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ABSTRACT

Rapid label-free spectroscopy of biological and chemical specimen via molecular vibration through
means of Broadband Coherent Anti-Stokes Raman Scattering (B-CARS) could serve as a basis for
a robust diagnostic platform for a wide range of applications. A limiting factor of CARS is the
presence of a non-resonant background (NRB) signal, endemic to the technique. This background is
multiplicative with the chemically resonant signal, meaning the perturbation it generates cannot be
accounted for simply. Although several numerical approaches exist to account for and remove the
NRB, they generally require some estimate of the NRB in the form of a separate measurement. In this
paper, we propose a deep neural network architecture called VECTOR (Very dEep Convolutional
auTOencodeRs), which retrieves the Raman-like spectrum from CARS spectra through training of
simulated noisy CARS spectra, without the need for an NRB reference measurement. VECTOR is
comprised of an encoder and a decoder. The encoder aims to compress the input to a lower dimensional
latent representation without losing critical information. The decoder learns to reconstruct the input
from the compressed representation. We also introduce skip connection bypasses from the encoder
to the decoder, which benefits the reconstruction performance for deeper networks. We conduct
abundant experiments to compare our proposed VECTOR to previous approaches in the literature,
including the widely applied Kramers-Kronig method, as well as two another recently proposed
methods that also use neural networks.
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1 Introduction

Coherent Raman scattering (CRS) microscopies and spec-
troscopies have long sought to acquire the same chemical-
rich information as traditional spontaneous Raman meth-
ods but orders-of-magnitude faster. Such a transformative
technology would enable a significant expansion of appli-
cation, such as live-cell and large-area imaging. Broadly
speaking, the two dominant CRS modalities based on either
stimulated Raman scattering (SRS) or coherent anti-Stokes
Raman scattering (CARS) have either surpassed traditional
Raman spectroscopy/imaging in speed or matched its spec-
troscopic bandwidth and sensitivity, but not both simulta-
neously. In this work, we focus on broadband coherent
anti-Stokes Raman scattering (B-CARS), a method capable
of probing over 4000 cm−1 bandwidth. Like all CARS-
based methods, though, the signal is affected by a co-
generated coherent background signal, the so-called non-
resonant background (NRB). A limiting factor of CARS
is that the third-order susceptibility term, from which it
derives the frequency domain response, has a resonant and
non-resonant component, with respect to the Raman-active
transition frequencies χ(3) = χR + χNR. The intensity of
the CARS spectrum is quadratically proportional to the
susceptibility term:

ICARS ∝ |χ2
R|+ |χ2

NR|+2χNRRe[χR] (1)

Though much maligned, the NRB is a stable homodyne am-
plifier thus partially responsible for the signal strength of
CARS methods [1], which can also be used as an internal
reference [2]. The side effect, though, is a significant per-
turbation of the recorded spectral shapes. If the NRB could
be independently measured, it could be removed with ana-
lytical methods [3], though this is not currently possible;
thus, surrogate materials have traditionally been utilized
that contain weak or no vibrational peaks within swaths of
the spectroscopic window. Though recent work has miti-
gated some of the ramifications [2], removing the necessity
of any NRB estimate while still extracting undistorted Ra-
man features would be superior. In this work, we present
a new deep learning method, VECTOR, based upon an
autoencoder topology with the addition of skip connec-
tions that provides similar results to analytical methods
with NRB estimates and superior results over an alternative
neural network approach.

Many NRB removal techniques exist, both as experi-
mental techniques[4, 5, 6, 7], and as post-processing
approaches[2, 8, 3, 9]. The majority of approaches seek to
suppress or eliminate the non-resonant contribution, so that
the observed spectrum obtains the form of a Raman-like
spectrum. Experimental approaches have the benefit of
directly collecting a purely resonant signal at the sample
level, but suffer from weak signal, added experimental
complexity and analysis or reduced throughput owing to
requiring multiple measurements per area-of-interest. Post-
processing approaches use physics or information theoretic
approaches to mathematically extract the imaginary com-
ponent of the CARS susceptibility χR, as it takes the form

of a Raman-like spectrum. These approaches, however, ne-
cessitate an independent measurement of the NRB, which
is not currently possible; thus, reference materials such as
water, glass slide, or salt[10] is used, which contain weak
or isolated vibrational signatures over certain regions of
the Raman spectrum.

Deep Neural Networks (DNNs) have achieved striking
results in different areas such as natural language pro-
cessing [11], and computer vision [12]. Recently, deep
learning approaches have been employed to tackle the is-
sue of NRB removal [13, 14]. Houhou et al. [14] used a
long short-term memory (LSTM) topology while Valen-
sise et al. [13] implemented a convolutional neural network
(CNN), termed "SpecNet", for NRB removal in CARS.
These developments represent a significant step forward
in rapid extraction of Raman-like spectra from B-CARS
measurements.

A CNN makes use of several “filtering” layers for which
the weights that connect these layers are learned using the
method of back propagation. CNNs have been shown to be
particularly effective in learning spatial features in images.
An LSTM is a sub class of Recurrent Neural Network
(RNN), where the network is trained by looping through
sequences of data as functions of time. CNNs employ
filters within convolutional layers to transform data, while
LSTMs/RNNs are predictive in nature, reusing activation
functions from other data points in the sequence in order
to generate the next output in a series. Convolutional
Autoencoders use CNNs to form each of an encoder and
decoder pair, which encodes the input signal into a lower
dimensional latent space and then decode it to back to its
original value.

In this study, we provide comprehensive experiments to
not only show the superior performance of our proposed
approach but also analyze the critical information for suc-
cessfully training a DNN. For the first time, we investigate
the use of Convolutional Autoencoders (CAE), which be-
long to the Deep Generative Models (DGMs) family, for
removing the NRB from CARS. A DGM is a powerful
model of learning any kind of data distribution, and it
has achieved tremendous success in the past few years in
the form of Autoencoders (AE) [15], Variational Autoen-
coders (VAE) [16], and Generative Adversarial Networks
(GANs) [17, 18]. Regarding our case, we seek to solve the
problem by finding a ‘mapping’ between a noisy CARS
spectrum and the underlying Raman spectrum.

Based on previous successful deployment of using AE for
denoising images [19] and speech signals [20], we explore
the use of AE for extraction of the Raman-like signal from
CARS in this work.

