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In ultracold-atom experiments, data often comes in the form of images which suffer informa-
tion loss inherent in the techniques used to prepare and measure the system. This is particularly
problematic when the processes of interest are complicated, such as interactions among excitations
in Bose-Einstein condensates (BECs). In this paper, we describe a framework combining machine
learning (ML) models with physics-based traditional analyses to identify and track multiple soli-
tonic excitations in images of BECs. We use an ML-based object detector to locate the solitonic
excitations and develop a physics-informed classifier to sort solitonic excitations into physically mo-
tivated subcategories. Lastly, we introduce a quality metric quantifying the likelihood that a specific
feature is a longitudinal soliton. Our trained implementation of this framework, soldet, is publicly
available as an open-source python package. soldet is broadly applicable to feature identification
in cold-atom images when trained on a suitable user-provided dataset.

I. INTRODUCTION

Machine learning (ML) techniques promise improved
data analysis and enhanced performance for today’s
quantum devices and technologies. Ultracold atomic
gases are a nearly ideal system to deploy ML-driven anal-
ysis, where the automated exploration and interpreta-
tion of a very large dataset, in the form of images, can
lead to scientific enhancements and experimental opti-
mization [1] as well as new discoveries. Here we focus on
the general problem of feature identification, a commonly
recurring task in the analysis of such data, from locating
vortices [2–4] or tracking solitons [5, 6], identifying spin
textures or magnetic domain walls [7–9] to locating topo-
logical singular points [10]. While data from these exam-
ples have been individually analyzed using task-specific
algorithms (or even manual inspection), they are all fea-
ture identification problems that can be solved using a
single ML-enhanced analysis framework. This paper in-
troduces such a framework, and demonstrates its utility
on the specific problem of identifying solitonic excitations
in atomic Bose-Einstein condensates (BECs), as well as
quantifying the quality of each identified feature.

Traditional statistical analysis using physics-based
models, such as least-square fitting and hypotheses test-
ing, have been go-to techniques for data analysis since the
1800’s [11] and remain widely applied in quantum cold-
atom image analysis [12–14]. The outcome of physics-
model-based algorithms and fits are intuitive, physically
meaningful, and can help identify patterns present in the
data; even fits based on more heuristic functions can have
coefficients that are derived in obvious ways from the
data. By contrast, ML methods work as “black boxes,”
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making their operation difficult to interpret. Conven-
tional statistical methods use fixed algorithms in con-
junction with preconceived models for data reduction.
Overfitting occurs when the number of fit parameters is
comparable or larger than the number of independent
data points. In this context, the process of training an
ML tool essentially codesigns the fitting algorithm and
the data model, as encoded by a large number of inter-
nal parameters. Training ML models is itself a fitting
process that can be susceptible to overfitting, for exam-
ple when the training dataset has too little variability or
the ML model has too many internal parameters. ML in-
volves a class of data-driven techniques that do not rely
on preexisting models, but also add additional opportu-
nities for overfitting that can make them less reliable on
new data than conventional techniques.

Here, we describe the hybrid two-module feature iden-
tification framework shown in Fig. 1, that combines the
flexibility of ML techniques with the intuition and ro-
bustness of conventional fitting methods. Furthermore
the separate outputs of these two very different modules
allow us to assess data quality by cross-validation. Hy-
brid approaches have been employed in other settings,
for example for landslide prediction [15], medical image
processing [16], and cyber attack detection [17].

The framework begins with a labeled dataset that is
used to train the ML module and initialize the physics-
based module. Before trusting either module, we inde-
pendently validate each module on a subset of the labeled
data that was not used for training. Model redesign may
be needed until satisfactory performance of each mod-
ule is reached. We then combine both modules into an
integrated system able to analyze new data.

We demonstrate the performance of our framework
using data from atomic BECs, quintessential quantum
systems. Quantum research with BECs, and cold-
atom quantum gases more broadly, is multifaceted with
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FIG. 1. Overview of the framework. The colored arrows link the preparation (Secs. II A, II B, and IIC), validation (Secs. IIIA
and III B), and application (Sec. IIID) phases of the framework. The red path represents the preparation and implementation
of the physics-based-approximation module of the framework. The blue path represents the ML modules.

examples ranging from realizing collective many-body
physics [18] to creating today’s most accurate atomic
clocks [19]. In the vast majority of these experiments,
data is acquired in the form of noisy images that typically
have undergone evolution, such as a time of flight, before
measurement. This often obfuscates the computation of
the quantities of interest. Cold quantum gases therefore
make an ideal testbed for our methodology that combines
physically motivated, but heuristic, fitting functions with
established computer vision techniques.

