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ABSTRACT
We focus on deterministic global optimization (DGO) for noncon-
vex parameter estimation problems. Realistic and accurate solutions
often require a fitting against very large measurement data sets,
resulting in intractable size for DGO. Thus, we aim at accelerat-
ing the branch-and-bound algorithm by using reduced data sets
for constructing valid bounds. We focus on fitting the equation of
state for propane, which is of high interest for the chemical indus-
try. The resulting estimation problem is a challenging nonconvex
mixed-integer nonlinear optimization problem. We investigate the
validity of using reduced data sets by comparing how the lower and
upper bounds change when replacing the full data set with different
reduced data sets. We account for regions with high and low quality
fits by considering the results for the whole feasible region and 100
different subregions. Our results indicate that both regions contain-
ing solution candidates and regions containing only low quality fits
can be identified based on reduced data sets. Moreover, we observe
that the average CPU time per branch-and-bound iteration typically
decreases if reduced data sets are used.
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1. Introduction

Parameter estimation aims at adjusting mathematical models to accurately describe real-
world processes. However, inaccuracies in the measurement data, in the structure of the
model, i.e. the equations used, or in the parameter values can result in model-data mis-
match. Suboptimal parameter values as a reason for mismatch between a fixed data set
and a specific model can only be excluded when using deterministic global optimiza-
tion (DGO) methods [15,23]. The optimization of the resulting large-scale and potentially
highly nonconvex models poses a significant challenge for existing DGO methods [4,7].

CONTACT Alexander Mitsos amitsos@alum.mit.edu Process Systems Engineering (AVT.SVT), RWTH Aachen
University, 52074 Aachen, Germany

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or
with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2023.2205645&domain=pdf&date_stamp=2023-04-27
http://orcid.org/0000-0001-9556-1721
http://orcid.org/0000-0003-2679-3953
http://orcid.org/0000-0003-1091-9080
http://orcid.org/0000-0003-1790-0235
http://orcid.org/0000-0001-7960-8542
http://orcid.org/0000-0003-0335-6566
mailto:amitsos@alum.mit.edu
http://creativecommons.org/licenses/by/4.0/


2 S. SASS ET AL.

In particular, we focus on a commonDGOmethod, namely the spatial branch-and-bound
(B&B) algorithm [8,25].

The tighter the upper and lower bounds calculated in the B&B algorithm are, the more
efficient the fathoming of the B&B tree becomes.Mere function evaluations or local solvers
can be used for the upper bounding. The lower bounding typically applies convex relax-
ations of the model, e.g. obtained by the auxiliary variable method (AVM) [24–27] or
McCormick relaxations [13,28]. The former relaxation technique is implemented, e.g. in
the widely used commercial solver BARON [27], while we focus on the latter as imple-
mented, e.g. in our open-source solver MAiNGO [2]. The effort for calculating good lower
bounds rises with an increasing number of measurement data points considered. Similarly,
the relaxations tend to get weaker as the number of functional operations in the objective
rises, e.g. by taking a square or adding a term. Thus, we aim at using a reduced data set for
the lower bounding procedure of the completemodel, i.e. themodel incorporating all avail-
able data points. When choosing the objective function such that lower bounds calculated
based on reduced data sets are valid for the full data set, the proposed approach remains a
DGOmethod. Note that reducing the data set affects the upper bounding (i) if the reduced
data set is used to accelerate the local optimization and (ii) if the optimum point of the
lower bounding problem is used as a start value for the upper bounding solver as done
in MAiNGO. Note further that reducing the computational effort by using a sequence of
simpler problems is an established approach in other scientific areas, e.g. in the context of
tree search [18] or machine learning [e.g. [16]]. It is well known that data reduction allows
for more sophisticated fitting techniques, for example, using nonlinear models rather than
linear regression [10]. Similarly, Rulliére et al. [19] start with a small data set and include
a sampling step in their B&B approach for a stochastic optimization problem.

We investigate the following hypotheses on the solution of a (specific) parameter
estimation problem:

(H1): Both the final upper and lower bound do not change drastically when reducing the size
of the data set.
(H2): The reduction of the data set allows for a faster global solution of the parameter
estimation problem.