The contributions in this paper are summarized as fol-
lows: First, we propose a Very dEep Convolutional
auTOencodeR (VECTOR) architecture specifically de-
signed for removing the NRB in CARS. Extensive ex-
periments were performed to identify the optimal hyper-
parameters of VECTOR. We also demonstrate that skip
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connections are not only able to boost performance for
deeper networks but also to speed up the training process.
Second, training was performed for nine different datasets
with increasing complexity in terms of the number of peaks
and the range of peak width. These datasets have dif-
ferent spectral shapes that emulate different applications
of Raman spectroscopy, with the most complex dataset
representative of biochemical spectra, and the simplest
representative of pure chemical spectra. We demonstrate
for the first time that the performance of deep learning
based NRB removal correlates with spectral complexity.
Third, we demonstrate significantly superior performance
of VECTOR when compared with a simpler architecture
that was recently proposed for NRB removal for all of the
datasets tested. Lastly, VECTOR is applied to an experi-
mental B-CARS spectrum of glycerol, and the results are
compared with the Kramers-Kronig (KK) method. These
results highlight a shortcoming of the trained VECTOR
networks in dealing with a real-world NRB profile, which
is not ideally smooth, as for the cases of the NRB profiles
used in training. This in turn points to new research direc-
tions for training future networks, which are discussed in
Section 6.

The breakdown of the paper is as follows: Section 2 briefly
reviews B-CARS in terms of the experimental optical
recording system, as well as the current state-of-the art
in numerical NRB removal. In Section 3, the VECTOR
architecture is considered in detail, including the skip con-
nections. Section 4 details how simulated data was gener-
ated to train the networks and presents an ablation study
and cross-validation to find the optimal hyperparameters.
In Section 5, the results are provided. This includes a
quantitative comparison with another CNN over the afore-
mentioned datasets, and experimental results on a glycerol
B-CARS spectrum. Finally, in Section 6 we offer a conclu-
sion with an emphasis on the direction of future work.

2 Broadband Coherent Anti-Stokes Raman
Spectroscopy

2.1 Theory and System Design

Coherent anti-Stokes Raman scattering is a third-order non-
linear optical process in which a “pump" and a “Stokes"
photon coherently excite a molecular vibration at their beat
frequency from which a “probe" photon is able to inelas-
tically scatter, gaining energy (blue shifting) equal to the
vibrational frequency – the anti-Stokes photon – as de-
picted in Fig. 1(b). Many of the earliest CARS microscopy
systems were narrowband (∼1 ps to 10 ps pulse duration),
able to probe single vibrational modes at high-speed, but
capturing hyperspectral imagery required slow, often un-
stable laser tuning. To capture single-shot spectra, one
approach termed broadband or multiplex CARS, uses a
broadband Stokes source to stimulate multiple vibrations
simultaneously with the now broadband anti-Stokes signal
captured on a spectrometer. Due to practical limitations in
the intensity of laser light that can be applied to [biological]

samples and detector technology, B-CARS methods collect
images relatively slowly but spectra extremely quickly. It
should be noted that in most implementations of CARS
methods, the probe source and the pump source are the
same (and narrowband) – sometimes specified as “inter-
pulse” excitation or “two-color" CARS. It is also possible
to have a degenerate pump and Stokes source, “intrapulse",
“impulsive", or “three-color" CARS.

Figure 1(a) presents a simplified schematic of a basic B-
CARS system. Here the Stokes source (supercontinuum)
is necessarily broadband, the probe source is necessarily
narrowband (i.e., it is a determining factor in the spectro-
scopic resolution), and the pump source is purposely left
ambiguous. The broadband pulsed source and the narrow-
band probe are combined using a dichroic and focused
on the sample. Though there is a spatial phase-matching
condition for CARS excitation, the use of high numeri-
cal aperture (NA) objective lenses effectively presents a
plethora of permutations of photon vectors; thus, enabling
collinear excitation. The generated anti-Stokes light is
collected with another objective lens and separated from
the remaining excitation beam by low-pass dichroic filters
and recorded with a spectrometer. It should be highlighted
that “epi-detected" systems with a reflective geometry have
also been developed as have systems with beam-scanning
capabilities; though, sample raster scanning is the most
prevalent setup.

Figure 1: (a) Diagram of the setup of the B-CARS RMS,
(b) CARS energy level diagram (ωp: Pump frequency, ωs:
Stokes frequency, ωpr: Probe frequency, ωas: anti-Stokes
frequency).
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2.2 State-of-the-art for Non-Resonant Background
Removal

There are two established methods for removing the NRB
from a CARS spectrum: the KK method and the Maxi-
mum Entropy Method (MEM). The KK method utilizes a
Hilbert transform to recover the susceptibility phase from
the CARS spectrum and a reference NRB[3]. The Maxi-
mum Entropy Method is an information theoretic approach
that attempts to maximize the spectral entropy of the sus-
ceptibility, given the measured constraints of the CARS
spectrum[21]. These post processing methods used to re-
move the NRB contribution from CARS signals take a
reference NRB signal and the resonant CARS signal as
inputs.

As χNR cannot be readily extracted from a CARS spectrum,
a CARS signal from a sample with no active Raman transi-
tions in the region of interest is obtained. Glass or water
are commonly used for this purpose, as they can be easily
measured alongside the sample of interest. However, these
NRB spectra are not perfect analogies for the non-resonant
component of the sample CARS signal as they do contain
some Raman vibrational features. This discrepancy is the
major cause of error in the KK and MEM methods. The
KK method is briefly reviewed in the following subsection.
The KK method was chosen as the current best practice for
analytical NRB removal since it requires less parameter
optimization in the computation compared to the MEM.
The KK method is also known to be more computation-
ally efficient than the MEM approach[22], which will be
pertinent for high-speed applications of B-CARS.

The KK relations generally relate the real and imaginary
parts of any complex quantity which describes a causal
(analytic) system. Under certain conditions, the KK re-
lations may be extended to relate the intensity modulus
and phase[23, 24]. It has been shown that the KK relation
could be applied to CARS[3], enabling the retrieval of the
spectral phase of the susceptibility (φ ) from the CARS
intensity:

ϕ(ω) =−P
π

∫ +∞

−∞

ln|χ(3)(ω ′)|
ω ′−ω

dω
′, (2)

where P is the Cauchy principle value.

In this work, we have implement this method from Camp
et al.[2] and apply wavelet denoising and a baseline cor-
rection using asymmetrically reweighted penalized least
squares (arPLS) smoothing [25] on the phase prior to ob-
taining the complex quantity through Eq. 3.