We focus on the specific problem of locating dark
solitons (spatially compact excitations that manifest
as reductions in the atomic density) as they move in
BECs [13, 20, 21]. This allows us to leverage our es-
tablished soliton dataset [22, 23] to train and validate
our framework; representative elements of the dataset
are shown in Fig. 2. These data consist of elliptical
atom clouds (top row) where solitons appear as verti-
cally aligned density depletions (bottom row). Not all
vertically aligned density depletions are created equal:

deep depletions mark the location of slowly moving kink
solitons; shallow depletions are associated with rapidly
moving kink solitons or “longitudinal” solitonic vortices
(where the vortex core is aligned in the image plane);
asymmetric depletions can result from “transverse” soli-
tonic vortices [24] (where the vortex core is aligned per-
pendicularly to the image plane); and chains of stripes
can result from highly excited phonon modes. Our frame-
work is a tool that can automatically locate all the soli-
tonic excitations in each image and distinguish between
longitudinal solitons and transverse solitonic vortices.
Here we introduce the term “longitudinal soliton” to in-
clude both kink solitons and longitudinal solitonic vor-
tices.

Our ML module leverages and extends established
computer vision techniques. Computer vision is a broad
field with applications ranging from image classification
to semantic segmentation and object detection [25]. Ob-
ject detection refers to the capability of software systems
to locate and identify objects in an image. Convolutional
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FIG. 2. Representative data. The top panels plot preprocessed images from our dataset and the bottom panels plot profiles:
profile of full image (green), TF fits (black), density fluctuations (blue). The red lines mark the location of the deepest depletion
in the density fluctuations, while the orange lines mark the soliton locations found from our OD. (a) An element of the no-
excitation class. (b) Three elements of the single-excitation class: (i) a single longitudinal soliton, (ii) an off-center longitudinal
soliton, and (iii) a solitonic vortex. (c) Two representative elements of the other excitations class.
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neutral networks (CNNs) underlie solutions to all of these
tasks, and unsurprisingly were employed in our previous
work classifying soliton image data into three categories:
no solitonic excitation, one solitonic excitation, and other
excitations [22]. Our ML module goes beyond simple
classification and uses a CNN-based object detector (OD)
to provide the location of all candidate excitations in a
given image.

By contrast our physics-based module employs a least-
squares fit of an inverted and skewed Mexican-hat func-
tion to one-dimensional (1D) background-subtracted pro-
jections of soliton candidates (shown in bottom row in
Fig. 2). We initialized this module using our previously
labeled single soliton data and employ a Yeo-Johnson
transformation [26] to produce a multivariate normal dis-
tribution yielding the likelihood that an unknown feature
is a soliton.

This approach yielded three immediate benefits. First,
a careful analysis of the coefficients from the physics
based-module identified previously overlooked correla-
tions that allow us to distinguish between some solitonic
excitations (longitudinal solitons and transverse solitonic
vortex [20, 21, 24, 27]). Second, combining the results of
the ML and fitting modules allowed us to automatically
create a larger, more reliable dataset that includes fine-
grained information such as the soliton position and type
of excitation. This dataset is described in Ref. [28] and
published in the NIST data repository [23]. Third, our
hybrid framework was prepared solely from a training
dataset whose images contain either zero or one solitonic
excitation; however, it is performant on complex data
containing multiple excitations.

The remainder of this paper is structured as follows:
Section II introduces both modules and describes their
training and initialization. Section III describes the
validation of both modules and their performance on
new data that include multiple solitonic excitations. In
Sec. III E, we describe an open-source python reference
implementation of our framework: soldet [29]. Lastly,
in Sec. IV we conclude and discuss the potential appli-
cations of the framework as well as the possible future
directions.

II. DATA AND MODULES

In addition to the recent success of ML methods [22,
30, 31], solitonic excitations have also been located and
characterized using traditional fitting techniques. For
example, Ref. [13] began with the background-removed
atom density profiles (blue curves in Fig. 2) described in
Sec. II A, then identified the deepest depletion (orange
dashed line), and fit to a Gaussian function (a physi-
cally motivated, but heuristic choice) centered near the
deepest depletion. This yielded physical information in-
cluding soliton width, depth, and position. Unfortu-
nately, this simple approach is failure prone, as for ex-
ample in Fig. 2(b)(ii), where the deepest depletion is far

from the actual soliton. Moreover, it detects only single
solitonic features, making human intervention necessary
when many excitations are present. Rather than finding
the deepest minimum, our framework first uses an OD
(described in Sec. II B) to provide an initial estimate of
all solitonic excitation positions, and then uses a skewed
Mexican-hat fit function (Sec. II C) that accurately de-
scribes their density profiles. The resulting fit coefficients
serve two purposes: qualitative likelihood assessment and
fine-grained categorization.

A. Data

Our framework is trained and initialized using a revised
dataset consisting of about 5.5 × 103 manually labeled
experimental images of BECs with and without solitonic
excitations [23, 28]. The experimental setup and prepro-
cessing techniques are described in [13].

Figure 2 shows six selected sample images from the la-
beled dataset. The dataset includes labels for five classes:
“no solitonic excitation,” images that do not contain any
excitations; “single solitonic excitation,” images contain-
ing one solitonic excitation; “other excitations,” images
not in the preceding classes (including those with multi-
ple solitonic excitations, high degrees of noise, and those
annotators could not agree on); “mislabeled”, data de-
termined to be potentially mislabeled during the cura-
tion process; and “unlabeled,” images that have not been
manually annotated. Additionally, for the single excita-
tion class the dataset includes the horizontal position of
excitations within BEC.

