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Abstract
A model for errors-in-variables regression is described that can be used to overcome the
challenge posed by mutually inconsistent calibration data. The model and its implementation
are illustrated in applications to the measurement of the amount fraction of oxygen in nitrogen
from key comparison CCQM-K53, and of carbon isotope delta values in steroids from human
urine. These two examples clearly demonstrate that inconsistencies in measurement results
can be addressed similarly to how laboratory effects are often invoked to deal with mutually
inconsistent results from interlaboratory studies involving scalar measurands. Bayesian
versions of errors-in-variables regression, fitted via Markov Chain Monte Carlo sampling, are
employed, which yield estimates of the key comparison reference function in one example,
and of the analysis function in the other. The fitting procedures also characterize the
uncertainty associated with these functions, while quantifying and propagating the ‘excess’
dispersion that was unrecognized in the uncertainty budgets for the individual measurements,
and that therefore is missing from the reported uncertainties. We regard this ‘excess’
dispersion as an expression of dark uncertainty, which we take into account in the context of
calibrations that involve regression models. In one variant of the model the estimate of dark
uncertainty is the same for all the participants in the comparison, while in another variant
different amounts of dark uncertainty are assigned to different participants. We compare these
models with the conventional errors-in-variables model underlying the procedure that ISO
6143 recommends for building analysis functions. Applications of this procedure are often
preceded by the selection of a subset of the measurement results deemed to be mutually
consistent, while the more discrepant ones are set aside. This new model is more inclusive than
the conventional model, in that it easily accommodates measurement results that are mutually
inconsistent. It produces results that take into account contributions from all apparent sources
of uncertainty, regardless of whether these sources are already understood and their
contributions have been included in the reported uncertainties, or still require investigation
after they will have been detected and quantified.
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1. Introduction

This contribution proposes a new procedure to build calibra-
tion or analysis functions when the measurement results are
mutually inconsistent, and describes two applications of this
procedure in measurement science: to the construction of a key
comparison reference function (KCRF) that plays the role of
analysis function for gas mixtures; and to the calibration of car-
bon isotope delta values relative to the Vienna PDB (VPDB)
standard.

Ordinary least squares (OLS) is still commonly employed
to build functions that relate values of measurands delivered
by standards and corresponding values of instrumental indica-
tions, for example in analytical chemistry and in the measure-
ment of force, even in situations where all the values involved
are surrounded by non-negligible uncertainties. The choice is
then made to fit the regression curve that minimizes the errors
in the direction (either vertical or horizontal) in which the
uncertainties are smallest. This may yield either the calibration
function or the analysis function, and if the other is needed,
then the mathematical inverse is obtained via either analytical
or numerical methods.

The calibration function translates values of the measurand
into instrumental indications (or uncalibrated readings), and
the analysis function does the opposite. In analytical chem-
istry, the analysis function is needed in practice for value
assignment to material samples whose values of the measurand
are unknown.

1.1. Gas mixtures

The value assignment to gas mixtures typically follows the
guidelines in ISO 6143 [21], which is the internationally rec-
ognized standard used for determining the composition of
calibration gas mixtures.

The value assignment is made using an analysis function
that translates instrumental indications into values of amount
fraction of the substance of interest. The analysis function is
built from data acquired during calibration, which involves
obtaining indications from primary standard gas mixtures that
often are prepared gravimetrically. The statistical procedure
used to build the analysis function is a so-called errors-in-
variables (EIV) regression [2].

When EIV regression is used, one is at liberty to produce the
analysis function directly, regardless of which quantity has the
smallest uncertainties: that is what we do in this contribution,
both for value assignments to selected properties of the chem-
ical composition of a gas mixture (section 4), and to carbon
isotope delta values in a sample containing steroid metabolites
(section 6).

Both in key comparisons (KCs) and in multi-point calibra-
tions to produce a calibration or analysis function, the situation
often arises where some measurement results deviate from the
consensus value or trend suggested by the bulk of the others.

In some KCs organized by the Gas Analysis Working
Group of the Consultative Committee for Amount of Sub-
stance (CCQM), mixtures prepared gravimetrically by the

participants are measured by the coordinating (or, pilot) lab-
oratory using an instrumental method, and the results are then
used to build a KCRF, which is akin to an analysis function
used for value assignment in analytical chemistry, with the
participants’ mixtures playing the role of standards.

This was done in CCQM-K53 [25], for example, and the
results turned out to be mutually inconsistent, yet there was
no substantive reason to excluded any of them from the cal-
culation of the KCRF. (‘Mutual inconsistency’ means that the
absolute values of the differences between the values the par-
ticipants assigned to their mixtures, and the corresponding val-
ues predicted by the KCRF, were appreciably larger than their
uncertainties suggested that they should have been.)

Hein et al [14] used the term ‘KCRF’ in the same sense
we give to it, and in a similar application. Cox and Har-
ris [6] use a similar term, ‘key comparison reference curve’
(KCRC), but its meaning is very different from the meaning
of KCRF as used here. In fact, KCRC refers to the result of
blending individual curves determined by different laborato-
ries, for example, curves that describe how the sensitivity of a
hydrophone varies as a function of sound frequency, while in
CCQM-K53 the participants determine no curves.

1.2. Isotope delta values

The assignment of isotope delta values to metabolites of
anabolic androgenic steroids, for the detection of substances
prohibited by the World Anti-Doping Agency (WADA) [43],
also involves first the construction of an analysis function that
relates determinations of such isotope delta values in calibra-
tion standards to the certified isotope delta values of these stan-
dards, and second its application to determinations made of
a human urine sample whose isotope delta value is unknown
[23, 30]. In the application discussed in subsection 6.1, the
measurement results for the isotope delta values of the cali-
bration standards also are mutually inconsistent.

The dispersion of measured values above and beyond their
reported uncertainties is often described as heterogeneity or
mutual inconsistency, and it is widely recognized and taken
into account in meta-analysis [4, 13], and also in interlab-
oratory studies and KCs [24, 33, 39, 41, 44]. This ‘excess’
dispersion can be quantified using any one of several metrics
[15], and also by a parameter in the statistical measurement
model [22], whose value is estimated based on the measure-
ment results, and that we call dark uncertainty in the sense
defined by Thompson and Ellison [40].

1.3. Outline

Section 2 reviews the two sets of measurement results used
in the illustrative applications: one from CCQM-K53 [25],
the other from the Chemical Reference Values section of the
National Measurement Institute, Australia (NMIA).

Section 3 defines three variants of the EIV model for
the measurement results from CCQM-K53, and section 4
describes Bayesian procedures for fitting these variants to
the measurement results, and compares the results. Section 5
explains how the corresponding degrees of equivalence (DoEs)
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Table 1. Amount fractions, x, of oxygen in nitrogen in eleven
mixtures prepared gravimetrically, associated uncertainties, u(x),
as reported by the participants, and ratios, r, of instrumental
indications relative to a common, independently prepared
reference mixture, and associated standard uncertainties, u(r).

lab x/(μmol/mol) u(x)/(μmol/mol) r u(r)

NMIJ 98.675 0.009 0.983 020 0.0006
NPL 99.002 0.048 0.986 981 0.0006
BAM 99.170 0.125 0.986 377 0.0006
NMIA 100.100 0.070 1.000 875 0.0006
NIST 100.410 0.060 0.998 881 0.0006
NMISA 100.585 0.011 1.005 079 0.0006
CENAM 100.970 0.150 1.006 298 0.0006
LNE 101.040 0.050 1.004 614 0.0006
KRISS 101.053 0.010 1.006 739 0.0006
VNIIM 101.080 0.070 1.009 951 0.0006
VSL 101.150 0.040 1.007 570 0.0006

can be computed and discusses challenges that mutually incon-
sistent results pose when the EIV regression neglects the
presence of dark uncertainty.