A B&B algorithm for minimization problems successively approaches the global solution
by cutting off ‘bad regions’, which only contain parameter tuples yielding high objective
values, and digging deeper into ‘good regions’, which contain parameter tuples giving low
objective values. Thus, Hypothesis (H1) comprises (i) detecting good regions to avoid cut-
ting off candidates for the global optimum of the complete problem, and (ii) detecting bad
regions to early cut off unfavourable parts of the B&B tree based on reduced data sets. Still,
our proposed approach can only save CPU time if the data reduction leads to a significant
reduction of the computational effort, see Hypothesis (H2).

Our case study focuses on an equation of state (EOS) of a fluid, which is one of the
fundamental models in chemical engineering. More precisely, we use the EOS of propane
presented in Lemmon et al. [11]. For the verification of their model, they refer to about
200 data sources containing more than 10, 000 data points in total. As fitting this noncon-
vex model poses a great challenge, Lemmon et al. use a drastically reduced data set and a
sophisticated fitting procedure based on nonlinear programming. Moreover, they manu-
ally adjust terms in the model formulation to get a more concise model. We, in turn, solve
a predefined estimation problem with a B&B algorithm (i) to provide a measure on how
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good the solution can get and (ii) to possibly find good solutions faster than by local or
heuristic methods due to the iterative narrowing of the feasible region. As a first step, we
consider a simplified problem statement where we reduced the number of free parameters
from 162 to 9 including 1 binary and 2 integer variables. Aside from that, we simplify the
problem further from the perspective of the DGO solver by using a reduced-space formu-
lation wherein the optimizer only sees the unknown parameters as variables and does not
see explicit equations [1,14]. As such, we have a solely box-constrainedmixed-integer non-
linear optimization problem in 9 optimization variables. In contrast to MAiNGO, many
commonDGO solvers can not handle reduced-space formulations at all or at least not effi-
ciently. In a full-space formulation of the EOSmodel discussed herein, at least one equality
constraint and one auxiliary variable per data point would be required. Consequently, we
expect an even more pronounced time gain when using a full-space formulation or an
AVM-based solver like BARON. We investigate the DGO results for the whole feasible
region and 100 subregions to check the hypotheses both in good and bad regions. Thus,
we significantly extend our preliminary results presented at EUROPT 2021 where we only
studied 6 subregions [20].

The remainder of this article is structured as follows. We give the numerical setup in
Section 2 and the model for the case study in Section 3. In Section 4, we show and discuss
DGO results of different regions in dependence of differently sized data sets for a parameter
estimation problem based on the EOS of propane. Section 5 concludes the presented study.
Additional numerical results are given in the appendix.

2. Setup

In the following, we call the parameter estimation problem using all data points base sce-
nario and the problem formulations derived by reducing the number of data points to be
fitted sample scenarios. The measurement data set is represented byD. When dividing the
feasible region into subregions, we use closed intervals for the continuous-valued unknown
parameters and, in analogy, subsequent values for the discrete unknown parameters. Thus,
we call subregions parameter boxes.

We run a complete DGO of the base and different sample scenarios over the whole fea-
sible region and each of the subregions such that we obtain meaningful lower and upper
bounds. For the optimization, we use our open-source DGO solver MAiNGO version
0.5.0.1 with an absolute and relative optimality tolerance of 10−2 as well as a CPU time
limit of 2 h. In preprocessing, we run 100 local searches with LBFGS [12,17] implemented
in the NLOPT toolbox v2.5.0 [9]. MAiNGO invokes CLP version 1.17.0 [5] for solving the
lower bounding problem, and LFBGSwith up to 10 iterations for solving the upper bound-
ing problem. The relaxations are obtained from MC++ [3]. We perform all calculations
on an Intel(R) Core(TM) i5-3570 processor with 3.4 GHz.

3. Equation of state of propane

We use DGO to estimate 9 out of 162 parameters of the EOS of propane based on the
model given in Lemmon et al. [11]. In particular, we minimize the relative mean squared
error of the predicted pressure. Our synthetic measurement set D = {(pEOSj , δEOSj , τEOSj ),
j = 1, . . . , 262} contains triplets of pressure values p, scaled density values δ, and scaled
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temperature values τ which we generated with the model including the final parameter
values of [11]. We obtain

min
n10,t10,d10,c10,l10,
η10,β10,γ10,ε10

1
| D |

|D|∑
j=1

(
pEOSj − p(δ = δEOSj , τ = τEOSj )

pEOSj

)2

s.t. p(δ, τ) = ρRT · (1 + δ · Dαr)