χ
(3) =

√
ICARS exp

[
iϕ(ω)

]
(3)

3 Very Deep Convolutional Autoencoders

The Autoencoder (AE) learns how to efficiently encode the
input and learns how to reconstruct the input back from the
reduced representation. Its ability to reduce data dimen-

sions by learning how to ignore the noise in the data by de-
sign, has precipitated extensive study in the area of speech
signals [20], computer vision [15, 19]. A typical AE nor-
mally comprises three main components (see Fig. 2): 1.
The encoder, in which the model learns how to reduce the
input dimensions and compress input data into an encoded
representation; 2. A latent space or bottleneck, which is
the layer that contains the compressed representation of the
input data. This is the lowest possible dimension among
the AE; 3. The decoder, in which the model learns how
to reconstruct the input data from the encoded represen-
tation. The ordinary AE incorporates all fully-connected
layers for both encoder and decoder [26]. However, train-
ing a fully-connected deep neural networks suffers from
long computation times, over-fitting, and being difficult to
optimize [27] especially for high dimensional input data.
CNNs [28] were proposed to mitigate the problems above
by introducing sparse connections among neurons. In
terms of our case, the input data has a very high dimension
i.e., length of 1000. We adopt Convolutional Autoencoders
(CAEs) instead of fully-connected AE in this work as our
backbone.

3.1 Architecture

The proposed VECTOR (Very dEep Convolutional
AuTOencodeRs) consists of an encoder and a decoder
as seen in Fig. 2. The structure of the encoder and the
decoder is symmetric. This design will enable conducting
a symmetric skip connection [12, 19, 20] between each
paired convolutional layer and transposed convolutional
layer in the encoder and the decoder respectively. We will
introduce the benefits of employing skip connections in
Section 3.2. Here we present notations used in this section:
N is the batch size, K is the size of the 1D convolutional
kernel, C is number of channels, S is the stride number, T
is the input or feature length and X ∈ RN×T is the input.

The encoder and the decoder are fully convolutional
(1D) and fully transposed convolutional (1D) respectively.
Batch normalization [29, 30] and ReLU [31] are added
to each convolutional layer and transposed convolutional
layer except for the last layer in the decoder. The encoder
acts as a feature extractor that preserves primary informa-
tion and properties of the input CARS spectra. To this
end, the input is compressed to the latent representation
(as seen in the middle of the architecture in Fig. 2). This
compression process could have two benefits: 1. The la-
tent representation holds as much critical information as
input contains but in a much lower dimension; 2. The
compressed representation removes noise and nonessential
information contained in the input. The decoder is then
combined to recover details of input contents subject to
the corresponding set of ‘clean’ Raman spectra. We use
the Mean Absolute Error (MAE), also known as the L1
norm, between CARS spectra and clean spectra as the loss
(see Equation (4)) to train the VECTOR network in an
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Latent Space

Skip Connection

Encoder Decoder

Convolution Transposed Convolution

Figure 2: The example of VECTOR-8 architecture used in this study. Convolutional layers in the encoder and transposed
convolutional layers in the decoder are symmetric i.e., the input dimension to the convolutional layer and the output
dimension to the paired transposed convolutional layer are the same.

end-to-end manner.

L1 =
1
N

N

∑
i
| f (Xi;θ)−Yi| , (4)

where X is CARS input spectra, Y is Raman output spectra,
f is the network, θ is the network weight.

Moreover, skip connections are also added from each con-
volutional layer to its corresponding paired transposed
convolutional layer. The convolutional feature maps are
passed to, and summed to, the transposed convolutional
feature maps in an element-wise manner because those two
feature maps have the exact same dimension. Details of
VECTOR-8 are provided in Table 1 and the details of the
other VECTOR architectures are provided in Appendix A.

3.2 Skip Connections

Skip connections have been widely applied in the area of
computer vision. The most well known CNN architecture
with skip connection is ResNet [12]. Fig. 3 shows an ex-
ample of skip connection. The output of a residual block

Figure 3: Skip connection in residual block [12].

can be easily formulated as y := F(x)+x. He et al. [12]
showed that skip connections are easier to optimize com-
pared to those ‘plain’ networks without skip connections,
in which skip connections mitigate the vanishing gradient
descent to bottom layers [32] and skip connections are

able to boost performances for the networks with greatly
increased depth.

The vanishing gradient is a well known problem in training
neural networks. Gradients are used to update the net-
work weights and are in the range (0,1]. Backpropagation
computes gradients by the chain rule, which the effect of
multiplying n of these small numbers to compute gradients
of the early layers in an n-layer network, meaning that
the gradient (error signal) decreases exponentially with n
while the early layers train slowly. Skip connections offer
a solution to this problem by connecting the early layers
to the later layers, which enables gradients to pass to early
layers directly, instead of passing n layers.

Apart from the vanishing gradient problem, the growing
depth of the AE architecture could also lead to the critical
input information being lost such that they can not be
recovered via the encoding/decoding process transposed
convolution. Skip connections also enable the recovery of
such information.

To overcome this issue, we design the VECTOR network
in a symmetric manner i.e., the convolutional layer in the
encoder and the transposed convolutional layer in the de-
coder are paired with each other. This design allows con-
nections bypassing from one convolutional layer to the
paired transposed convolutional layer. An additional bene-
fit of the symmetrical skip connection is that padding can
be avoided. Fig. 2 shows an example of skip connection for
VECTOR-8. In this work, the number of skip connections
is equal the the number of layers in the encoder/decoder.
To address benefits of using skip connection, we will show
that skip connections are able to 1. speed-up the training
and 2. boost the performance for the deeper networks
compared to the ‘plain’ networks in Section 4.3.
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Table 1: The architecture of VECTOR-8. The operation refers to 1D convolution and 1D transposed convolution for
encoder and decoder respectively, where K is the kernel size, Cin represents number of input channels, Cout represents
number of output channels and S refers to the stride. The output size refers to the dimension of feature maps produced
by each stage, where T is the length and C is the number of channels. Rest of VECTOR models can be referred to
Appendix A.