Section 6 extends the model to accommodate the presence
of dark uncertainty in both variables related by the regres-
sion model, and also to take into account the fact that the
reported uncertainties are based on specified, finite numbers
of degrees of freedom, and then applies it to the measure-
ments of carbon isotope delta values in metabolites of anabolic
androgenic steroids. Section 7 presents some conclusions and
lessons learned.

2. Measurement results

2.1. Amount fractions of oxygen in nitrogen

Table 1 transcribes the measurement results listed in table 6 of
the Final Report for key comparison CCQM-K53 [25], except
the results from CEM (Centro Español de Metrologia, Madrid,
Spain), which CEM declared to be in error, and figure 1 depicts
them. The measurand was the amount fraction of oxygen in
nitrogen.

The coordinating laboratory KRISS measured all the mix-
tures using a gas chromatograph with a thermal conductivity
detector (GC-TCD), and also an additional reference mixture
before and after measuring each of the participants’ mixtures.
Since, in these types of comparisons, the coordinating labo-
ratory is also a participant, its transfer standard typically is
prepared by a staff member who does not become involved in
any of the subsequent measurements for the key comparison.

Each value listed in the column headed r of table 1 is the
ratio of the instrumental indication for a participant’s mixture
and the average of the two instrumental indications for the
reference mixture obtained immediately before and after the
indication for the participant’s mixture. Both sets of standard
uncertainties, {u(x j)} and {u(r j)}, are assumed to be based on
large numbers of degrees of freedom.

Lee et al [25, p 12] state that the measurement results from
NMIA, NMISA, and VNIIM were excluded from the com-
putation of the KCRF because ‘they were inconsistent with

Figure 1. The (blue) diamonds represent the measured values, the
horizontal line segments represent the {r j ± 5u(r j)}, and the vertical
line segments represent the {x j ± 5u(x j)}. The light (yellow)
sloping line represents the EIV regression line fitted taking dark
uncertainty into account, and the wide, shaded (yellow) band is a
simultaneous 95% coverage band for the whole line. The dark
(purple) sloping line represents the EIV regression line fitted
disregarding dark uncertainty, and the light (green) band is a
simultaneous 95% coverage band for this whole line.

the others owing to their ambiguity in impurity analysis’. For
the present purposes of illustration of the model and method
described in sections 3 and 4, we will use all the measurement
results listed in table 1.

2.2. Carbon isotope delta values

Table 2 lists determinations of δ(13C) values made at NMIA,
for eight isotopically different steroids in two calibration mix-
tures, and their assigned values relative to the VPDB stan-
dard of reference, which is a virtual material defined by NIST
Reference Material 8544, NBS19 Limestone [18].

The two mixtures aforementioned were MX018-1 and
MX018-3 from NMIA MX018 Steroid Mixtures certified for
Carbon Isotope Delta Value, a certified reference material pre-
pared by the National Measurement Institute of Australia [20].
The analysis was carried out by gas chromatography to allow
separation of the different steroids in the mixtures, followed
by combustion and isotope ratio mass spectrometry.

Adopting the notational conventions of Possolo et al [32],
the isotope delta value for 13C in material P relative to the
standard of reference STD is

δSTD,P(13C/12C) =
RP(13C/12C)

RSTD(13C/12C)
− 1, (1)

where RP(13C/12C ) = NP(13C ) /NP(12C) denotes the isotope
ratio for 13C and 12C, where NP(13C) denotes the number of
atoms of 13C in the material, and similarly for NP(12C ). Isotope
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Table 2. Certified δVPDB,S(13C) values of 8 steroid calibrants (expressed in per mille relative to
VPDB), and the corresponding measured values of δNMIA,S(13C) (relative to NMIA’s in-house
reference), reported alongside their associated standard uncertainties and numbers of degrees of
freedom. The steroids are as follows: etiocholanolone (Etio); androsterone (A);
11-oxoetiocholanolone (11oxoEtio); testosterone (T1 and T2); 11β-hydroxyetiocholanolone
(11OHEtio); 16-androstenol (16en); and dehydroepiandrosterone (DHEA).

substance δVPDB,S(13C) u (δVPDB,S(13C)) νV δNMIA,S(13C) u (δNMIA,S(13C)) νN

Etio −27.94 0.120 41 −27.604 0.051 18
A −27.79 0.105 15 −27.161 0.032 18
11oxoEtio −13.58 0.115 28 −13.717 0.046 18
T1 −27.87 0.120 24 −28.070 0.050 18
11OHEtio −29.51 0.180 58 −29.584 0.045 18
16en −30.96 0.185 47 −31.411 0.060 9
DHEA −31.63 0.270 40 −31.454 0.051 9
T2 −22.52 0.165 54 −21.972 0.044 9

delta values are conventionally expressed in per mille (parts
per thousand). In the sequel we abbreviate them to δSTD,P(13C)
because they are always relative to 12C.

Traceability of the δ(13C) values to the VPDB was estab-
lished via two-point linear calibration using the reference
materials IAEA-CH-6 (sucrose, −10.45 ‰) and IAEA-CH-7
(polyethylene, −32.15 ‰), whose values of δVPDB(13C)
bracket the δ(13C) values in the standards listed in table 2 [10].

The fact that the same two reference materials were used
to link all eight standards to the VPDB induces correlations
between the calibrated isotope delta values, which, by appli-
cation of a Monte Carlo method, we estimate to be all posi-
tive and in the range 0.1–0.5. If these correlations were taken
into account, then, in subsection 6.2, the uncertainty associated
with the isotope delta value assigned to a material sample with
unknown isotopic composition would be slightly larger than
what we report there. However, to avoid introducing an even
more elaborate model than is described in subsection 6.1, we
chose to disregard these correlations.

3. Errors-in-variables model for CCQM-K53

Since, in the case of CCQM-K53, a polynomial of the 1st
degree provides an adequate model for the pairs of observa-
tions {(r j, x j)}, we will assume that the corresponding true
values, {ξ j}, of the amount fractions, and the corresponding
true values, {ρ j}, of the ratios of instrumental indications,
are linearly related as ξ j = β1 + β2ρ j, for j = 1, . . . , n, where
n = 11 denotes the number of participants.

When depicting the ratios and amount fractions graphically,
as in figure 1, the ratios are plotted against the horizontal axis,
and the amount fractions are plotted against the vertical axis
because the KCRF maps values of the ratio to values of the
amount fraction of the analyte.

For this reason, we refer to the differences {r j − ρ̂ j} as hor-
izontal residuals, and to the {x j − ξ̂ j} as vertical residuals,
where the {ρ̂ j} and the {ξ̂ j} denote estimates of the true ratios
and of the true amount fractions, respectively, obtained under
the aforementioned constraint that ξ = β1 + β2ρ. Figures 2
and 5 illustrate these horizontal and vertical residuals vari-
ously, for one of the participants.

In section 4 we explain how we estimate the intercept,
β1, and the slope, β2, of the analysis function, and also how
we build a coverage region for the graph of this function, as
depicted in figure 1.