Dαr =
18∑
i=1

niτ tiδdi−1 · (di − ciliδli − 2ηiδ2 + 2ηiεiδ)

· exp
(
−ciδli − ηi(δ − εi)

2 − βi(τ − γi)
2
)

ρ = ρc · δ

T = Tc

τ
(1)

with constants ρc = 5000molm−3, Tc = 369.89K, and R = 8.314472 Jmol−1 K−1, con-
stant parameters ni, ti, di, ci, li, ηi, βi, γi, and εi fixed to the values given in Table 4 of [11]
for any i ∈ {1, . . . , 9, 11, . . . , 18} as well as parameter bounds

n10 ∈ [−3, 2], t10 ∈ [10−5, 22], d10 ∈ {1, . . . , 10},
c10 ∈ {0, 1}, l10 ∈ {1, 2}, η10 ∈ [0, 20],

β10 ∈ [0, 550], γ10 ∈ [0, 2], ε10 ∈ [0, 1.5]

based on parameter values for different fluids reported in [11,22,29]. Note that we use sym-
bolDαr for the derivative of the residual Helmholtz energy with respect to scaled density δ

and allow for a Gaussian term in term number 10 via c10 ∈ {0, 1}. Further, we use the value
reported in [11] for gas constant R rather than the standard value of the international sys-
tem of units (SI) to stay consistent with the model including the parameter values given
in [11]. The choice to optimize the parameters of addend i = 10 is a compromise between
the excessively long runtimes for optimizing the shape of the first addends, which deter-
mine the general properties of the model predictions, and the excessively short runtimes
for optimizing the shape of the last addends, which yield a fine tuning. Note again that we
use a reduced-space formulation, meaning that all model equations are inserted into each
other resulting in a solely box-constrained mixed-integer nonlinear optimization problem
with a nonconvex objective function.

We pseudo randomly pick 15 data samples from the base measurement data set to get
15 sample scenarios. In particular, in Scenarios 100_1 to 100_5 we fit the parameters based
on 100 data points, in Scenarios 50_1 to 50_5 based on 50 data points, and in Scenarios
10_1 to 10_5 based on 10 data points, see Figure 1.

The required files for solving Model (1) with MAiNGO and the specific measurement
data points are provided online [21]. For interested readers, we provide the model state-
ment based on the base scenario in the more common modelling language GAMS [6] as
well.
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Figure 1. Pressure-temperature-pairs used as measurement data in the sample scenarios (see legend)
and base scenario with a logarithmic y-axis. (a) Scenario 10_1 to 10_5. (b) Scenario 50_1 to 50_5. (c)
Scenario 100_1 to 100_5.

4. Results and discussion

For investigating the impact of data reduction on the optimal solution, we study DGO
results over the whole feasible set of the selected 9 parameters and 100 different parameter
boxes. The different parameter boxes represent different nodes of a potential B&B tree.
By (binary) branching, the feasible intervals of the parameters are subsequently split into
halves until nodes containing solution candidates (good regions) and nodes which can not
contain the optimal solution (bad region) are identified. Therefore, we identified Boxes 1,
2, and 3 which contain parameter values resulting in up to high quality fits (good region),
up to medium quality fits, and only low quality fits (bad region), respectively, by function
evaluations. To also cover larger regions, Boxes 4 to 50 are systematic combinations of
subregions of the feasible set of different unknown parameters, e.g. we use bounds c10 ∈
{0} in Boxes 4 and 5 as well as c10 ∈ {1} in Boxes 6 and 7 in combination with bounds
l10 ∈ {1} in Boxes 4 and 6 as well as l10 ∈ {2} in Boxes 5 and 7. For the exact bounds of
all parameters, please refer to the supplementary material [21]. Since we can not foresee
the actual B&B tree, we added Boxes 51 to 100 which contain pseudo randomly generated
parameter bounds. For simplification of notation, the name ‘Box 0’ will refer to the whole
feasible range in the following.

By computing lower and upper bounds for the boxes via DGO, which are as tight as pos-
sible given ourCPU time limit, we aim at an informative representation of possible nodes of
a B&B tree and the corresponding pruning behaviour of the B&B algorithm. Analogously,
we do not investigate the optimal parameter values of the different boxes as these do not
affect the pruning behaviour.

