradeoffs of conven-
tional research compared to AI-assisted techniques and how the
two can be synergistically merged.

[50] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian data analysis
(Chapman and Hall/CRC, 1995)

[51] M.L. Hutchinson, E. Antono, B.M. Gibbons, S. Paradiso, J. Ling,
B. Meredig, Overcoming data scarcity with transfer learning. arXiv
preprint arXiv:1711.05099 (2017)

[52] S.M. Lundberg, S.I. Lee, A unified approach to interpreting model
predictions. Advances in neural information processing systems 30 (2017)

[53] P.M. Maffettone, A.C. Daly, D. Olds, Constrained non-negative matrix
factorization enabling real-time insights of in situ and high-throughput
experiments. Applied Physics Reviews 9, 041,410 (2021). https://doi.
org/10.1063/5.0052859. URL https://doi.org/10.1063/5.0052859

[54] J.H. Friedman, The elements of statistical learning: Data mining, infer-
ence, and prediction (springer open, 2017)

[55] K. Tran, W. Neiswanger, J. Yoon, Q. Zhang, E. Xing, Z.W. Ulissi,
Methods for comparing uncertainty quantifications for material property
predictions. Machine Learning: Science and Technology 1(2), 025,006
(2020). https://doi.org/10.1088/2632-2153/ab7e1a. URL https://doi.
org/10.1088/2632-2153/ab7e1a

[56] A. Dunn, Q. Wang, A. Ganose, D. Dopp, A. Jain, Benchmarking materials
property prediction methods: the matbench test set and automatminer
reference algorithm. npj Computational Materials 6(1), 1–10 (2020)

[57] L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere,
K. Tran, J. Heras-Domingo, C. Ho, W. Hu, A. Palizhati, A. Sriram,
B. Wood, J. Yoon, D. Parikh, C.L. Zitnick, Z. Ulissi, Open catalyst
2020 (oc20) dataset and community challenges. ACS Catalysis 11(10),
6059–6072 (2021). https://doi.org/doi-org.ezproxy.rowan.edu/10.1021/
acscatal.0c04525. URL https://pubs-acs-org.ezproxy.rowan.edu/doi/abs/
10.1021/acscatal.0c04525

[58] K. Sanderson, Sticky tape generates x-rays. Nature (2008). https:
//doi.org/10.1038/news.2008.1185. URL https://doi.org/10.1038/news.
2008.1185

https://doi.org/10.1016/j.trechm.2020.10.007
https://doi.org/10.1016/j.trechm.2020.10.007
https://doi.org/10.1016/j.trechm.2020.10.007
https://doi.org/10.1063/5.0052859
https://doi.org/10.1063/5.0052859
https://doi.org/10.1063/5.0052859
https://doi.org/10.1088/2632-2153/ab7e1a
https://doi.org/10.1088/2632-2153/ab7e1a
https://doi.org/10.1088/2632-2153/ab7e1a
https://doi.org/doi-org.ezproxy.rowan.edu/10.1021/acscatal.0c04525
https://doi.org/doi-org.ezproxy.rowan.edu/10.1021/acscatal.0c04525
https://pubs-acs-org.ezproxy.rowan.edu/doi/abs/10.1021/acscatal.0c04525
https://pubs-acs-org.ezproxy.rowan.edu/doi/abs/10.1021/acscatal.0c04525
https://doi.org/10.1038/news.2008.1185
https://doi.org/10.1038/news.2008.1185
https://doi.org/10.1038/news.2008.1185
https://doi.org/10.1038/news.2008.1185


Springer Nature 2021 LATEX template

Big Data vs Big Science 25

[59] X. Guo, Conducting polymers forward. Nature Materials 19(9), 921–
921 (2020). https://doi.org/10.1038/s41563-020-0792-7. URL https://
doi.org/10.1038/s41563-020-0792-7

[60] D.A. Norman, R. Verganti, Incremental and radical innovation: Design
research vs. technology and meaning change. Design Issues 30(1), 78–96
(2014). https://doi.org/10.1162/desi a 00250. URL https://doi.org/10.
1162/desi a 00250

[61] A.D. Redish, E. Kummerfeld, R.L. Morris, A.C. Love, Opinion: Repro-
ducibility failures are essential to scientific inquiry. Proceedings of
the National Academy of Sciences 115(20), 5042–5046 (2018). https:
//doi.org/10.1073/pnas.1806370115. URL https://doi.org/10.1073/pnas.
1806370115