We will present three variants of the EIV regression model
for the results of CCQM-K53, according to whether (i) the
model includes a single, common evaluation of dark uncer-
tainty shared by all the participants (eiv-dark), or (ii) enter-
tains the possibility that different amounts of dark uncertainty,
attributed to different participants, will suffice to achieve
mutual consistency (eiv-shades), or (iii) no dark uncertainty
is recognized at all (eiv-light). Versions (i) and (iii) are
presented in subsection 3.1, and version (ii) in subsection 3.2.

Our main focus, however, will be on eiv-dark, which has
two sub-variants: one is used for the results of CCQM-K53,
and involves consideration of dark uncertainty only for the
amount fractions, not for the ratios of instrumental indica-
tions; the other is applied to the measurements of carbon iso-
tope deltas in section 6, and involves consideration of dark
uncertainty along both axes.

3.1. EIV model for CCQM-K53 with common dark
uncertainty

The aforementioned eiv-dark variant for the results of
CCQM-K53 assumes that the measured values and cor-
responding true values for participant j = 1, . . . , n, where
n = 11 is the number of participants, are related as follows:

ξ j = β1 + β2ρ j, r j = ρ j + γ j, and x j = ξ j + λ j + ε j.
(2)

The measurement errors for the amount fractions, {ε j}, and for
the ratios, {γ j}, are assumed to be non-observable outcomes
of independent Gaussian random variables, all with mean 0
and standard deviations equal to the corresponding standard
uncertainties, {u(x j)} for the {ε j}, and {u(r j)} for the {γ j}.

When the standard uncertainties are based on specified,
finite numbers of degrees of freedom, then it will be more
appropriate to model either the {(x j − ξ j)/u(x j)} or the
{(r j − ρ j)/u(r j)}, or both, as outcomes of independent,
Student’s t random variables with the specified numbers of
degrees of freedom [12].
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Figure 2. Magnified view of the portion of figure 1 around the
values of r and x for NMISA, represented by the (black) circle, but
without the line segments that represent the associated uncertainties,
and without the EIV line (depicted in dark purple in figure 1)
corresponding to the model without dark uncertainty (eiv-light).
The (yellow) circle centered on the (yellow) EIV regression line,
represents estimates of the true values of r and x corresponding to
the EIV model that takes dark uncertainty into account (eiv-dark).
The absolute value of the horizontal residual, 0.000 26, is the length
of the horizontal (blue) line segment labeled H, and the absolute
value of the vertical residual, −0.204 μmol/mol, is the length of the
vertical (blue) line segment labeled V, as listed in table 3. As will be
explained in section 5, the vertical residual is the D in the degree of
equivalence (D, U95%(D)) for NMISA. Note that the vertical residual
is neither the vertical distance from the point with coordinates (r, x)
to the EIV line, nor the distance from (r, x) to (ρ̂, ̂ξ), which would be
meaningless owing to the different units of the axes.

The presence of measurement errors associated with
observed values for the ratios and for the amount fractions
is the reason why the model for the relationship between the
{r j} and the {x j} is called an EIV regression model [2, 7].
But the model in equation (2) is not the conventional EIV
model because it also recognizes the possible presence of one
additional source of uncertainty, as we explain next.

The {λ j} in the part of the model for the amount fractions,
x j = ξ j + λ j + ε j, are hypothetical laboratory effects assumed
to be a sample from a Gaussian distribution with mean 0 and
standard deviation τ . (Depending on the circumstances, dis-
tributions other than the Gaussian may be more appropriate,
for example Student’s t or Laplace’s.) When τ = 0 this model
devolves into the common EIV model, which we refer to as
eiv-light.

The eiv-dark model variant for the amount fractions
accommodates the fact that the vertical residuals, {x j − ξ̂ j},
are more dispersed than the associated uncertainties {u(x j)}
suggest that they should be, on the assumption that the rela-
tionship between the {ξ j} and the {ρ j} has been characterized

Table 3. Horizontal and vertical residuals for the EIV regression
line fitted taking dark uncertainty into account, and
corresponding standard uncertainties for the ratios and for the
amount fractions. The horizontal and vertical residuals for
NMISA are depicted in figure 2. All the horizontal residuals have
smaller absolute values than the standard uncertainties associated
with the ratios, while nine of the eleven vertical residuals have
larger absolute values than the standard uncertainties for the
corresponding amount fractions.

lab r − ρ̂ u(r) x − ̂ξ/(μmol/mol) u(x)

NMIJ 0.000 00 0.0006 0.000 0.009
NPL 0.000 05 0.0006 −0.052 0.048
BAM −0.000 12 0.0006 0.158 0.125
NMIA 0.000 29 0.0006 −0.278 0.070
NIST −0.000 20 0.0006 0.178 0.060
NMISA 0.000 26 0.0006 −0.204 0.011
CENAM −0.000 02 0.0006 0.035 0.150
LNE −0.000 28 0.0006 0.243 0.050
KRISS −0.000 09 0.0006 0.069 0.010
VNIIM 0.000 20 0.0006 −0.187 0.070
VSL −0.000 10 0.0006 0.084 0.040

Table 4. Bayes estimates of the intercept and slope of the EIV
regression lines fitted to the measurement results from
CCQM-K53, corresponding to the model variants with the same
dark uncertainty for all the participants (eiv-dark), with shades
of dark uncertainty (eiv-shades), and that ignore dark
uncertainty (eiv-light).

model variant β1/(μmol/mol) u(β1)/(μmol/mol) β2 u(β2)

eiv-dark 3.3 4 97 4
eiv-shades 1.4 4 99 4
eiv-light 2.2 2 98 2

correctly. In such case, the measurement results for the amount
fractions appear to be mutually inconsistent in the context of
the EIV regression model, in the same sense that this term is
used for results from conventional interlaboratory studies and
KCs [24].

The standard deviation, τ , quantifies the dark uncertainty
for the amount fractions, a concept that Thompson and Ellison
[40] introduced in the context of interlaboratory studies. The
corresponding uncertainty component, or amalgam of compo-
nents, is described as ‘dark’ because it does not appear in the
uncertainty budgets that underlie the {u(x j)}, and reveals itself
only after a candidate analysis function has been fitted to all the
measurement results together.

In the case of CCQM-K53, the estimate of τ is both statis-
tically and substantively significant: in other words, it is confi-
dently and sufficiently greater than zero to make a difference.
The median of the Markov Chain Monte Carlo (MCMC) sam-
ple drawn from the posterior distribution of τ , as explained in
section 4, is 0.165 μmol/mol, which is 3.3 times larger than
the {u(x j)}. A 95% credible interval for its true value ranges
from 0.097 μmol/mol to 0.296 μmol/mol.

One may wonder whether a similar component of dark
uncertainty might exist for the ratios. However, table 3 shows
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Figure 3. Estimate (thick, blue curve) of the posterior probability
density of τ . The shaded (pink) area comprises 95% of the area
under the curve, and its footprint on the horizontal axis, which does
not straddle 0 μmol/mol, is a 95% credible interval for the true
value of τ . The blue diamond marks the median of this distribution,
which is 0.165 μmol/mol.

that such component is not warranted for the measurement
results under consideration here. In fact, the standard devia-
tion of the horizontal residuals is 3.2 times smaller than the
median of the {u(r j)}, while the standard deviation of the verti-
cal residuals is 3.4 times larger than the median of the {u(x j)}.
Furthermore, and even more conclusively, if the EIV model
is fitted entertaining components of dark uncertainty both for
the amount fractions and for the ratios, the component for the
latter does not differ significantly from zero.