Before running DGO, we evaluated the objective function for all 15 sample scenarios
and the base scenarios at 6 different points covering regions with high and low objective
values. When using too few data points, namely Scenarios 10_1 to 10_5 in this case study,
sample scenariosmay give objective function values which are orders ofmagnitude smaller
than the final lower bound of the base scenario [cf., 21]. We therefore run DGO only for
Scenarios 50_1 to 50_5 and 100_1 to 100_5. Hereby, we use the last results reported rather
than the final results for Scenario 50_5 in Boxes 32 and 33 aswell as the base scenario in Box
34 as the DGO within MAiNGO aborts unexpectedly for these 3 out of (100 + 1) · 10 =
1100 cases.
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Figure 2. Final lower bound obtained by DGO of Model (1) for the base scenario ( ) as well as sample
scenarios 50_1 to 50_5 and 100_1 to 100_5 (o) when optimizing over different parameter boxes, where
Box 0 is the whole feasible region, with an optimality tolerance of 0.01 (–); marks on the x-axis are equal
to 0.

At first, we focus on Hypothesis (H1). Let us recall that we aim for an algorithm using a
lower bound calculated based on a reduced data set for solving the complete model. Trans-
ferred to the study presented herein, this means to compare the lower bound of a sample
scenario with the upper bound of the base scenario for deciding whether to prune the
respective node. In this study, we are interested in the order of magnitude of the bounds
on the optimum solution rather than the exact values, since we want to investigate whether
the data reduction changes the pruning behaviour drastically.

Overall, the order of magnitude for the final upper and lower bounds is consistent, i.e.
close to the optimal solution value 0 or significantly larger, for the base scenario and Sce-
narios 50_1 to 50_5, 100_1 to 100_5 within each of the parameter boxes, cf. Figures 2 and 3
as well as Table A2 in the appendix. Note that values smaller than the machine precision of
10−16 are numerically equal to 0 and correspond therefore to a perfect fit. In cases with a
significant absolute deviation between the lower bounds of a sample scenario and the cor-
responding base scenario, the sample scenarios always yield smaller final lower bounds. In
these cases, the current upper bound of the B&B tree, i.e. the best solution found so far,
may lie between the lower bound of the base scenario and the lower bound of a sample
scenario. Hence, data reduction may prevent pruning of such a node and, consequently,
lead to a larger B&B tree. To investigate this in more detail, we assume a B&B tree, where
we have the whole feasible range, i.e. Box 0, in the root node and one of the Boxes 1 to
100 in the active child node. Only if Box 2 were the active node, a child node would be
pruned when using the base scenario but kept when using 2 out of the 10 sample sce-
narios, namely Scenarios 50_3 or 50_5. Note that Box 2 is right at the boundary between
pruning and keeping, since it is deliberatily picked to contain only medium quality fits. For
all other boxes, the decision whether or not to prune does not change when replacing the
base scenario with any of the sample scenarios.

The reverse is seen in many of the cases where the final lower bound is smaller than the
optimality tolerance, i.e. the solution is a(n) (almost) perfect fit: some of the sample sce-
narios give larger lower bounds than the base scenario. However, we can replace the mean
squared error in the objective function by the sum of squared errors, which corresponds to
scaling the objective presented in this article by the size of the data set. In this case, we add
more error terms when augmenting the sampled data set until the full data set is reached.
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Figure 3. Final upper bound obtained by DGO of Model (1) for the base scenario ( ) as well as sample
scenarios 50_1 to 50_5 and 100_1 to 100_5 (o) when optimizing over different parameter boxes, where
Box 0 is the whole feasible region, with an optimality tolerance of 0.01 (–).

Figure 4. Box-Whisker-plot of the average CPU time per B&B iteration in dependence of the size of the
data set when solving Model (1) for the base scenario ( ) as well as sample scenarios 50_1 to 50_5 and
100_1 to 100_5 (–) over 100 different parameter boxes and the whole feasible region.

Due to the nonnegativity of a squared function, the lower bound of each sample scenario
will therefore be a lower bound on the base scenario.