[62] O. Yaqub, Serendipity: Towards a taxonomy and a theory. Research Policy
47(1), 169 (2018). https://doi.org/10.1016/j.respol.2017.10.007. URL
https://doi.org/10.1016/j.respol.2017.10.007

[63] P.W. Nega, Z. Li, V. Ghosh, J. Thapa, S. Sun, N.T.P. Hartono, M.A.N.
Nellikkal, A.J. Norquist, T. Buonassisi, E.M. Chan, J. Schrier, Using
automated serendipity to discover how trace water promotes and inhibits
lead halide perovskite crystal formation. Applied Physics Letters 119(4),
041,903 (2021). https://doi.org/10.1063/5.0059767. URL https://doi.
org/10.1063/5.0059767

[64] A. Zunger, Inverse design in search of materials with target functional-
ities. Nature Reviews Chemistry 2(4) (2018). https://doi.org/10.1038/
s41570-018-0121. URL https://doi.org/10.1038/s41570-018-0121

[65] P. Kirkpatrick, C. Ellis, Chemical space. Nature 432(7019), 823–823
(2004). https://doi.org/10.1038/432823a. URL https://doi.org/10.1038/
432823a

[66] Z. Ren, S.I.P. Tian, J. Noh, F. Oviedo, G. Xing, J. Li, Q. Liang, R. Zhu,
A.G. Aberle, S. Sun, et al., An invertible crystallographic representation
for general inverse design of inorganic crystals with targeted properties.
Matter 5(1), 314–335 (2022). https://doi.org/10.1016/j.matt.2021.11.032

[67] B. Sanchez-Lengeling, A. Aspuru-Guzik, Inverse molecular design using
machine learning: Generative models for matter engineering. Science
361(6400), 360–365 (2018). https://doi.org/10.1126/science.aat2663.
URL https://doi.org/10.1126/science.aat2663

[68] J.L. Reymond, The chemical space project. Accounts of Chemical
Research 48(3), 722–730 (2015). https://doi.org/10.1021/ar500432k.
URL https://doi.org/10.1021/ar500432k

https://doi.org/10.1038/s41563-020-0792-7
https://doi.org/10.1038/s41563-020-0792-7
https://doi.org/10.1038/s41563-020-0792-7
https://doi.org/10.1162/desi_a_00250
https://doi.org/10.1162/desi_a_00250
https://doi.org/10.1162/desi_a_00250
https://doi.org/10.1073/pnas.1806370115
https://doi.org/10.1073/pnas.1806370115
https://doi.org/10.1073/pnas.1806370115
https://doi.org/10.1073/pnas.1806370115
https://doi.org/10.1016/j.respol.2017.10.007
https://doi.org/10.1016/j.respol.2017.10.007
https://doi.org/10.1063/5.0059767
https://doi.org/10.1063/5.0059767
https://doi.org/10.1063/5.0059767
https://doi.org/10.1038/s41570-018-0121
https://doi.org/10.1038/s41570-018-0121
https://doi.org/10.1038/s41570-018-0121
https://doi.org/10.1038/432823a
https://doi.org/10.1038/432823a
https://doi.org/10.1038/432823a
https://doi.org/10.1016/j.matt.2021.11.032
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1021/ar500432k
https://doi.org/10.1021/ar500432k


Springer Nature 2021 LATEX template

26 Big Data vs Big Science

[69] J. Lehmann, B. Gaskins, Learning scientific creativity from the
arts. Palgrave Communications 5(1) (2019). https://doi.org/10.1057/
s41599-019-0308-8. URL https://doi.org/10.1057/s41599-019-0308-8

[70] M. Krallinger, O. Rabal, A. Lourenço, J. Oyarzabal, A. Valencia, Infor-
mation retrieval and text mining technologies for chemistry. Chemi-
cal Reviews 117(12), 7673–7761 (2017). https://doi.org/10.1021/acs.
chemrev.6b00851. URL https://doi.org/10.1021/acs.chemrev.6b00851

[71] V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O. Kononova,
K.A. Persson, G. Ceder, A. Jain, Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature 571(7763),
95–98 (2019). https://doi.org/10.1038/s41586-019-1335-8. URL https:
//doi.org/10.1038/s41586-019-1335-8. U̧nsupervised learning was
demonstrated by encoding latent literature into information-
dense word embeddings, which recommended some materials for
a specific application by capturing materials science concepts

[72] K. Ellis, C. Wong, M.I. Nye, M. Sablé-Meyer, L. Cary, L. Morales, L.B.
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