3.2. EIV model for CCQM-K53 with shades of dark
uncertainty

Merkatas et al [29] introduced a model for interlaboratory
studies where the dark uncertainty is allowed to vary among
participants, making the least contribution to those that are
already in fair mutual agreement among themselves, and mak-
ing the largest contributions to those that are in more marked
disagreement with the bulk of the others, either because their
measured values lie farther out, or because their reported
uncertainties may be relatively much too small.

We extend this model to the context of EIV regression, and
simplify it in the process, as follows: the relationship between
the true values of the amount fractions and ratios of instrumen-
tal indications remains the same as in equation (2); however,
the variances of the amount fractions, {x j}, become

v2
j = u2(x j) + a jτ

2, (3)

where a j is a Bernoulli random variable with probability pj

of being 1 and probability 1 − pj of being 0, for j = 1, . . . , n.
In other words, the eiv-shades model variant expresses the
‘extra’ variance component associated with x j as fraction of
the estimate of τ that corresponds to this model variant.

That is, this model variant can assign variance v2
j to the jth

participant that ranges from v2
j = u2(x j) to v2

j = u2(x j) + τ 2,
with all possible values in-between, with the {pj} representing
mixing proportions of these two extremes, hence similar to the
probabilities of inconsistency that Mana [28] introduced. Such
mixtures can be modeled in still other ways, for example as
in the original account of the shades model [29], or without
involving the Bernoulli indicators {aj}.

4. Bayesian procedure to estimate the analysis
function for CCQM-K53

The different versions of the EIV model described above,
in subsections 3.1 (eiv-dark and eiv-light) and 3.2 (eiv-
shades), were fitted to the data using Bayesian procedures.
In subsection 4.1, we explain these procedures informally and
intuitively, and in subsection 4.2 we provide additional, more
technical details.

4.1. Bayesian approach

The measurement results used to determine the anal-
ysis function comprise n sets of measurement results
{(r j, u(r j), x j, u(x j)) : j = 1, . . . , n}. Therefore, we have n
points {(r j, x j)} to which we fit the regression line, plus 2n
standard uncertainties that quantify reasonable ranges within
which to locate the estimates of the true {(ρ j, ξ j)}.

The {λ j} in equation (2), which are assumed to be random
effects, usually are not estimated. Their key property that needs
to be recognized and estimated is their standard deviation, τ ,
which is then expressed in the uncertainty of the resulting
KCRF and of derivative quantities [38].

Since the number of parameters, n + 3, (which are the inter-
cept and slope of the EIV regression and the true values, {ρ j},
of the ratios of instrumental indications) is of the same order
of magnitude as the number of available data, this risks turning
the optimization into an ill-posed problem: that is, a problem
for which there may be multiple solutions, or where the solu-
tion may be not only hard to find but also very sensitive to the
uncertainties associated with the observations.

More consequential still is the fact that, under commonly
made assumptions, the classical EIV model is not identifi-
able [35]. This means that different combinations of values of
the parameters can yield the same probability distribution for
the data, and implies that the maximum likelihood estimate
may not be unique unless additional assumptions are made or
constraints are introduced.

The Bayesian approach can be conceived as a cautious way
of solving an ill-posed optimization problem that also over-
comes the issue of non-identifiability. Conventional, determin-
istic optimization aims to locate the solution by finding the
most direct path towards an optimum. However, it may end-up
in the wrong place because there may be multiple local optima,
or because the global optimum may not be defined sharply.

The Bayesian approach thoroughly explores the set of pos-
sible values for the parameters, which in this case is a subset of
a space of n + 3 dimensions. And this exploration is driven not
only by the measurement results, but also by prior expectations
about where the solution is likely to be. These expectations
derive from the structure of the problem, from the design of
the experiment, and from prior knowledge about fitting EIV
models to data of this kind.

For example, we expect that the ratios of instrumental
indications will be around 1, given how the composition of
the standard used to form the ratios was selected. But we
also expect that the ratios will exhibit appreciable disper-
sion around 1, considering that the participants were asked to

6
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Figure 4. DoEs for the three variants of the EIV model that are listed in table 5: DARK, labeled {D j} in table 5, with the same τ for all the
participants; SHADES, labeled {D+

j } in table 5, with shades of dark uncertainty that contribute different values of τ to different participants;
LIGHT, labeled {D−

j } in table 5, ignoring dark uncertainty. The diamonds and the vertical line segments represent the corresponding DoEs.

Table 5. DoEs for the three variants of the EIV model that are depicted in figure 4: eiv-dark ({D j}, with the same τ for all the participants);
eiv-shades ({D+

j }, with shades of dark uncertainty that contribute different values of τ to different participants); and eiv-light ({D−
j },

ignoring dark uncertainty).

lab D/(μmol/mol) U95%(D)/(μmol/mol) D+/(μmol/mol) U95%(D+) D− U95%(D−)

NMIJ 0.00 0.41 0.00 0.35 0.00 0.03
NPL −0.05 0.42 −0.04 0.39 −0.02 0.12
BAM 0.16 0.47 0.12 0.46 0.16 0.27
NMIA −0.28 0.42 −0.29 0.55 −0.18 0.16
NIST 0.18 0.41 0.11 0.46 0.11 0.14
NMISA −0.20 0.39 −0.21 0.53 −0.01 0.03
CENAM 0.04 0.49 0.01 0.48 0.03 0.31
LNE 0.24 0.41 0.20 0.53 0.12 0.12
KRISS 0.07 0.40 0.00 0.38 0.00 0.03
VNIIM −0.19 0.42 −0.18 0.53 −0.13 0.16
VSL 0.08 0.41 0.03 0.40 0.03 0.10

prepare mixtures with different amounts of oxygen [25,
table 2] best to support the regression line.

Since the ratios should be around 1, and considering that
the slope of the line must be positive, we also expect that β2

will have a numerical value close to the average of the amount
fractions of the participants’ mixtures. Not only this, we also
expect that both β1 and β2 will be close to their OLS estimates
because the relative uncertainties for the ratios all are fairly
small (around 0.06%).

The Bayesian approach uses probability distributions to
encapsulate such prior knowledge about the values of the
parameters. For example, Gaussian distributions are assigned
to both the intercept and slope. The prior distribution for the
slope is centered at the OLS estimate, and the prior distribution
for the intercept is centered at zero because that’s the expected
response of the GC-TCD instrument in the absence of oxygen
[25, p 4].

The prior relative standard deviations for the slope and
intercept are either 10% or the relative uncertainties of the
corresponding OLS estimates, whichever are largest. For the

intercept, β1, the prior relative standard deviation was 105%,
and for the slope, β2, it was 10%.

The prior distributions for the mean values of the ratios,
{ρ j}, are Gaussian distributions centered at the observed ratios
with standard deviations three times larger than the standard
uncertainties for the ratios.

Finally, we specify that τ is equally likely to be smaller or
greater than the median of the standard uncertainties associ-
ated with the amount fractions. We impose the constraint that
τ must have a non-negative numerical value by assigning a
prior distribution to it that is concentrated on the positive num-
bers, and otherwise choose this distribution so that it rules out
no positive values whatever, no matter how large, but with
decreasing probability for values of τ that are increasingly
higher than the median of the {u(x j)}. We accomplish all this
by assigning a Cauchy distribution truncated at zero to τ , with
median equal to the median of the {u(x j)}.