Finally, we check Hypothesis (H2) regarding the reduction of the CPU time by data
reduction.We aim at developing an extension of the B&B algorithmwhich applies different
reduced data sets in different B&B nodes, starting with very small data sets in the first
nodes and, finally, approaching the full data set at the end of the B&B algorithm. Thus, we
investigate theCPU timeper B&B iteration rather than theCPU time of the completeDGO,
whereby B&B iteration means processing one node including, beneath other steps, lower
and upper bounding. Figure 4 shows that we can typically expect a CPU time reduction
for the B&B iterations when using a reduced data set. In fact, the scenarios with 100 data
points are on average 4 times faster and the scenarios with 50 data points are on average 9
times faster than the base scenario in the respective box. However, single scenarios may be
exceptions of this rule. For example, the quickest case with | D |= 100, namely Scenario
100_2 in Box 61, is faster than the slowest 18% cases with | D |= 50.

Note that the results for the average CPU time per iteration cannot be easily transferred
to the total CPU time of the DGO as the data reduction changes the optimization problem.
Although the reduced data set may allow for a better fit, this solutionmay be harder to find
for the upper bounding solver. At the same time, the convergence of the lower bound may
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takemore time for a reduced data set if the DGO solver needs the lower bound to approach
the global solution rather than a potentially better, i.e. lower, upper bound obtained by
another node with the full or another reduced data set. Nevertheless, all sample scenar-
ios are faster than the base scenario when optimizing over the whole feasible range, and
almost 98% of the sample scenarios are faster in Boxes 1–100, see Table A1 in the appendix.
Note that the vast majority of both the base and the sample scenarios converges within 1
minute, while almost all of the remaining cases hit the CPU time limit, see Figure A1 in the
appendix. Since the EOS model studied in this case study requires a very low optimality
tolerance, the computational performance of the complete DGO of the scenarios depends
strongly on the solutions found in the pre-processing, the choice of linearization points
and the actual heuristic solutions found within the box.

5. Conclusion

We investigated whether a reduction of the measurement data set can make the deter-
ministic global optimization (DGO) of parameter estimation problems tractable without
distorting the solution. For this, we fitted the equation of state for propane described by
[11] based on random data scenarios with 10, 50, and 100 data points as well as the full
data set with 262 data points. In particular, we confirmed that

(H1): the order of magnitude of both objective function values and lower bounds is preserved
(H2): the average CPU time per iteration can be expected to decrease

when reducing the size of the data set.
Regarding Hypothesis (H1), good and bad regions of the base scenario can be distin-

guished well by sample scenarios with a sufficient number of data points, in particular,
| D |∈ {50, 100} in this case study. In general, data reductionmay allow for lower objective
values and, thus, blow up the B&B tree by keepingmore nodes than required. However, the
order of magnitude of the lower bound in different subregions of the feasible set is identi-
fied correctly by the sample scenarios, which already allows for pruning nodes containing
only low quality fits. On the other hand, some of the sample scenarios give slightly larger
lower bounds than the corresponding base scenario in good regions, which can result in
pruning the global solution in theworst case. For an algorithm exploiting reduced data sets,
we therefore propose data augmentation when approaching good regions and modifying
the objective function such that valid lower bounds on the base scenario can be obtained
even when using reduced data sets. Note again that the reduced data set should represent
the complete data set adequately as solving a parameter estimation problem often means
to balance model prediction errors from different regions. This means, for example, con-
sidering measurements in both liquid and gas phase for fitting an EOS. Otherwise, data
reduction may distort the optimal solution when using realistic error-prone measurement
data instead of noisefree data as we did in this preliminary study. Note that our posi-
tive results regarding Hypothesis (H1) indicate that the presented samples preserve the
properties of the full data set sufficiently, even though they are chosen randomly.

Hypothesis (H2) is confirmed for the average CPU time per B&B iteration, while the
conclusion for the total CPU time of the DGO is more diverse. The DGO of most of the
sample scenarios converges faster than DGO of the corresponding base scenario, while
the optimization of some sample scenarios takes as long as or even longer than the base
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scenario in some of the subregions of the feasible set. In this case study, the overall speed of
convergence highly depends onwhen andwhere the local solver succeeds in finding a good,
i.e. a small, upper bound. Approaches for improving the upper bounding comprise the
comparison of different local solvers, as easily possibly within MAiNGO, using multistart
in pre-processing, as done in this case study, and initializing the local searches with good
solutions found in other nodes. It remains for future studies whether narrowing the feasible
region by the integration of constraints, e.g. for guaranteeing thermodynamic stability, is
also beneficial or even counterproductive.