Figure 2(a) displays an image from the no excitation
class, which lacks the pronounced stripes present in the
remaining examples. In (b), we show three elements of
the single excitation class, each containing a single dark
vertical fringe: (b)(i) a longitudinal soliton; (b)(ii) an
off-center single longitudinal soliton; and (b)(iii) a soli-
tonic vortex. In (c), we show two elements of the other
excitations class containing more than one vertical fringe.

Horizontal 1D profiles (bottom row of Fig. 2) also have
features associated with vertically aligned solitonic exci-
tations and are amenable to least-squares fitting. We
obtain these profiles by first summing the pixel values
vertically to compress two-dimensional (2D) images to
1D; this sum can be over all (green curves) or part (see
Sec. II C 1) of the vertical extent of the image. We then
fit a 1D Thomas-Fermi (TF) model

nTF(i) = n0 max

{[
1−

(
i−i0
R0

)2]
, 0

}2

+ δn (1)

to each summed 1D profile, where i is the horizontal pixel
index, and n0, i0, R0, and δn are fitting parameters repre-
senting peak density, center position, TF radius, and an
overall offset, respectively. This fit (black curves) serves
as an overall background that we subtract from the 1D
profiles, leaving behind the 1D density fluctuations (blue
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curves). The orange dashed lines represent the location
of deepest depletion in the 1D fluctuations.

B. ML modules

Our previous dark soliton classifier [22] consisted of a
CNN model that returned one of the three predefined
classes: no solitonic excitation, single solitonic excita-
tion, or other excitations. However, this detector did not
locate the excitations. To compare with experimental
data, we located the soliton by identifying the deepest
depletion and fitting to a Gaussian, as described above.
This algorithm has two limitations: (1) The soliton may
not be the deepest depletion [as in Fig. 2(b)(ii)]; and
(2) multiple solitons cannot be located [as in Fig. 2(c)].
Here we retain the CNN classifier to globally organize the
data, but inspired by a highly successful recent result us-
ing an OD to locate vortices in numerically simulated 2D
BECs [30], we employ an OD to locate solitonic excita-
tions in experimental images of highly elongated BECs.

The OD complements the CNN classifier in two ways:
(1) it identifies soliton positions rather than classifying;
and (2) even though it is trained with single-soliton data,
it can locate multiple excitations in the same image. We
employ a neural network based OD with six convolution
layers and four max-pooling layers but no fully connected
layers (see the Appendix A for more details). The OD
has an order of magnitude fewer trainable parameters
than our previous CNN (7 × 104 versus ∼ 106 param-
eters), accelerating the training process and making it
lightweight to deploy. Because the OD simply requires
a dataset with many representative instances of the ob-
ject to be detected, it requires far less training data than
the CNN classifier (which by design required substantial
data from all considered classes).

In our data, the solitonic excitations are roughly four
pixels in width. Since our images are 164 pixels wide,
we designed our OD to aggregate the image into 41 spa-
tial cells, each with two outputs in the range [0, 1]; the
OD therefore returns a 41× 2 array Ỹ. For our dataset
this aggregation guarantees that each output cell can de-
scribe the state of at most one soliton. Ỹ`,1 is a proba-
bility estimate that cell ` contains a soliton, and Ỹ`,2 is
the fractional position of the soliton center within that
cell, where 0 or 1 correspond to the left or right edge of
the cell, respectively. The OD considers any cell with
Ỹ`,1 > 0.5 as containing an excitation, and then obtains
its position from Ỹ`,2.

When comparing to the training dataset with labels
denoted by Y, we use the cost function [30]

F =

41∑
`=1

{
−w1 log(Ỹ`,1) + w2(Y`,2 − Ỹ`,2)2, if Y`,1 = 1

− log(1− Ỹ`,1), if Y`,1 = 0

(2)

for each training image, where the label Y`,1 identifying
the presence of an excitation in a cell is fully confident,

i.e., either 0 or 1. The coefficients w1, w2 are hyperpa-
rameters controlling the relative importance of each term.
The logarithmic terms increase the cost function when
the OD misidentifies solitons, while the quadratic term
contributes when a soliton is mislocated within a cell.
Our training set uses images with at most one soliton, so
cells with Y`,1 = 1 are much less frequent than those with
Y`,1 = 0; as a result we expect that w1, w2 � 1 to give
similar overall weight to the three terms in Eq. (2). We
train the OD by minimizing the cost function summed
over all training images, updating the predicted OD val-
ues Ỹ in each iteration. Because the cell size is compa-
rable to the soliton size, a single soliton can span two
cells. To prevent double counting, we merge detections
occurring in adjacent cells and take the position to be
their average.

We deem the OD’s detection successful if our training
data contains a labeled soliton close to the detected one
(within three pixels in our implementation). The two
failure modes are failing to detect a solitonic excitation
and reporting an excitation that is not present.