The Bayesian procedure does not deliver a particular solu-
tion. That is, it does not produce a specific set of ‘optimal’

7
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Figure 5. Magnified view of the portion of figure 1 around the
values of r and x for NMISA, represented by the (black) circle, but
without the line segments that represent the associated uncertainties.
The (orange) crossed circle, labeled D, represents estimates of the
true values of r and x corresponding to the EIV model that takes
dark uncertainty into account. The (dark purple) crossed circle,
labeled L, is its counterpart for the EIV model that disregards dark
uncertainty. The DoE for the first model is the (signed) vertical
residual, −0.20 μmol/mol, between the points labeled NMISA and
D. The DoE for the second model is the (signed) vertical residual,
−0.01 μmol/mol, between the points labeled NMISA and L.
Figure 2 explains graphically the meaning of horizontal and vertical
residuals.

values for β1, β2, τ , and the {ρ j}. Instead, it samples the mul-
tidimensional space where the parameters live, guided by the
prior expectations about these and by the statistical model for
the data in equation (2). The resulting large sample is then used
to locate the optimal values, in particular for the intercept and
slope of the EIV line drawn in figure 1, and also for all the
other parameters.

For the eiv-shades version of the model described in sub-
section 3.2, the intercept and slope of the regression line were
assumed to be Gaussian and independent a priori, with means
set equal to the OLS estimates, and standard deviations about
50 times larger than their least squares counterparts, hence
rather noninformative. The true values of the ratios, {ρ j},
also were assumed to be independent a priori, and had Gaus-
sian prior distributions with mean 1 and standard deviation
almost 100 times larger than the uncertainties reported for the
ratios. The prior distribution for τ was the same half-Cauchy
described above, and the {pj} were independent a priori and
uniformly distributed between 0 and 1.

In addition to the thorough exploration of the set of possi-
ble parameter values, the Bayesian approach offers this great
practical advantage relative to the classical approach: in a sin-
gle stroke, it provides all the elements needed to evaluate the
uncertainty surrounding the KCRF (represented by the shaded
(yellow) band in figure 1), as well as the expanded uncertain-
ties that are part and parcel of the DoEs, which are discussed
in section 5.

4.2. Markov Chain Monte Carlo

The Bayesian version of the model defined in equation (2),
which is the eiv-dark variant, is a hierarchical model: given
the values of β1, β2, τ and ρ j, the ratio r j is an outcome of
a Gaussian random variable with mean ρ j and standard devi-
ation u(r j), and x j is an outcome of a Gaussian random vari-
able with mean ξ j = β1 + β2ρ j and variance τ 2 + u2(x j), for
j = 1, . . . , n.

Fitting such model to the measurement results then
becomes an exercise in Bayesian inference, which is done
based on a sample of large size K drawn from the joint pos-
terior distribution of β1, β2, τ , and ρ1, . . . , ρn, given the mea-
surement results, by application of a device called MCMC
sampling [8]. We denote the resulting samples of the values
of the parameters {β̃1,k}, {β̃2,k}, {τ̃ k}, {ξ̃ j,k}, and {ρ̃ j,k}, for
j = 1, . . . , n and for k = 1, . . . , K, where K was 80 000.

This number, K = 80 000, is only a small fraction
(effectively, 10%) of the MCMC iterations that explored the
range of all possible values of the parameters and that were
stored to become a sample of the joint posterior distribu-
tion of the parameters, from which all subsequent inferences
(estimates and uncertainty evaluations) were drawn.

The Bayesian procedure was implemented using the Stan
language [1], in the code listed in figure A1, which is invoked
for execution using the R [34] code listed in figure A2. Only
6% of the z-scores proposed by Geweke [9] to assess conver-
gence of the MCMC chains to their equilibrium distribution,
had absolute values greater than 2. Examination of the autocor-
relation functions for the samples drawn from the posterior dis-
tribution of the parameters showed that the thinning that was
employed was satisfactory. The diagnostics were computed
and examined graphically using R functions ggs_geweke
and ggs_autocorrelation defined in package ggmcmc
[19].

After thinning, and all together, the four chains that were
used (figure A1), produced 80 000 samples from the posterior
joint distribution of the parameters given the data. The effec-
tive sample sizes for the parameters ranged from 77 000 to
80 000. The ratios of the total variability to the within-chain
variability (so-called Rhat) were very close to 1 for all the
parameters.

The eiv-shades variant was formulated in the BUGS
language (as implemented in OpenBUGS [26]) because it
provides an easier way to incorporate discrete latent param-
eters than Stan. This variant, too, was fitted to the data using
MCMC.

Table 4 lists Bayes estimates of the EIV regression coeffi-
cients for the lines depicted in figure 1, and also for the model
with shades of dark uncertainty. eiv-dark and eiv-light cor-
respond to the models described in subsection 3.1, and eiv-
shades corresponds to the model described in subsection 3.2.
Ignoring dark uncertainty when there is dark uncertainty that
is both statistically and substantively significant, inevitably
yields uncertainty evaluations (for the DoEs, in particular)
that are unrealistically optimistic, and biased estimates of the
regression coefficients [2].
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Table 6. Reported standard uncertainties, {u(x j)}, for the amount
fractions of oxygen listed in table 1, and posterior medians of the
{v j} for the model variant eiv-shades, which are defined in
equation (3).

lab u(x j) v j

NMIJ 0.009 0.009
NPL 0.048 0.048
BAM 0.125 0.125
NMIA 0.070 0.231
NIST 0.060 0.186
NMISA 0.011 0.216
CENAM 0.150 0.150
LNE 0.050 0.218
KRISS 0.010 0.010
VNIIM 0.070 0.216
VSL 0.040 0.040

Figure 3 shows an estimate of the posterior probability den-
sity of the dark uncertainty, τ , for the model with a common
value of the dark uncertainty for all the participants, and a
95% credible interval for its true value, which substantiates
the conclusion that τ indeed is significantly greater than zero.

5. Degrees of equivalence for CCQM-K53

The DoEs are pairs {(Dj, U95%(Dj))}, where D j is the dif-
ference between the amount fraction measured by participant
j and the corresponding value predicted by the KCRF, and
U95%(D j) is the expanded uncertainty associated with this
difference, for 95% coverage.

The {ρ̂ j} are estimates of the true values of the ratios,
and {ξ̂ j} are estimates of the true values of the amount frac-
tions, computed under the assumption that ξ j = β1 + β2ρ j for
j = 1, . . . , n stated in equation (2).

Figure 4 depicts the DoEs that are listed in table 5. Three
sets of DoEs are presented: {(Dj, U95%(D j))}, which per-
tain to the EIV model variant (eiv-dark) that assigns the
same amount of dark uncertainty to all the participants;
{(D+

j , U95%(D+
j ))} for the model with shades of dark uncer-

tainty (eiv-shades); and {(D−
j , U95%(D−

j ))} when dark uncer-
tainty is ignored (eiv-light).

The {(Dj, U95%(Dj))} were computed as follows:

(a) D j is the difference x j − ξ̂ j, for j = 1 . . . , n = 11;
(b) U95%(D j) is such that the interval D j ± U95%(Dj) includes

95% of the following K differences: x j − (ξ̂ j,1 + y j,1 +

z j,1), . . . , x j − (ξ̂ j,K + y j,K + z j,K), where y j,k is drawn
from a Gaussian distribution with mean 0 and standard
deviation u(x j), and z j,k is drawn from a Gaussian dis-
tribution with mean 0 and standard deviation τ̂ k, for
j = 1 . . . , n = 11, and for k = 1, . . . , K.