Stage Operation (K,Cin,Cout ,S) Output size (T ×C)
Input - 1000×1

Encoder

layer 1 8, 1, 64, 1 993×64
layer 2 8, 64, 128, 2 493×128
layer 3 8, 128, 256, 2 243×256
layer 4 8, 256, 512, 2 118×512

Latent space - 118×512

Decoder

layer 1 8, 512, 256, 2 243×256
layer 2 8, 256, 128, 2 493×128
layer 3 8, 128, 64, 2 993×64
layer 4 8, 64, 1, 1 1000×1

Output layer Sigmoid 1000×1

4 Training

4.1 Datasets for Training

VECTOR was trained by a dataset of simulated CARS
spectra. The efficacy of the algorithm was tested by train-
ing it with a number of different datasets of varying com-
plexity. The datasets were varied based on the number of
Raman peaks per spectrum, and the variation in full-width-
half-maximum (FWHM) of the peaks themselves. This
is principally of interest owing to the different kinds of
Raman spectra found in different applications. Chemical
and pharmaceutical specimens have sharper peaks quali-
tatively observed as distinct peaks[33, 34], in comparison
to biological samples, for example cellular spectra, which
have broader peaks and appear as more complex amalgam
of broad to narrow peaks[35, 36].

The code used to generate the simulated datasets was
adapted from [13], which we detail below. Further details
are also given in Appendix B. The CARS spectra were
generated as per Equation 1. The resonant susceptibility
is expressed as a sum of Lorentzian functions, as per its
physical basis, see Equation 5. For each Lorentz function,
the peak amplitude A is uniform random value between
0 and 1, with its resonant peak at Ω between 300 cm−1

and 1700 cm−1 with FWHM 2×Γ. Nine datasets were
generated of varying ranges of peaks widths and number
of peaks per spectrum, designated (i - ix). The spectra are
generated as 1000 datapoints across 2000 cm−1. FWHM
vary from low (2-10 cm−1) in (i,ii,iii) , to moderate (2-25
cm−1)in (iv,v,vi), to high (2-75 cm−1) in (vii,viii,ix). The
datasets are further split into three sections by number
of spectra. Each spectrum generated in datasets (i,iv,vii)
have between 1 and 15 peaks. Similarly (ii,v,viii) contain
between 15-30 peaks per spectrum, and (iii,vi,ix) have
between 30-50 peaks.The non-resonant susceptibility is
typically expressed as an arbitrary, slowly varying func-
tion. In this case, it is expressed as the product of two

randomised, countervailing sigmoid functions, per Equa-
tion 6.

χR(ω) = ∑
Npeaks

A
Ω−ω− iΓ

(5)

χNR(ω) =
e−c3(ω−c4)

(1+ e−c1(ω−c2))(1+ e−c3(ω−c4))
(6)

A training set of 200,000 spectra and an evaluation set of
30,000 spectra was generated for each dataset. Alongside
the CARS spectrum, a corresponding Raman spectrum
is created to function as an ideal reference to train the
network.

4.2 Implementation Details

Experiments were conducted on nine synthetic datasets
using the formulation presented in Section 4.1. When
comparing to previous studies [13], we select VECTOR-16
by default as an acceptable trade-off between computation
time and performance, more details on this selection are
given in Section 4.3. The models were trained on one
TITAN Xp GPU. We adopted Stochastic Gradient Descent
(SGD) as an optimizer with a momentum of 0.9 and a
weight decay of 5×10−4. The batch size was set to 256
for the training. The initial learning rate was 0.1 and was
reduced by a factor of 10 at 25, 50, 75 epochs. Training
was stopped at 100 epochs.

4.3 Model Dimensionality

Fig. 4 compares the performance of six architectures of
VECTOR with different numbers of layers including (red)
and excluding (blue) skip connections. The MAE between
the synthetic Raman spectrum and the recovered Raman
spectrum from the corresponding CARS spectrum in the
validation datasets was used as the performance metric for
this study. It should be noted that architectures without skip
connections achieve comparable performance for lower
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Figure 4: MAE performance of VECTOR for differ-
ent encoder-decoder depths,applied to the most complex
dataset (dataset ix) .

sets of layers i.e., VECTOR-8, VECTOR-10, VECTOR-
12. Starting from VECTOR-14, performance of architec-
tures without skip connection saturates, which indicates
that the critical information contained in the bottom layers
gets lost and does not pass to the transposed convolutional
layers successfully. For VECTOR-18, the performance is
even worse than VECTOR-14 and VECTOR-16, which
indicates the vanishing gradient problem may arise for the
bottom layers leading to the bottom layer weights receiv-
ing very small gradient and has not been fully optimized.
Increasing number of layers of the VECTOR will increase

Figure 5: Training loss for VECTOR-16 and VECTOR-18
with and without skip connections.

computation times leading to slower training but only pro-
vide very limited performance enhancement. As such,
VECTOR-16 was determined to be optimal for our pur-
poses. Shown in Fig. 5 is the training loss for VECTOR-16
and VECTOR-18 with and without skip connections. It
can seen that skip connections are able to accelerate the
training process especially for the first 25 epochs. This is
most pronounced in VECTOR-18 where the skip connec-

tion architecture produces consistently better performance
throughout all training epochs.

5 Results

5.1 Performance on Simulated Datasets

Figure 6: Example of recovered spectra for VECTOR-16
(red) and SpecNet architecture (blue) for each algorithm
trained and evaluated on datasets (i-ix). True Raman spec-
trum is overlaid (black) and input CARS spectrum (green)
is plotted with offset.

We trained and performed validation on nine different net-
works, where each network was trained/validated using
the nine different training/validation datasets described in
Section 4.1. These nine networks were then tested using
nine test datasets of size 4096 spectra. The test dataset
used for each network matched the parameters of the train-
ing/validation datasets for that given network in terms of
peak number and width.