C. Physics-based modules

In this section, we introduce our physics-based mod-
ule that uses constrained least-squares fitting to estimate
soliton parameters, and following a Yeo-Johnson trans-
formation [26], produces a quality estimate giving the
likelihood of a given feature being solitonic.

We fit the Ricker wavelet [32], i.e., a Mexican-hat func-
tion

f(i) = δn − nTF(ic)A exp
[
− 1

2

(
i−ic
σ

)2]
×
[
1− a

(
i−ic
σ

)2
+ b

(
i−ic
σ

)]
, (3)

to the 1D density fluctuations described Sec. IIA, where
nTF(ic) is evaluated with δn = 0. The function takes six
parameters: normalized logarithmic amplitude A, center
position ic, width σ, logarithmic symmetrical shoulder
height a, asymmetrical shoulder height b, and an offset
δ. When a and b are zero this function is a simple Gaus-
sian, making a nonzero adds symmetric shoulders to the
distribution, and b introduces an asymmetry. Our soli-
tonic features are well described by this function; since
our excitations manifest as density depletions, the second
term in Eq. (3) is negative.

Our constrained least-squares fit requires initial
guesses for all of these parameters. The guess for the cen-
ter position ic also provides the initial guess for A by set-
ting it equal to the 1D density fluctuations evaluated at
ic. We found the initial values σ = 4, a = 0.2, b = 0, and
δ = 0 to lead to convergent fits across the whole dataset.
In order to produce reliable fits we apply the following
constraints: ic must remain within three pixels from the
initial guess, 10−13 < A < 104, and 10−13 < a < 104 to
prevent numerical fitting errors.
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1. Physics-informed excitation classifier

Many candidate solitonic excitations are not vertically
symmetric as might be expected [see, e.g., Fig. 2(b)(iii)].
The location of the largest “shoulder” in the top half of
the excitation is reversed with respect to the bottom half;
in addition, the location of the minimum is slightly dis-
placed going from the top half to the bottom. Inspired
by these differences, we bisect each image into top and
bottom halves (labeled by + and −, respectively) and
separately apply the Mexican-hat fit to fluctuations in
these data, giving vectors Θ±. Using this observation,
we develop a physics-informed excitation (PIE) classi-
fier based on the single-soliton dataset and discover that
correlations between these vectors allow for a more fine-
grained excitation classification.

Figure 3 shows the distribution of parameters from a
single-soliton dataset that were useful for classifying ex-
citations. No meaningful correlations were found for pa-
rameters σ± and a±, thus these did not assist in classifi-
cation. The markers in the top panel show the amplitude
ratio ρA = A+/A− versus the top-bottom position differ-
ence δic = i+c −i−c , and show that they are not correlated.
By contrast, the bottom panel shows that the asymmet-
ric shoulder height difference δb = b+/σ+ − b−/σ− is
clearly anticorrelated with δic. Both panels are colored
based on the cut-off points discussed in Sec. III B (see
also Fig. 5).

This distribution and its correlation guide the classifi-
cation rules described in Sec. III B, yielding a PIE clas-
sifier based on cutoffs defined by human examination of
the data.

2. Quality estimation

Here we describe a quality estimate that a candidate
excitation in an image is solitonic. We derive the likeli-
hood that a vector of fit outcomes Θ = [A, ic, σ, a, b] is
drawn from a k = 5 dimensional prior distribution span-
ning the set of representative solitonic excitations [33].
Ideally this distribution would be an uncorrelated multi-
variate normal distribution, but it is not. As a result, we
developed the following procedure to bring the distribu-
tion into this desired form.

We first fit a Yeo-Johnson power transformation [26]
to each separate parameter distribution (having summed
the five-dimensional distribution along the remaining pa-
rameters) to transform them into independent zero-mean
1D Gaussian distributions with unit variance. Note that
this treatment cannot transform the parameter distribu-
tions into perfect Gaussians; nevertheless, each resulting
distribution is balanced, contains a single peak, and has
long tails. The covariance matrix Σk is uncorrelated af-
ter this treatment and the distribution is qualitatively
Gaussian in shape.

To calculate the quality estimate for a candidate exci-
tation detected in an image, we
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FIG. 3. Correlations between parameters implemented in PIE
classifier. The top panel shows the distribution of center po-
sition difference versus the amplitude ratio (on a logarith-
mic scale). The bottom panel shows the correlation between
the center position difference and the asymmetrical shoulder
height difference for the gray points from the top panel. Both
panels are colored based on the cut-off points discussed in
Sec. III B.

1. fit the subtracted background 1D profile to
Mexican-hat function given in Eq. (3) to obtain Θ;

2. use the established power transformation on Θ to
obtain Θ′; and

3. return the quality estimate: M(Θ′) = 1 −
χ2
k

[
D2(Θ′)

]
, the likelihood between 0 and 1 that

the excitation is solitonic.
The chi-squared cumulative distribution function χ2

k(p)
relates the Mahalanobis distance [34] D2(Θ′) =
Θ′†Σ−1k Θ′ to the likelihood that an outcome was drawn
from the specified distribution [35]. D(Θ′) is unbounded
above and decreases to zero as Θ′ approaches 〈Θ′〉, the
average over the prior distribution.