The {y j,k} reflect the fact that the {Dj} are predicted val-
ues, not expected values, and the {z j,k} put into play the
‘extra’ uncertainty expressed in the dark uncertainty. The
{(D−

j , U95%(D−
j ))} are computed similarly, except that, in step

(b), there are no {z j,k}.

For the model with shades of dark uncertainty, U(D+
j ) is

twice the square root of the estimated variance of the predictive

distribution, 2
√

u2(ξ j) + v2
j , for j = 1, . . . , n.

Considering that the EIV regression lines correspond-
ing to the models with and without dark uncertainty, which
are depicted in figure 1, are just about coincident, the
differences between corresponding {(D j, U95%(D j))} and
{(D−

j , U95%(D−
j ))}, apparent both in figure 4 and in table 5,

certainly are surprising. This difference is most pronounced
for NMIJ, NMISA and KRISS, but its counterparts for NMIA
and LNE are also striking.

Figure 5 provides a close-up of the differences D6 and
D−

6 , which pertain to NMISA. Given the explanations given
above, and illustrated in figure 2, of how horizontal and vertical
residuals are defined, here we focus on the wide discrepancy
between the points labeled D and L in figure 5.

Since both EIV lines are practically coincident immedi-
ately above the point with coordinates (r6, x6), which are
the ratio and the amount fraction measured for NMISA, it
could be surprising that the corresponding D6 and D−

6 should
be so very different: the first −0.20 μmol/mol, the second
−0.01 μmol/mol. This is a consequence of how the resid-
uals are defined in equation (2), which is the same for both
models, except that the {λ j} are missing from the model that
ignores dark uncertainty. Furthermore, the estimates (ρ̂6, ξ̂6)
for either model, represented by the aforementioned points
labeled D and L, are estimates of true values computed under
the assumption that ξ = β1 + β2ρ.

This very strong assumption is just another way of say-
ing that the measurement results are assumed to be mutually
consistent, in the sense that the deviations of the observa-
tions {(r j, x j)} from a straight line are commensurate with the
reported uncertainties associated with the ratios and with the
amount fractions.

However, this is not the case here: the observations and their
associated uncertainties are not consistent with their lying on a
straight line. The estimation procedure for the EIV model that
neglects dark uncertainty does its best under such assumption
but can do no better than provide an inadequate solution. And
the best it manages to achieve for NMISA involves placing
(ρ̂6, ξ̂6) at location L in figure 5. The procedure feels at liberty
to do so given the ample horizontal uncertainty that surrounds
(r6, x6), which is depicted in figure 1.

The EIV model that recognizes dark uncertainty does not
need to go through the same gyrations owing to the freedom it
has to accommodate a large vertical deviation of (r6, x6) from
the corresponding regression line: a freedom that the incorpo-
ration of dark uncertainty gives it. For this reason, the vertical
residual for NMISA is almost the vertical distance between
(r6, x6) and the regression line.

The moral of this story is that the substantial differences
between corresponding {D j} and {D−

j } are merely a conse-
quence of the fact that the EIV model that disregards dark
uncertainty is unable to cope with the mutual inconsistency of
the measurement results from CCQM-K53, and the constraint
ξ = β1 + β2ρ forces the estimation procedure to place some of
the (bivariate) fitted values at locations that may be surprising.
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The original data reductions in Lee et al [25] overcome this
challenge by setting aside the results from NMIA, NMISA,
and VNIIM. In this contribution we retain them because the
model we have developed accommodates them easily.

Table 6 compares the reported uncertainties with their
‘adjusted’ counterparts produced by the eiv-shades model
variant, where v j is as defined in equation (3). The posterior
distributions of the {v j} were markedly skewed, and for this
reason the table lists their medians. For NMIA, NIST, NMISA,
LNE, and VNIIM the {v j} had posterior medians apprecia-
bly larger than their {u(x j)}. For the other participants, the
posterior medians of the {v j} were essentially equal to the
corresponding {u(x j)}.

6. Errors-in-variables model for δ(13C)

The model we shall use to relate measured and calibrated val-
ues of δ(13C) for the standards listed in table 2, stated below
in equation (4), involves components of dark uncertainty for
both quantities related by the EIV regression.

6.1. Analysis function for δ(13C)

An analysis function is built based on the measurement results
listed in table 2, and this analysis function will be used subse-
quently to assign a calibrated isotope delta value to a material
sample. The novelties in this case are: (i) the reported uncer-
tainties are qualified with finite (and not very large) numbers
of degrees of freedom; (ii) there are uncertainty components
attributable to dark uncertainty for both quantities related by
the EIV regression model; and (iii) the EIV regression is used
to assign a value to a material sample, and the uncertainty
associated with this prediction is evaluated.

Fact (i) implies that the {u (δNMIA,S(13C))} and the
{u (δVPDB,S(13C))} are estimates of true but unknown standard
deviations of the measurement errors {γ j} and {ε j}, and these
2n standard deviations are additional parameters in the version
of the EIV model to be entertained in this case.

Need (ii) involves the inclusion of two dark uncertainty
parameters in the model, which now becomes:

θ j = β1 + β2η j, δNMIA,S j(
13C ) = η j + ϕ j + γ j, and

δVPDB,S j(
13C) = θ j + ψ j + ε j,

(4)
for j = 1, . . . , n, where j refers to the substance among the
n = 8 listed in table 2. Here, ψ j has the role that λ j had in
equation (2), and ϕ j is its counterpart for δNMIA,S j(

13C), which
was not needed in the case of CCQM-K53. The {ϕ j} and
the {ψ j} are modeled as non-observable values of indepen-
dent Gaussian random variables with mean 0, the former with
standard deviation τϕ, the latter with standard deviation τψ,
which are the two components of dark uncertainty operating
along the two axes relative to which the analysis function is
depicted in figure 6. The {γ j} and the {ε j} represent measure-
ment errors whose uncertainty contributions are captured in the
reported uncertainties associated with the measured isotope
delta values.

Figure 6. The (blue) diamonds represent the measured values, the
horizontal line segments represent the {δNMIA,S j(

13C)±5u
(δNMIA,S j(

13C))}, and the vertical line segments represent the
{δVPDB,S j (

13C) ±5u (δVPDB,S j(
13C))}. The light (orange) sloping line

represents the EIV regression line fitted taking dark uncertainty into
account, and the wide, shaded (yellow) band is a simultaneous 95%
coverage band for the whole line. The dark (purple) sloping line
represents the EIV regression line fitted disregarding dark
uncertainty, and the light (green) band is a simultaneous 95%
coverage band for this whole line.

This model was fitted to the calibration data using
a Bayesian procedure whose rationale has already been
explained in section 4. MCMC was employed similarly to how
it was employed in subsection 4.2, with differences in imple-
mentation (figure A1 versus A3) that take into account the
finite numbers of degrees of freedom supporting the reported
uncertainties, and the need for considering dark uncertainty
along both axes. Figures A3 and A4 list the corresponding Stan
and R codes.

Table 7 lists the estimates of the intercept and slope, and
associated uncertainties, for the model that recognizes dark
uncertainty, and for the model that ignores it. Figure 6 depicts
the EIV regression lines corresponding to these two models,
and the associated uncertainty bands. Figure 7 shows an esti-
mate of the density of the joint posterior probability distribu-
tion of τϕ and τψ. Both τϕ and τψ are strictly greater than zero
with 99% probability.