The SpecNet network[13] was trained/validated using the
same nine datasets as described in Section C, and were
then subject to the identical test datasets. In contrast only
a single pre-trained network from SpecNet[13] was tested
on the same nine test datasets. This network was provided
by the authors having been trained using up to 15 peaks of
width 1-20 cm−1. Visualizations of spectra recovered by
VECTOR-16 and the SpecNet network are shown in Fig.6.
Fig. 7 illustrates the average MAE (as defined in Equa-
tion (4)) for both networks on each dataset. It can be no-
ticed that the VECTOR network significantly outperforms
SpecNet for all nine datasets. For both networks, MAE
increases proportionally with number of peaks. Datasets (i,
iv, vii) have between 1-15 peaks, datasets (ii,v,viii) between
15-30, and datasets (iii,vi,ix) have between 30-50 peaks
per spectrum (these correspond to left, centre and right
columns in Fig. 6). Similarly, an increase in the ranges of

7
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Figure 7: Average MAE from each of the datasets.

peak widths produces an increase in MAE. Datasets (i-iii)
contain narrow peak widths between 2-10 cm−1, widening
to between 2-25 cm−1 for datasets (iv-vi), with the widest
range of 2-75 cm−1 in the case of datasets (vii-ix) (corre-
sponding to top, middle and bottom rows in Fig. 6). MAE
increases most sharply for the most complex datasets con-
taining the broadest range of peaks. The relative change
in MAE is broadly consistent across datasets for both net-
works. Valensise et al. trained their network on spectra
between 1-15 peaks and between 1-20 cm−1, which is
most closely matched by dataset (iv), and for this case it
is outperformed by our network by a factor of 4. Similar
out-performance is seen for all datasets, though it must be
noted that SpecNet cannot be expected to perform well on
datasets that are significantly different to those on which it
was trained, in particular for the case of datasets (vi-ix) for
which the peak width has the greatest variation. For more
complex datasets such as dataset ix, the improvement of
VECTOR-16 is much more significant.

Both Fig. 6 and Fig. 7 clearly demonstrate that the
VECTOR-16 network is able to recover spectra with high
quality for the case of all nine datasets. For datasets (i-ii)
both SpecNet and our three individual networks perform
well in recovering peak position and shape. However, close
inspection of the peak values reveals that VECTOR is more
successful at recovering peak height and also at removing
noise in the baseline. For the case of datasets (vii-ix) Spec-
Net returns erroneous values at the ends of the spectrum,
likely due to the fact that this network has not been trained
on data of this nature. It is likely that this is the same
reason that VECTOR evidently performs so much better
at retrieving the broader baseline in these cases.

We also highlight the capability of the VECTOR network
to reduce the effect of noise in the CARS intensity. Fig.8
shows the result of applying VECTOR-16 (trained on
dataset ix) for two test cases also corresponding to dataset
ix. In the first case, on the left side of the figure, we see
the result of processing a high SNR CARS spectrum, with

high quality output as expected. In the second case on
the right a lower SNR signal is processed. In this case,
the random noise fluctuations are clearly seen in the input
CARS spectrum. The recovered Raman spectrum is high
quality and contains no such noisy signal. However, the
insert in the figure highlights that small spectral features,
with similar amplitude to the noise signal have been lost.
These results show that the VECTOR network is robust
to handle low SNR inputs, with the caveat that spectral
features matching the noise floor may be lost. However,
dealing with very low SNR signals would require further
training with datasets of similar quality. A more detailed
discussion of SNR is provided in Section D.

Figure 8: An example of high and low SNR B-CARS
spectra processed by VECTOR-16 trained on dataset ix.
Although the network effectively removes the noise in the
retrieved Raman spectrum, the insert on the right figure
highlights that spectral features under the noise floor may
be lost.

5.2 Performance on Experimental Data

A B-CARS spectrum of glycerol was recorded using an
Er-Fibre system as described in Section 2.1. Neat glycerol
was applied into a 120 µm thick imaging spacer sand-
wiched between a microscope slide and coverslip glass.
A spectrum of a glass coverslip was also recorded, as an
NRB reference spectrum. The spectrum was processed
independently by VECTOR-16, trained on datasets (iii),
(vi) and (ix). The recovered spectrum is shown in Fig. 9.
While VECTOR-16 shows robust performance for simu-
lated datasets, performance with real spectra is found to be
sensitive to the training data used for the network.

The form of the NRB seen in an Er-Fibre CARS system is
not simply modeled as a slowly varying polynomial such
as the countervailing sigmoids used here, as is more ap-
propriate for a conventional two-colour broadband CARS
platform. The combination of two-colour and three-colour
excitation domains produces a complex NRB signal that
is highly subject to the laser properties, such as spectral
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envelope and phase delay. This is particularly difficult for
an NRB agnostic system such as VECTOR, in comparison
to KK or MEM, which incorporate an NRB reference in
their process. As a result, the high degree of variation in
the NRB intensity means the peak heights of the C-H band
in glycerol are not as intense as would be expected, as
achieved by KK. As a result, components of the NRB pro-
file are interpreted by the network as resonant features, and
attempts to construct peaks, as can be seen most acutely
in datasets vi and ix, which are trained on broader sets of
peak widths. However, VECTOR does not produce many

Figure 9: Recovery of experimental CARS spectrum. The
top spectrum shows the CARS spectrum recorded from
glycerol, and a corresponding NRB reference spectrum
of glass. The successive spectra shown are the recovered
Raman-like spectra from the KK method, followed by
VECTOR-16 trained on different dataset configurations,
all shown in blue. The NRB spectra was also processed
for the case of VECTOR-16 and is shown in red.

of the artifacts of the KK method common to low intensity
regions, typically the Raman silent region, where quotients
of small values produce noisy results. VECTOR also seeks
to smooth the extracted Raman-like output.

For comparison a Raman spectrum of glycerol was also
recorded and is shown in green in Fig. 9. This spec-
trum was recorded using a coomercial Raman micro-
spectrometer (Horiba Jobin Yvon LabRAM HR, grating
300 lines/mm, excitation 532 nm). The spectrum was
wavenumber calibrated using 4-Acetamidophenol (Sigma)
and intensity calibrated using a NIST calibrated White-
Light source (Ocean-Optics) as described in Ref.[37]. In-
terestingly the spectrum recovered from the various VEC-
TOR architectures appears to be more consistent regarding
the relative intensity of the peaks in the higher wavenum-
bers.

6 Conclusion

In this paper, we have proposed a general architecture
called VECTOR specifically designed for removing the
NRB from CARS spectra. The VECTOR network is sym-
metric and consists of an encoder and decoder. Each convo-
lutional layer and transposed convolutional layer are paired
to each other. More importantly, the VECTOR network
contains the skip connection from one convolutional layer
and the paired transposed convolutional layer. We design
abundant experiments to demonstrate the skip connection
is able to help on recovering clean spectra and tackles the
optimization difficulty caused by vanishing gradient for
deeper networks. The proposed VECTOR network outper-
forms the previous works on recovering the clean spectra
and is also robust to low SNR input spectra.