III. RESULTS

A. ML modules

We train both the CNN classifier and the OD using
the refined dataset with added soliton position labels
(see Ref. [28]). The CNN classifier is trained using the
full dataset while the OD training uses only the no soli-
tonic excitation and single solitonic excitation classes.
We assess the performance of both modules using five-
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FIG. 4. OD performance compared to ground truth (top), and
the CNN classifier prediction (bottom). For ground truth and
the CNN classifier, the ticks ‘0,’, ‘1,’ and ‘other’ represent no,
single, and other excitation classes. For OD, ticks represent
the total number of positive excitations within an image.

fold cross-validation, that is using 80 % of the data to
train a given module and the remaining 20 % to test it,
and repeating the process five times to fully cover the
dataset (see the Appendix A for training details).

The results are summarized in the two cumulative con-
fusion matrices plotted in Fig. 4. The top panel compares
the outcome of the OD to the initial labels, showing near
perfect delineation between the no excitations and single
excitations classes. However, the OD further subdivides
the other excitations class, counting anywhere from zero
to four candidate solitonic excitations within it. This re-
sults from the existence of excitations in this class that
are not solitonic, as well as the possibility of having mul-
tiple solitons in the same image. The analogous com-
parison to CNN classification labels in the bottom panel
is nearly indistinguishable from the one presented in the
top panel, evidencing the quality of the CNN predictions.

Together, these ML tools effectively classify these data
and locate excitations; however, they do not provide any
fine-grained information on the nature or the quality of
the identified excitations. This is addressed in the fol-
lowing sections.

B. PIE classifier

The PIE classifier operates by applying a sequence of
“cuts” driven by different combinations of the top-bottom

A cut: 

δb cut: δi c  cut: 

Top  “Partial”: 378

Bottom “Partial”: 418

↻ Vortex: 28
↺ Vortex: 38

 
A cut: 

δb cut: δi c  cut: 

Top  “Partial”: 378

Bottom “Partial”: 418

↻ Vortex: 28
↺ Vortex: 38

 Canted: 121
Weaker
    cut: 147

δb

Longitudinal
Soliton: 2229

3212

2416 2376

FIG. 5. The flow of the PIE classifier with example images
for classification categories. Flow pathways and nodes are
square-root scaled.

fit outcomes Θ±. The exact parameter values described
below are arrived at manually by exploring the data ac-
cepted and rejected by the cut to minimize the number
of false-positive longitudinal soliton identifications.

The following cuts are applied sequentially, and the
PIE classifier stops as soon as a classification is assigned.

A cut: The amplitude parameters A±, and their ratio ρA
allow us to identify excitations that do not span the
whole cloud. Data with ρA > 1.57 are classified
as “top partial excitation” and those with 1/ρA >
1.57 are classified as “bottom partial excitation.”
This threshold identifies large fractional jumps in
depth between the top and bottom that likely are
off-axis solitonic vortices. Applying A cuts first is
important because partial excitations interfere with
the subsequent steps.

δb cut: Figure 2(b)(iii) illustrates a case with large shoul-
der height difference δb; Ref. [27] showed that such
data result from solitonic vortices. As a result, we
classify data with δb > 0.75 as “counterclockwise
solitonic vortex” and δb < −0.53 as “clockwise soli-
tonic vortex.”

δic cut: Since longitudinal solitons have a vertically
aligned density depletion [36], we classify data with
−3.0 < δic < 1.14 as “longitudinal soliton.”

Weaker δb cut: Figure 3 shows that differences δic and
δb = b+/σ+ − b−/σ− are anticorrelated, indicating
that asymmetries in position and shoulder height
are related. A closer look at Fig. 2(b)(iii) indicates
that it is such a case, with δic < 0 and δb > 0.
We therefore add images with δic < −3.0 and δb >
0.61 to the counterclockwise solitonic vortex class
and those with δic > 1.14 and δb < −0.41 to the
clockwise solitonic vortex class.

Other data: The remaining images have δic 6= 0 but δb ≈
0 are labeled as “canted excitations,” likely kink
solitons in the process of decay.
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The flow chart in Fig. 5 shows the application of this
classifier to a single-soliton dataset. We found that of
the initial 3 212 images, about 1/3 failed a cut and were
rejected as longitudinal soliton candidates.

This classification was also used in the preparation of
Ref. [28] in which we present a refined soliton dataset,
which includes improved single longitudinal soliton la-
bels. The cuts above are fairly aggressive to avoid false
positives in the longitudinal soliton classification. This
implies possible misclassification in the other categories
in order to ensure a high quality longitudinal soliton sub-
set and a reliability of the quality metric.