The choice of values for the parameters of the prior distri-
butions was driven by the following considerations:

(a) The prior means for the {η j} are set equal to the measured
values {δNMIA,S j(

13C)}, and the prior standard deviations
are set equal to {3u (δNMIA,S j(

13C))};

justification: the choice for the means is based on the
typical repeatability achieved in mass spectrometry [11],
and the adoption of extravagantly large values for the
standard deviations renders the prior distribution very
weakly informative.
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Table 7. Bayes estimates of the intercept and slope of the EIV
regression lines fitted to the measurements of δ(13C) listed in table
2, for the models that recognize (eiv-dark) or ignore (eiv-light)
dark uncertainty. The estimator used for the intercept and slope is as
implemented in R function huberM defined in package
robustbase [27, 36], and the estimator used for their standard
uncertainties is as implemented in R function Qn defined in the
same package.

model β1 u(β1) β2 u(β2)

eiv-dark −0.240 ‰ 0.741 ‰ 0.995 0.028
eiv-light 0.003 ‰ 0.265 ‰ 1.004 0.010

Figure 7. Density of the joint posterior distribution of τϕ and τψ in
the model underlying the analysis function for δ(13C), where the
darker the hue the higher the density. Note that the axes have
non-linear scales. The coordinates of the white dot are the median of
the posterior distribution of τϕ, 0.038 ‰, and the median of the
posterior distribution of τψ , 0.38 ‰ (the fact that the latter is ten
times larger than the former is merely a numerical coincidence).

(a) The intercept, β1, has prior mean 0 ‰ and prior standard
deviation 10 ‰, and the slope, β2, has prior mean 1 and
prior standard deviation 0.5;

justification: the choice of prior mean for β2 is based
on the fact that corresponding true values of {θ j} and
{η j} are expected to be nearly identical, unless NMIA’s
in-house reference were grossly miscalibrated, which it
is not considering that a robust estimate of the slope
is close to 1: this value was obtained using R function
lmrob, defined in package robustbase [27] disre-
garding the reported uncertainties and neglecting the
presence of components of dark uncertainty.

The relative prior standard uncertainty of 0.5/1 = 50%
for β2 is much larger than what experience suggests
would be reasonable to entertain, and thus delivers a
largely uninformative prior.

The intercept, β1, is expected to be zero owing to
considerations of mass balance. In the extreme, incon-
ceivable case that the slope should be zero, the uncer-
tainty surrounding the value of the intercept still should
not exceed the variability of δ(13C) values in plants
(−10 ‰ to −34 ‰ [5]) or in steroid metabolites in the
urine of human populations (−16 ‰ to −26 ‰ [3]).

Therefore, the prior standard deviation of 10 ‰ for
the intercept generously makes allowance for such far-
fetched possibility, effectively rendering this prior dis-
tribution non-informative.

(c) The prior median for τψ is set equal to the median of the
absolute values of the residuals from a line fitted to the
{δVPDB,S j(

13C)} as a function of the {δNMIA,S j(
13C)}, and

similarly for τϕ but for the residuals from a line fitted to
the {δNMIA,S j(

13C)} as a function of the {δVPDB,S j(
13C)};

justification: the prior expectation is neutral about
whether dark uncertainty is or is not needed, best to
model the variability of the measured values (separately
for the {δVPDB,S j(

13C)} and for the {δNMIA,S j(
13C)}). The

choice for these prior medians captures that ‘neutrality’
by recognizing that the absolute values of the vertical
or horizontal residuals are the benchmarks for deciding
whether components of dark uncertainty are called for.

(d) The prior median for the true variances corresponding to
the reported standard uncertainties {u (δVPDB,S j(

13C))} is
set equal to the squared median of these standard uncer-
tainties, and similarly for the true variances corresponding
to the {u (δNMIA,S j(

13C))}.

justification: the established, typical repeatability of
mass spectrometry implies that this choice gives a very
wide margin to the true variances, and in fact makes the
prior only very weakly informative.

6.2. Prediction of δ(13C) in urine sample

The measurement campaign was seeking the carbon isotope
delta value of testosterone, δVPDB,T(13C), in a human urine
sample denoted T. The measurement results were δNMIA,T(13C)
= −26.87 ‰ with u (δNMIA,T(13C)) = 0.124 ‰/

√
8, based on

7 degrees of freedom.
The predicted value is θ̂T = −0.240‰ + 0.995 ×

(−26.87 ‰) = −26.98 ‰ where −0.240 ‰ and 0.995
(table 7) are the intercept and slope of the EIV regression line
depicted in figure 6 that corresponds to the model with dark
uncertainty along both axes, and θT is the counterpart of the
{θ j} in equation (4).

The uncertainty associated with the predicted value is eval-
uated using a Monte Carlo method that produces a sample of
size K from the probability distribution of δVPDB,T(13C), whose
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implementation in R code is listed in figure A5. The values in
this sample are of the following form, for k = 1, . . . , K:

ηT,k = δNMIA,T(13C ) + (τ̃ ϕ,k × ak) +
(
u(δNMIA,T(13C) )

× tk/
√
νT/(νT − 2)

)
, and

θT,k = β̃1,k +
(
β̃2,k × ηT,k

)
+ (τ̃ ψ,k × bk),

(5)

where ak and bk denote independent drawings from a Gaus-
sian distribution with mean 0 and standard deviation 1, τ̃ ϕ,k

and τ̃ ψ,k denote drawings from the posterior distributions of
the two components of dark uncertainty (which were gener-
ated during MCMC sampling using the Stan and R codes in
figures A3 and A4), νT denotes the number of degrees of free-
dom supporting u (δNMIA,T(13C)), β̃1,k and β̃2,k denote drawings
from the posterior distributions of the intercept and slope of the
analysis function (also generated during MCMC sampling),
and tk denotes a value drawn from a Student’s t distribution
with νT degrees of freedom.

The uncertainty evaluation for δVPDB,T(13C) is based on
the {θT,k}, and takes into account the fairly small number of
degrees of freedom supporting u (δNMIA,T(13C)), as well as both
components of dark uncertainty. Since the probability distribu-
tion of the {θT,k} has fairly heavy tails, the standard uncertainty
is evaluated employing a robust, highly-efficient alternative to
the standard deviation that is implemented in R function Qn
defined in package robustbase [27, 36], which yields stan-
dard uncertainty 0.44 ‰. Its counterpart when dark uncertainty
is neglected amounts to 0.08 ‰.

The standard uncertainty is appreciably smaller than
the WADA requirement that it should not exceed 0.7 ‰

[42, table 1]. A 95% prediction interval for the true isotope
delta value of the sample ranges from−27.93 ‰ to −26.01 ‰,
and the corresponding expanded uncertainty for 95% coverage
is 0.96 ‰. Since 0.96/0.44 = 2.18, this uncertainty evaluation
is effectively based on 12 degrees of freedom.

7. Conclusions

The modified EIV regression models described in sections 3
and 6 serve to reconcile measurement results that may be found
to be mutually inconsistent when building a KCRF or an anal-
ysis function for value assignment either to a gas mixture or to
a steroid δ(13C) value in a urine sample.

By entertaining a yet unrecognized, possibly composite
source of uncertainty, whose contribution is quantified by the
dark uncertainty, along one or both axes of the regression,
mutual consistency is achieved. However, accomplishing this
enacts a cost in uncertainty surrounding this function, which
becomes larger than it would have been if the ‘extra’, dark
uncertainty had been disregarded. Both figures 1 and 6 depict
this fact.