Compared to the traditional AE (Autoencoder), we adopt
two critical designs in the VECTOR: 1. Replace fully
connected layers by convolutional layers; 2. Skip connec-
tions are bypassed from a convolutional layer to a paired
transposed convolutional layer. We design ablation studies
to demonstrate that skip connections are able to improve
the reconstruct performance and speed up the training.
The key difference between VECTOR and CNNs is that
VECTOR is symmetric. It contains a symmetric encoder-
decoder architecture to reconstruct spectra in a “squeeze-
and-unsqueeze” manner. This symmetric design enables
the skip connection between paired convolutional layer
and transposed convolutional layer. In Fig. 4, we have
shown that deeper VECTOR has better reconstruction per-
formance. However, we only investigate the impact of
the network depth scaling in this study. Other expansion
for networks such as width scaling, resolution scaling and
compound scaling [38] can be further investigated beyond
the VECTOR network for CARS-related research.

We have shown the superior performance of our VEC-
TOR compared to the previous CNNs approach [13] for
all nine datasets. We trained our network on different con-
figurations of simulated spectra, which demonstrated the
importance of training the network for the specific types of
spectra that it is intended to be used on. While the network
created by Valensise et al. [13] performed well on the sim-
ulated datasets that were similar or simpler to their training
set (i-iv), its qualitative and quantitative performance suf-
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fered from more complex datasets, as seen in Fig.6 and
Fig.7.

Although VECTOR performs well when processing syn-
thetic spectra that is used to train it, further work is re-
quired for use with real-world experimental data. The use
of experimental spectra would be cumbersome for train-
ing due to the large volume of data required to train the
network, and therefore, improvements must be made to
the training set to better emulate the spectra recorded from
the CARS platform. Constraining and tailoring the peak
shapes, heights and frequencies to emulate those observed
in the fingerprint and C-H stretching regions of the spec-
trum is a natural next step. This would be achieved by a
wider range of peak amplitudes, SNR ranges, and gener-
ating taller, sharper peaks in the C-H range with smaller,
denser, wider peaks in the fingerprint region. At present the
double sigmoid function used to model the slowly varying
frequency response of the NRB is not sufficient to model
a three-colour CARS system. In order to train VECTOR
on data that better emulates the types of experimental data
seen in 5.2, rather than use an arbitrary function it may be
advantageous to model the excitation profile of the specific
laser system to create the two and three colour NRB do-
mains. In this configuration the excitation profile would
dominate over the NRB shape, assuming it is non-zero
across the frequency domain, as is physically appropriate.

An important point of discussion is the relationship
between the proposed architecture (VECTOR) and U-
Net [39], which is a convolutional neural network de-
veloped for 2-D image segmentation, and which has be-
come the gold-standard in this area. VECTOR and U-Net
are both specific types of the more general AE architec-
ture [40, 41] for which the encoder learns an efficient
representation of unlabelled data in the form of key fea-
tures, which can then be used by the decoder to reconstruct
the data in the absence of unwanted data such as noise.
Both VECTOR and U-Net use an “hourglass architecture,”
and both use skip connections. The skip in VECTOR is
different from that used in U-Net. Our skip is similar
to the ResNet skip connection [12] in which the original
input data is also added to the output of the convolution
block, while U-Net concatenates feature maps through
the channel dimension. The skip connection in VECTOR
can be described as (a+b), compared to U-Net’s [a, b]. An-
other distinguishing feature is that U-Net uses max pooling,
while VECTOR uses striding convolution.

In this paper, we have successfully demonstrated the ap-
plication of the AE architecture as an effective method to
solve the CARS problem for the first time. Further, we
have demonstrated the use of skip connections to boost the
performance of deeper networks. This work sets the base-
line for autoencoder research in this application area and
any future research can incrementally build on this work.
Examples of future work could include an investigation of
U-Net (it should be noted that our VECTOR architecture is
easily adapted to U-Net), attention mechanism [42], trans-

former [42]etc., all of which belong to the autoencoder
family.
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A Summaries for the rest of CAE models
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Table 1: The architecture of VECTOR-10
Stage Operation (K,Cin,Cout ,S) Output size (T ×C)
Input - 1000×1

Encoder

layer 1 8, 1, 64, 1 993×64
layer 2 8, 64, 128,2 493×128
layer 3 8, 128, 256, 2 243×256
layer 4 8, 256, 512, 2 118×512
layer 5 8, 512, 1024, 2 56×1024

Latent space - 56×1024

Decoder

layer 1 8, 1024, 512, 2 118×512
layer 2 8, 512, 256, 2 243×256
layer 3 8, 256, 128, 2 493×128
layer 4 8, 128, 64, 2 993×64
layer 5 8, 64, 1 1000×1

Output layer Sigmoid 1000×1

Table 2: The architecture of VECTOR-12
Stage Operation (K,Cin,Cout ,S) Output size (T ×C)
Input - 1000×1

Encoder

layer 1 8, 1, 64, 1 993×64
layer 2 8, 64, 128, 2 493×128
layer 3 8, 128, 256, 2 243×256
layer 4 8, 256, 512, 2 118×512
layer 5 8, 512, 1024, 2 56×1024
layer 6 8, 1024, 2048, 2 25×2048

Latent space - 25×2048

Decoder

layer 1 8, 2048, 1024, 2 56×1024
layer 2 8, 1024, 512, 2 118×512
layer 3 8, 512, 256, 2 243×256
layer 4 8, 256, 128, 2 493×128
layer 5 8, 128, 64, 2 993×64
layer 6 8, 64, 1, 1 1000×1

Output layer Sigmoid 1000×1

Table 3: The architecture of VECTOR-14
Stage Operation (K,Cin,Cout ,S) Output size (T ×C)
Input - 1000×1

Encoder

layer 1 8, 1, 64, 1 993×64
layer 2 8, 64, 128, 2 493×128
layer 3 8, 128, 256, 2 243×256
layer 4 8, 256, 512, 2 118×512
layer 5 8, 512, 1024, 2 56×1024
layer 6 8, 1024, 2048, 2 25×2048
layer 7 8, 2048, 2048, 2 18×2048

Latent space - 18×2048

Decoder

layer 1 8, 2048, 2048, 2 25×2048
layer 2 8, 2048, 1024, 2 56×1024
layer 3 8, 1024, 512, 2 118×512
layer 4 8, 512, 256, 2 243×256
layer 5 8, 256, 128, 2 493×128
layer 6 8, 128, 64, 2 993×64
layer 7 8, 64, 1, 1 1000×1

Output layer Sigmoid 1000×1
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Table 4: The architecture of VECTOR-16
Stage Operation (K,Cin,Cout ,S) Output size (T ×C)
Input - 1000×1