C. Quality estimator

The quality estimator is initialized on the subset of the
single excitation class identified as longitudinal soliton
using the PIE classifier. Figure 6(a) shows the power-
transformed distribution of Mexican-hat fit coefficients
Θ′, with nontransformed coordinates marked on the top
axis for reference. As would be expected, the data from
the initialization dataset (orange) are nearly normally

distributed; interestingly, the remaining elements of the
single excitation class (partial solitons, canted excita-
tions, and solitonic vortices, as labeled by the PIE filter)
collectively follow very similar distributions (green). By
contrast, the coefficients from every local minimum [37]
in the initialization set except solitonic excitations (blue
curve) obey a qualitatively different distribution.

Using this initialization, we compare quality estimates
M obtained from the single excitation class in Fig. 6(b).
The orange data show M for longitudinal solitons, and
as intended the majority of this data is associated with
larger values ofM . The green data for the remaining soli-
tonic excitations are nearly uniformly distributed, and
the nonsoliton minima (blue) are highly concentrated
at small M . We note that the small peak in longitu-
dinal soliton distribution near-zero M contains a negli-
gible fraction of the longitudinal soliton dataset (about
1.3 %). However, this peak is more pronounced for the re-
maining excitations, which is not surprising because the
power transform was initialized using longitudinal soliton
data. These distributions demonstrate the ability of the
quality estimator to discriminate between solitonic ex-
citations and other features in the data, reinforcing the
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FIG. 7. Performance of quality estimate on other excitation (orange) and mislabeled (red) classes. (a) Power-transformed
fit coefficient distributions, with untransformed variables labeled on the top axis. (b) Distribution of quality estimate of
all longitudinal solitons. (c) Representative images from the other excitation [(i),(ii)] and mislabeled [(iii),(iv)] classes, with
OD+PIE identified longitudinal soliton marked with arrows. The quality estimate for these excitations is as follows : M(i) =
[0.74, 0.86], M(ii) = [0.00, 0.01], M(iii) = [0.92, 0.02] (all from left to right), and M(iv) = 0.82.

importance of the PIE filter for fine-grained classification.
We quantify the performance of the quality estimator

in terms of the F1 scores plotted in Fig. 6(c), for longitu-
dinal solitons (orange) and all other solitonic excitations
(green). The F1 score for longitudinal solitons is maxi-
mized with a threshold of justM = 0.02 (stars); however,
in practice we minimized false positives and assign a fea-
ture to be solitonic when M > 0.2 (circles). This choice
gives only small change in the F1 score; however, it gives
a marked increase in precision with only a small reduction
in recall, as shown in the inset. The performance of the
quality estimate on the other solitonic excitations, while
far better than random, is subpar; this reemphasizes the
importance of the PIE classifier in our framework.

D. Application to other excitation and mislabeled
data class

Here we discuss the performance of our soldet frame-
work applied to two classes of data from the dark soliton
dataset: other excitations (1 036 images) and mislabeled
data (879 images). These classes consist of images with
multiple solitonic excitations, such as shown in Fig. 2(c),

as well as confusing structures that made human anno-
tation difficult. As such, they are an ideal test dataset
since they defeated previous labeling attempts.

As a reminder, after the CNN classification step, the
framework first uses the OD to locate all soliton candi-
dates that are then sorted by the PIE classifier. Here, we
focus only on features identified as longitudinal solitons.
Figure 7(a) plots the frequency of transformed Mexican
hat fit outcomes Θ′, giving distributions that for both
classes are qualitatively the same as those in Fig. 6(a)
for the labeled single solitons. By contrast, histograms
of the quality estimate for longitudinal solitons detected
in these two classes [panel (b)] have important differ-
ences. For the other excitations class (Nlongitudinal =
877, Nimages = 669), the distribution is nearly uniform,
with a potential increase for the higher quality estimates
(M > 0.4). For the mislabeled data (Nlongitudinal = 415,
Nimages = 398), on the other hand, the quality estimate
distribution follows a trend consistent with that observed
in Fig. 6(b).

To better understand this discrepancy it is important
to consider more carefully the differences between the two
classes. According to the OD module, nearly 78 % of im-
ages in the other excitation class contains two or more
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excitations. While for excitation spaced apart within the
BEC, as in Fig. 7(c)(i), the individual fits to Mexican hat
do not affected one another, the contrary holds for excita-
tion captured in close proximity, as shown in Fig. 7(c)(ii).
Qualitative differences between these images are quanti-
fied by the quality estimate. The quality estimates for
the two well separated excitation in image (i) is 0.74 and
0.86. In image (ii), in contrast, even though both excita-
tions are reminiscent of a longitudinal soliton, they are
assigned a low quality, with M(ii) = [0.00, 0.01] from left
to right. This is likely because the overlap in the adjacent
shoulders significantly affects the relative fits. Given that
the majority of data in this class contains multiple exci-
tations, the unusually high frequency of the low quality
is to be expected.