Concerning KCs, the inference our model and analysis sub-
stantiate, about the participants’ ability to deliver measurement
services of quality consistent with the uncertainty claims sub-
mitted to the KC, is meaningful only when the dark uncertainty
is taken into account.

Whether dark uncertainty should be quantified using a sin-
gle estimate of τ that applies to all measurement results equally
(eiv-dark), or using different estimates of τ for different sub-
sets of the results (eiv-shades), depends on the roles that the
evaluation of dark uncertainty is intended to serve.

Before we discuss these roles, below, we will note that
all meta-analyses conducted in medicine that we have had a
chance to examine over the years, entertain a single, common
estimate of dark uncertainty, which there is named heterogene-
ity [17] and is quantified in sundry ways [16]. This fact is
relevant because meta-analysis in medicine is closely compa-
rable, methodologically, to the interlaboratory studies, includ-
ing KCs, that are carried out in measurement science [37].

A single τ , applicable to all participants generally, is gen-
eralizable to characterize the state-of-the-art in the community
of laboratories that the participants represent, even if the par-
ticipants are not a simple random sample drawn from such
community. Furthermore, a single τ also functions as an index
that allows tracking the performance of that community over
time, and succinctly summarizes their collective progress.

Shades of dark uncertainty, on the one hand describe more
precisely and pointedly the degrees to which individual par-
ticipants seem to be consistent with the consensus value, and
with one another, which are principal goals of a KC, differently
from a typical meta-analysis in medicine. On the other hand,
because shades of dark uncertainty are specific to the individ-
ual participants, they do not lend themselves to generalization
to the wider community that the participants originate from.

Acknowledging the presence of dark uncertainty and eval-
uating and propagating it, ultimately contributes to a realistic
indication of the dispersion of values to be expected when this
type of measurement is made by multiple laboratories whose
capabilities are similar to those demonstrated in CCQM-K53.
When dark uncertainty is both statistically and substantively
significant, it may be unrealistic for these laboratories subse-
quently to claim measurement capabilities at the levels of their
reported uncertainties.

However, the extent to which the dark uncertainty that is
detected and quantified in a key comparison should impact
claims of calibration and measurement capabilities (CMCs),
involves both technical and policy considerations that only the
overseeing Consultative Committee can determine.

Concerning determinations of isotope delta values, and sim-
ilar tasks in analytical chemistry as well as in other fields
where EIV should be employed routinely: properly taking
into account contributions from all apparent sources of uncer-
tainty, including those that can be evaluated only in a top-
down manner [31, (3f)] and whose contributions were not
accounted for in the reported uncertainties, yields more realis-
tic uncertainty evaluations than when perceptible contributions
are disregarded.

The EIV model that disregards dark uncertainty predicts the
same isotope delta value for the urine sample considered in
subsection 6.2, but the associated standard uncertainty is only
0.08 ‰, which is 5.5 times smaller than its counterpart for the
EIV model that takes dark uncertainty into account. In this
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Figure A1. Stan code that implements MCMC for the model in equation (2) fitted to the measurement results from CCQM-K53. The
variable taux represents the dark uncertainty τ for the amount fractions of oxygen in nitrogen.

Figure A2. R code that executes the Stan code listed in figure A1, which is assumed to have been assigned to eivModel as a character
string. The vectors x and ux have the amount fractions and associated standard uncertainties listed in the second and third columns of
table 1, and r and ur have the corresponding values for the ratios of instrumental indications listed in the same table.
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Figure A3. Stan code that implements MCMC for the model in equation (4) that was fitted to the isotope delta values in table 2. The vectors
x, ux and nux have the values listed in the second, third, and fourth columns of this table. The vectors y, uy and nuy have the values listed
in the fourth, fifth, and sixth columns. The values of x are plotted along the vertical axis in figure 6, and the values of y are plotted along the
horizontal axis. taux represents the standard deviation, τψ , of the {ψ j} in equation (4), and tauy represents τϕ.

situation, a smaller uncertainty does not signify higher qual-
ity, being the result of ignoring contributions from important
sources of uncertainty.

The measurement discussed in section 6 employs multi-
point calibration involving eight standards, a much larger
number than most laboratories use in routine work support-
ing verification of compliance with WADA rules for athletes

participating in sports events where such rules apply. And it
also demonstrates a higher level of sophistication, both in ana-
lytical chemistry and in data reductions, than are common in
such routine work, which focuses on differences of isotope
delta values between paired target and endogenous steroids,
rather than aim to produce a determination that is traceable to
a suitable standard of reference, VPDB in this case.

14
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Figure A4. R code that executes the Stan code listed in figure A3, which is assumed to have been assigned to eivModel as a character
string.

Figure A5. R code that predicts the value of δVPDB(13C) in the urine sample and that evaluates the associated uncertainty.

The modified EIV model is most conveniently and safely
fitted using a Bayesian formulation and MCMC sampling,
because this addresses the challenge posed by the typically
small number of data points per parameter being estimated,
and ensures a thorough exploration of the space of possible
values for the parameters before developing specific estimates
for them.

The Bayesian approach offers the additional advantage
of producing all the ingredients necessary for the subse-
quent uncertainty evaluations, using the results from MCMC
sampling, not only for the EIV regression line, but also
for the DoEs in the case of CCQM-K53, and for the

isotope delta value assigned to the testosterone in the urine
sample.

When DoEs are in scope, as they are for the illustrative
reanalysis of the measurement results from CCQM-K53, and
they are determined by a KCRF computed using the EIV meth-
ods proposed in this contribution, then they are estimated by
the ‘vertical’ residuals defined above and illustrated in figure 2.

Classical EIV regression models can be non-identifiable
[35], a shortcoming that the Bayesian approach overcomes
with superlative ease and elegance when it uses proper prior
distributions, as we have done throughout. A Bayesian for-
mulation also effectively regularizes what can be an ill-posed
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problem, or a problem with multiple solutions, and delivers
the solution that is most likely in light of the data and with due
consideration for relevant, prior knowledge about the problem.

Reliance on statistical models that are able to quantify
excess variability, which throughout we call ‘dark uncertainty’
but that is also known as heterogeneity or mutual inconsis-
tency, makes interlaboratory studies, KCs in particular, more
inclusive than when the only way of coping with excess vari-
ability involved setting some measurement results aside, often
for no better reason than their appearing not to belong with
the bulk of the others. Proper accounting for excess disper-
sion makes these comparisons also more rigorous and realis-
tic. The same enhanced inclusivity also facilitates reliance on
multi-point calibration in challenging applications in analyti-
cal chemistry like those illustrated in section 6.
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Appendix A. Stan and R computer codes

The Stan code listed in figure A1, and the R code listed in
figure A2, were used to fit the model described in sections 3
and 4 to the measurement results from CCQM-K53 that are
listed in table 1. The R code in figure A2 assumes that the
Stan code in figure A1 has been assigned to the R variable
eivModel as a character string, including the line breaks.

The Stan code listed in figure A3, and the R code listed
in figure A4, were used to fit the model described in subsec-
tion 6.1 to the measurement results for δ(13C) that are listed in
table 2. The R code in figure A4 assumes that the Stan code in
figure A3 has been assigned to the R variable eivModel as a
character string, including the line breaks.

The R code listed in figure A5 is used to produce the results
described in subsection 6.2: the value of δVPDB(13C) for the

sample of interest, and the associated uncertainty, expressed
both as the standard measurement uncertainty and as a 95%
credible interval for the corresponding true value.
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