Encoder

layer 1 8, 1, 64, 1 993×64
layer 2 8, 64, 128, 2 493×128
layer 3 8, 128, 256, 2 243×256
layer 4 8, 256, 512, 2 118×512
layer 5 8, 512, 1024, 2 56×1024
layer 6 8, 1024, 2048, 2 25×2048
layer 7 8, 2048, 2048, 2 18×2048
layer 8 8, 2048, 2048, 2 11×2048

Latent space - 11×2048

Decoder

layer 1 8, 2048, 2048, 2 18×2048
layer 2 8, 2048, 2048, 2 25×2048
layer 3 8, 2048, 1024, 2 56×1024
layer 4 8, 1024, 512, 2 118×512
layer 5 8, 512, 256, 2 243×256
layer 6 8, 256, 128, 2 493×128
layer 7 8, 128, 64, 2 993×64
layer 8 8, 64, 1, 1 1000×1

Output layer Sigmoid 1000×1

Table 5: The architecture of VECTOR-18
Stage Operation (K,Cin,Cout ,S) Output size (T ×C)
Input - 1000×1

Encoder

layer 1 8, 1, 64, 1 993×64
layer 2 8, 64, 128, 2 493×128
layer 3 8, 128, 256, 2 243×256
layer 4 8, 256, 512, 2 118×512
layer 5 8, 512, 1024, 2 56×1024
layer 6 8, 1024, 2048, 2 25×2048
layer 7 8, 2048, 2048, 2 18×2048
layer 8 8, 2048, 2048, 2 11×2048
layer 9 8, 2048, 2048, 2 4×2048

Latent space - 4×2048

Decoder

layer 1 8, 2048, 2048, 2 11×2048
layer 2 8, 2048, 2048, 2 18×2048
layer 3 8, 2048, 2048, 2 25×2048
layer 4 8, 2048, 1024, 2 56×1024
layer 5 8, 1024, 512, 2 118×512
layer 6 8, 512, 256, 2 243×256
layer 7 8, 256, 128, 2 493×128
layer 8 8, 128, 64, 2 993×64
layer 9 8, 64, 1 1000×1

Output layer Sigmoid 1000×1
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B Simulation of bCARS spectra

The simulated spectra used for training/validation in this
paper were produced in an almost identical manner to
those in Ref. [13]. Given that there are some difference,
we provide a detailed overview of the simulation here.

We begin by first approximating the ideal Raman spectrum,
which is equivalent to the imaginary part of the resonant
susceptibility, χ

(3)
R . The spectrum is defined as a function

of wavenumber (ν) with units cm-1, over the region from
0.1 to 2000 cm-1, which approximately corresponds to
the fingerprint region. The susceptibility is defined as a
superposition of n Lorentzian functions:

χ
(3)
R (ν) =

n

∑
1

A
ν−Ω− jΓ

(7)

where n is the total number of resonances in the CARS
spectrum and which varies randomly across the datasets;
A is the resonance amplitude; Ω is the resonance position;
and Γ is the half-width. These spectral parameters are
generated randomly over a uniform distribution according
to the following constraints:

A∼U(0,1)
Ω∼U(Ωmin +300,Ωmax−300)
Γ∼U(Γmin,Γmax)

n∼U(nmin,nmax) ∈ Z

(8)

where U represents a uniform distribution from a minimum
value (the first parameter) to a maximum value (the second
parameter); Ωmin and Ωmax were 0.1 cm-1 and 2000 cm-1,
respectively, and the other parameters vary for the nine
datasets, as defined in the table: The non-resonant part of

Table 6: Spectral parameters of each dataset

Simulation dataset
Γmin

(cm-1)
Γmax

(cm-1) nmin nmax

i 2 10 1 15
ii 2 10 15 30
iii 2 10 30 50
iv 2 25 1 15
v 2 25 15 30
vi 2 25 30 50
vii 2 75 1 15
viii 2 75 15 30
ix 2 75 30 50

the susceptibility χ
(3)
NR was simulated as a product of two

sigmoid functions as presented in Ref. [13]:

χ
(3)
NR = S1(ν) ·S2(ν) (9)

where S is given as

S(ν) =
1

1+ exp[−b(ν + c)]
(10)

The parameters c and b were calculated randomly from

c∼N (a1νmax,a2νmax) (11)

b∼N (10ν
−1
max,5ν

−1
max) (12)

where N denotes a normal distribution, where the first
parameter is the mean value, and the second parameter
is the standard deviation. The constants a1 and a2 are
given in the following table: After generating χ

(3)
NR , the

Table 7: Sigmoid constants

Sigmoid a1 a2

S1 0.2 0.3
S2 0.7 0.3

total third-order susceptibility is then calculated as the sum
of the resonant and non-resonant parts,

χ
(3) = α

χ
(3)
R

max
(∣∣χ(3)

R

∣∣) +χ
(3)
NR (13)

where the resonant susceptibility term has been normalised
by dividing by the maximum of its magnitude, and is then
scaled by a parameter α , which is defined by a uniform
distribution as follows:

α ∼U(kmin,kmax) (14)

For all of the datasets used in the main body of the paper,
kmin = 0.3, and kmax = 1. The bCARS intensity spectrum
was then calculated as the magnitude square of the total
third-order susceptibility, with additive Gaussian noise ε ,

IBCARS =
|χ(3)|2

2
+ ε (15)

where the factor of 2 in the denominator ensures that the
noise-free intensity is will always have values < 1, since
both terms in Equation 13 have values < 1. The noise term
ε is generated in the same way as for Ref [13]. We define
an array the same size as I, where each element is sampled
randomly according to a standard normal distribution (zero
mean and standard deviation of 1), which is then scaled by
a parameter β , which is defined by a normal distribution
with mean q1 and standard deviation q2 as follows:

ε(n) = βN (0,1)β = N (q1,q2) (16)

For all of the datasets used in the main body of the paper,
q1 = 0.0005, and q2 = 0.003. The Raman spectrum is
given by:

IRaman = Im(χ
(3)
R ) (17)

It should be noted that for the nine datasets used to generate
results for the main body of this paper, the noise parameters
q1 and q2, and the parameter α , which controls the relative
amplitude between the resonant and non-resonant compo-
nents were given the values defined above. However, for
the SNR investigation presented in Section D, dataset (ix)
was simulated with two further cases of these noise related
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Table 8: Noise parameters used to generate datasets

kmin kmax q1 q2

Case 1 0.3 1 0.0005 0.003
Case 2 0.3 1 0.0005 0.03
Case 3 0.01 1 0.0005 0.03

parameters. Case 1 refers to the set of parameters used
to generate all result in the main body of the paper. Case
2 and Case 3 related to two additional sets of parameters
that were applied to dataset (ix) only in order to investigate
the effect of noise in training sets on the capacity of the
network to deal with especially noisy spectra. For more
details on these specific cases and how they, see Section D.