The mislabeled class, on the other hand, consists of im-
ages determined to be potentially mislabeled during the
manual annotation (see Ref. [28] for details about the
data curation process). These include over 320 images
that the annotators found confusing (but in which ODs
consistently found exactly one candidate excitation); over
190 images removed during curation from the single ex-
citation class; and about 30 images originally assigned to
the no excitation class (but in which the ODs also con-
sistently found exactly one candidate excitation). Unsur-
prisingly, in almost 83 % of these images the OD module
found only one excitation. Two representative images
from this set are shown in Figs. 7(c)(iii) and 7(c)(iv),
with M(iii) = [0.92, 0.02] and M(iv) = 0.82. The distribu-
tion of non-longitudinal soliton quality estimate, shown
in the inset in Fig. 7(b), is consistent with that depicted
in Fig. 6(b).

The performance on these qualitatively different test
sets emphasizes the power of soldet. By combining the
CNN and OD modules, soldet autonomously and reli-
ably locates multiple excitations within the BECs, which
goes beyond the traditional state-of-the-art deepest-
depletion-based approach. The PIE classifier enables fur-
ther systematic validation that the desired type of ex-
citation (here, longitudinal solitons) has been observed,
which previously required visual inspection of each ac-
quired image. Finally, the quality metric provides a
quantitative assessment of the excitation quality, further
reinforcing the classification reliability. Put together,
these tools provide a robust and reliable analysis frame-
work, capable of processing data significantly more com-
plex than possible given the current traditional state-of-
the-art approaches.

E. soldet: Open-source python package for
solitonic excitation detection

In this section, we describe our software package sol-
det that integrates both the ML modules (CNN classi-
fier and OD) with the fitting physics-based modules (PIE
classifier and quality estimator), as we described in pre-
vious sections. The above discussion showed that the ML

Quality
estimator

Add quality

CNN:0
OR

OD:0

Data

Terminate

CNN
classifier
Add label

YES

NO

YES

NO

Data
processing

Object
detector
Add label

PIE
classifier
Add label

LONGI-
TUDINAL

FIG. 8. The soldet flow chart. The black line follows
the soldet dataflow and contains the labels added by each
module (rectangles). Blue blocks represent ML modules; red
blocks represent physics-based modules.

modules classify images effectively and can accurately lo-
cate one or many candidate solitons. The physics-based
modules can sort these candidates into subclasses and
provide a quality estimate for longitudinal soliton can-
didates. Therefore, the ML and physics-based modules
contribute to the task of soliton detection in different
ways, and the soldet infrastructure leverages their com-
plementing strengths. We emphasize that soliton de-
tection is one of a larger class of feature identification
in quantum gases and that soldet was designed to be
broadly applicable.

The soldet distribution includes a CNN classifier,
OD, PIE classifier, and quality estimator trained and
initialized using the soliton dataset [23]. In addition, we
provide training scripts to enable the ready application to
user-defined data with custom preprocessors, ML models,
fitting functions, and even the overall process flow.

Figure 8 illustrates a single use of soldet for the spe-
cific example of longitudinal soliton detection, where the
individual blocks operate as follows:

Data processing: Preprocess raw data into a 164 × 132
image format that just encloses the elliptical atom
clouds [22]. The preprocessing particulars are not
generic and instead are specific to both our task as
well as the experimental parameters.

CNN classifier: Apply a trained CNN classifier to pro-
cessed data and yield labels no excitation, single
excitation, or other excitations.

Object detection: Apply trained OD to processed data
and yield a list of positions of solitonic excitations.
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CNN:0 OR OD:0: If either the CNN classifier or OD
finds no soliton, soldet terminates.

PIE classifier: The PIE classifier is applied to each soli-
tonic excitation.

Quality estimator: The quality estimator is applied to
each excitation identified as “longitudinal soliton”
by the PIE classifier.

This algorithm is designed to be usable in a laboratory
environment where one needs real-time identification, as
well as for automated labeling of large datasets, as in
Ref. [28].

IV. DISCUSSION AND OUTLOOK

Here we described a framework that adds to the grow-
ing ML quantum science and technology toolkit, with
additional recent developments including noise charac-
terization [38, 39]; quantum state detection [22, 30, 40–
48]; parameter space exploration and optimization [49–
54]; and quantum control [55, 56]. Together, these re-
sults show that ML techniques can extract information
from ambiguous data, efficiently search large parameter
spaces, and optimally control quantum systems.

Our high level framework combines ML methods with
physics-based analysis, providing an integrated platform
for studying experimental data. Our implementation of
this framework, soldet, currently targets the identifi-
cation, classification, and tracking of features in image
data generated by cold-atom experiments. We demon-
strated its initialization and performance using a pub-
licly available dark soliton dataset [28]. This investiga-
tion focused only on properties of individual images; how-
ever, the dataset also includes a label giving time elapsed
since the excitation’s were created. This opens the door
for studies correlating system control parameters and the
soldet labels.

While our initialization used only the no excitation and
single excitation classes, soldet’s feature detection suc-
cessfully generalizes the learned patterns. This is con-
firmed by its performance on the other excitations and
mislabeled classes that were not part of training, where
the CNN classifier gave ambiguous results and human
classifiers often disagreed. Going beyond simple classifi-
cation tasks, soldet allowed us to identify unexpected
structure in the data, enabling a fine-grained division of
the single excitation class into physically relevant sub-
classes, including solitonic vortices and partial solitons.