C Training SpecNet

The Specnet network [13] was adapted in order to process
spectra of length 1000 samples; the original network was
designed for an input length of 640 samples. Other than
this change in input length all other parameters in the
original Specnet architecture were left unchanged. The
full details of the structure and hyper-parameters are given
in Table 9. As in Ref. [13], the loss function is the mean
squared error (MSE) between the true target vector and the
prediction. An Adam optimizer was employed with a batch
size of 256 examples. In total 50 epochs were used. For
all nine datasets, a dataset size of 220000 was used with
a validation split of 0.1. This ensures that the size of the
training and validation sets match those used for the nine
datasets used with the VECTOR architecture. The code
used to train and test SpecNet using these nine datasets is
provided in Ref. [?]

D SNR analysis

In this section, we provide information on an additional
study of the VECTOR architecture relating to its perfor-
mance on noisy bCARS spectra. Noise in CARS can man-
ifest from two main sources; the first relates to the relative
amplitude of the resonant and non-resonant susceptibilities
and the second relates to an additive noise that models
read noise, dark current, and shot noise [43]. The relative
amplitude of the two susceptibilities is ambiguous in the
context of noise. On one hand, the NRB can be viewed
as an amplifier of the resonant term. However, when the
NRB is significantly larger than the resonant term it can
become difficult to detect the latter, particularly in the pres-
ence of the second noise source. The additive noise in the
simulations is modeled by a normal distribution, see Equa-
tion 16; an additive Gaussian noise can be used to account
for the various sources of experimental noise, including
read noise, dark current, and shot noise [43]. The latter two
sources of noise are ideally modeled by a Poisson distribu-
tion but for practical mean values, both are approximated

by a single additive Gaussian distribution with a high level
of accuracy.

In order to investigate the capacity of VECTOR to recover
the Raman spectrum from the bCARS spectrum in the pres-
ence of these noise sources, and also to investigate if this
capacity could be improved by better training VECTOR
with more noisy signals, the following approach was taken:
three different VECTOR 16 (Dataset ix) were trained and
then tested on the same spectrum under a variety of differ-
ent noise conditions. These three networks are defined in
Table B. In short, the first case is the VECTOR 16 Dataset
ix network presented in the main body of the paper, for
which the NRB and the resonant terms have approximately
equivalent amplitudes, and there is a low level of additive
noise. The second case is the same except that the ampli-
tude of the noise term is increased tenfold. The third case
is the same as the second except that the ratio of the two
terms can vary by up to 100.

These three networks were then tested on the same dataset
of 15 spectra, which correspond to one Raman spectrum
(of type Dataset ix) under 15 different noise conditions:
three additive noise amplitudes with standard deviation of
0.001, 0.01, and 0.1, and five different relative strengths of
the NRB : 100, 10, 1, 0.1, and 0.01. For the first network
the results are shown in Fig. 1. Also shown in the figure is
the signal-to-noise ratio (SNR), defined as the maximum
value in the Raman spectrum divided by the mean of the
absolute value of the predicted spectrum subtracted from
the true spectrum.

The performance of the network decreases as the both the
NRB and additive noise terms increase. Interestingly, the
performance of the network for the highest level of additive
noise improves as the NRB increases for the first three
levels, which relates to the amplification of the spectrum
as discussed earlier. The same set of results are shown
for the second network in Fig. 2 in which it can be seen
that the network performs significantly better than the first
network for high levels of noise. The third network has
similar results, as shown in Fig. 3.
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Table 9: Details of Specnet Architecture
Layer type Operation (K,Cin,Cout ) Activation Output size (T ×C) Parameter

Input - - 1000×1 -
Batch Normalization - - 1000×1 4

Activation - Relu 1000×1 0
Conv-1D 32, 1, 128 Relu 969×128 4224
Conv-1D 16, 128, 64 Relu 954×64 131136
Conv-1D 8, 64, 16 Relu 947×16 8208
Conv-1D 8, 16, 16 Relu 940×16 2064
Conv-1D 8, 16, 16 Relu 933×16 2064

Dense - , 16 , 32 Relu 933×32 544
Dense - , 32 , 16 Relu 933×16 528
Flatten - - 14928×1 0

Dropout(0.25) - - 14928×1 0
Dense - , 1 , 1000 Relu 1×1000 14929000

Total Number of Paramters 15,077,772

18



A PREPRINT - MARCH 29, 2022

Figure 1: Results for VECTOR16 - Dataset ix - Case
1, as defined in Table B. This is the same network used
in the main body of the paper for which the NRB and
the resonant terms in the training set have approximately
equivalent amplitudes, and there is a low level of additive
noise. Fifteen instances of the same Raman spectrum are
tested under different noise conditions: the additive noise
term increases from right to left and the relative strength of
the NRB increases from top to bottom. The input bCARS
spectrum is shown in red, the predicted spectrum is shown
in green, and the true spectrum is in black. The SNR for
the predicted spectra are also shown in the figures.

Figure 2: Results for VECTOR16 - Dataset ix - Case 2,
as defined in Table B. The second case is the same as the
first case except that the amplitude of the noise term is
increased tenfold in the training set. Fifteen instances of
the same Raman spectrum are tested under different noise
conditions: the additive noise term increases from right to
left and the relative strength of the NRB increases from
top to bottom.The input bCARS spectrum is shown in red,
the predicted spectrum is shown in green, and the true
spectrum is in black. The SNR for the predicted spectra
are also shown in the figures. This network performs better
than the first network for high levels of noise.
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Figure 3: Results for VECTOR16 - Dataset ix - Case
3, as defined in Table B. The third case is the same as
the second case except that ratio of the amplitudes of the
susceptibilities can vary by up to 100. Fifteen instances
of the same Raman spectrum are tested under different
noise conditions: the additive noise term increases from
right to left and the relative strength of the NRB increases
from top to bottom.The input bCARS spectrum is shown in
red, the predicted spectrum is shown in green, and the true
spectrum is in black. The SNR for the predicted spectra
are also shown in the figures.
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