Moreover, for the multiple excitations class, the distri-
bution of the quality metric in Fig. 7 reveals a possible
correlation between the quality metric and the excita-
tions relative proximity. These observations illustrate the
power of our combined framework as a data analysis tool
for discovery.

An interesting application of soldet would be an off-
line optimization of the experimental setup. Such opti-

mization strategy, successfully implemented to, e.g., im-
prove fabrication of quantum dot devices [1], requires an
efficient analysis of large volumes of data to find the ap-
propriate correlations in a high-dimensional parameter
space. The ML toolbox described in our paper allows
one to automatically locate multiple solitonic excitations
in the same cloud and produces a fine classification that
goes beyond longitudinal solitons. An analysis of the cor-
relations between the various control parameter ranges
used in our experiments and the resulting class of data
(as determined by soldet) could enable a controlled gen-
eration of a desired number, type, and configurations of
excitations, with soldet integrated online to provide
real-time data analysis and control feedback. Another
interesting extension of this work would be to train an
OD on a dataset containing a single subclass found by
the PIE classifier, e.g., longitudinal solitons, or solitonic
vortices.

From the ML perspective, adding modules based on
unsupervised [57], active learning [58], and synthetic data
generation with generative models [59] may further en-
hance the performance of the soldet framework.

Going beyond solitonic excitations, the wakefield for
sub- and supersonic impurities moving in atomic super-
fluids have characteristic patterns that could be identified
by ML techniques [60–63]. This might be implemented
using a template-based method such as used in the Laser
Interferometer Gravitational-Wave Observatory (LIGO)
where a large set of numerical simulations provide a li-
brary of patterns to correlate with the data [64]. This
pattern matching is a form of object detection, and in
our context a CNN based object detector could also be
trained on such a template set. In this way, our method-
ology could be employed with a trained OD followed by
a LIGO-like algorithm playing the role of our quality es-
timator and PIE classifier.

In the final analysis, soldet improves the data anal-
ysis pipeline for feature identification and classification
problems in physically derived image data, but leaves the
remainder of the scientific discovery process unchanged.
For example, in our studies the PIE classifier module
provided a fresh way to process data and enabled us to
identify new patterns in the reduced data. The step be-
yond this is ML-driven discovery, where the identification
of previously unknown patterns and physical reasoning
are both implemented by ML. An emerging area of ML
is the derivation of effective hydrodynamic equations of
motion for biological, colloidal, and active fluids based
on time-series data [65]. Owing to the complexity of full
3D simulations of nonzero temperature BECs, this data-
driven approach could also be applied to create effective
kinetic theory of solitons as well as the hydrodynamics
of the underlying fluid.
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FIG. 9. Illustration of (a) OD and (b) CNN classifier neu-
ral network architectures. Yellow-orange boxes show convo-
lutional layers while orange-red boxes show max-pooling lay-
ers. The horizontal lengths of boxes represent the number
of filters and the other two dimensions represent the image
sizes. The horizontal blue and purple rectangles in (a) de-
note output vectors. Each cell of the blue vector describes
the probability that it contains a soliton and and the purple
vector contains the position of a soliton within the cell. And
the vertical blue-green rectangles in (b) are three fully con-
nected layers and the output layer. The lengths of edges are
logarithmically scaled.

TABLE I. The OD architecture parameters. The top four
rows are for the convolutional 2D layers and the three bottom
rows are for max-pooling 2D layers.

Layer 1 2 3 4 5 Output
Filter 8 16 32 64 128 2
Kernel 5×5 5×5 5×5 1×5 1×5 1×5
Padding Same Same Same Same Same Same
Activation ReLu ReLu ReLu ReLu ReLu Sigmoid
Pool size 4×2 4×2 4×1 2×1 N/A N/A
Strides 4×2 4×2 4×1 2×1 N/A N/A
Padding Valid Valid Same Same N/A N/A
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Appendix A: Parameters of Machine Learning
Models

Both machine learning modules are built and trained
using the tensorflow (v.2.5.0) keras python
api [66]. Figures 9(a) and 9(b) show the visualization
of the network architecture for the OD and the CNN
classifier, respectively. The model parameters of OD are
presented in Table I. The model parameters for the CNN
classifier are presented in the Appendix of Ref. [22].

As can be seen in Fig. 9, there are three main differ-
ences between the two architectures: (1) the OD out-
puts 41 local probabilities and positions while the CNN
classifier only outputs one of three possible classes; (2)
the CNN classifier contains three fully connected layers,
which dramatically increase the number of trainable pa-
rameters, while OD does not; (3) the OD has asymmetric
pool size and strides for vertical and horizontal directions,
which are customized to the features in our dataset; the
pool size and strides are symmetric for the CNN clas-
sifier. As a result, the OD has more than an order of
magnitude fewer trainable parameters (7× 104) than the
CNN classifier (106).
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