Since (i) the sample scenarios can identify good and bad regions and (ii) the average
CPU time per B&B iteration tends to decrease when using reduced data sets, we expect
an acceleration of the B&B algorithm when replacing the full data set with reduced data
sets in some of the B&B nodes. In our case study, the B&B tree could process 9 or 4 times
the number of iterations within the same CPU time limit when reducing the data set from
262 to 50 or 100 data points. Since the solution of complex models often takes multiple
thousand iterations, fathoming the B&B tree may be sped up even if Hypotheses (H1) and
(H2) fail in a small number of nodes. Moreover, the augmentation step will eventually
close the gap between sample scenarios and base scenario. Consequently, replacing the
base scenario by sample scenarios at the beginning of the B&B algorithm and successively
augmenting data until we reach the full data set at the end appears promising for making
the DGO of large-scale parameter estimation problems tractable.

In future work, we will therefore implement the proposed algorithm. Amajor challenge
will be to find out when to augment the data set to achieve good convergence proper-
ties. Finally, it would be interesting to compare the performance of random and carefully
selected reduced data sets for different case studies.
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Appendix. Additional numerical results

This appendix contains more details on the computational performance of the different DGO runs.
Note again that we use the last values reported for lower bound, upper bound, and CPU time as the
final results for the 3 out of 1100 runs for which the DGO within MAiNGO aborts unexpectedly, cf.
Section 4.

The total CPU times for each optimization run are depicted in Figure A1. All of the scenarios
optimized over the whole feasible region and about 83% of the runs over boxes 1 to 100 converge
within a minute, see also Table A1. The most of the remaining runs hit the CPU time limit, while
only 19 runs in total have a runtime of multiple minutes up to 2 h. Even though, we can see the
tendency that the base scenario takes longer than the sample scenarios. For further investigations,
we define CPU time and data ratio

rCPU := CPU time of sample scenario
CPU time of base scenario

and rdata := | Dsample |
| Dbase | ,

respectively, for evaluating the time gain for a sample scenario. In case of equality rCPU = rdata, the
CPU time increases linearly in the number of data points. If rCPU � rdata, we can solve compara-
tively many samples while still reducing the overall CPU time. Table A1 shows that the total CPU
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Figure A1. Total CPU time for DGO of Model (1) for the base scenario ( ) as well as sample scenarios
50_1 to 50_5 and 100_1 to 100_5 (o) when optimizing over different parameter boxes, where Box 0 is
the whole feasible region, with lines (–) indicating the CPU time limit of 2 h (at the top) and 60 s (at the
bottom).

Table A1. Computational performance of sample scenarios 50_1 to 50_5 and 100_1 to 100_5 in
comparison to thebase scenariowhen runningDGOover thewhole feasible set and theparameterboxes.

No. of scenarios where CPU time is/yields

Scenario rdata Median of rCPU
Total no.
scenarios < 60 s = 2 h < CPU base1 rCPU < rdata rCPU < 1

2 r
data

Whole feasible region
Base 1 1 1 1 0 –2 –2 –2

100_1 to 100_5 0.38 0.25 5 5 0 5 5 0
50_1 to 50_5 0.19 0.07 5 5 0 5 4 4
Boxes 1 to 100
Base 1 1 100 67 32 –2 –2 –2

100_1 to 100_5 0.38 0.27 500 404 91 491 354 138
50_1 to 50_5 0.19 0.09 500 447 40 488 413 263
1 CPU time required for optimizing the base scenario over the same parameter box
2 False by definition for the base scenario

time of 76.7% of the sample scenarios in the 100 boxes is reduced evenmore than the size of the data
set, i.e. rCPU < rdata. The same holds for 9 out of the 10 sample scenarios when optimizing over the
whole feasible range. For the majority of optimization runs of Scenarios 50_1 to 50_5, the CPU time
ratio is even twice as small as the data ratio.

Additionally, we provide an analysis of the order ofmagnitude of the final lower andupper bounds
in Table A2. We cluster the boxes into two categories: the promising boxes where the base scenarios
may contain a perfect fit according to the final lower bound, and the inauspicious boxes where the
base scenario can only contain low quality fits as proven by a large final lower bound. The final lower
bound in promising boxes is for all sample scenarios also smaller than the optimality tolerance. In
contrast to that, there are sample scenarios indicating an inauspicious box as promising, see themin-
imum value of 8.93 × 10−21. However, the median values over the sample scenarios are consistent
with the categories, i.e. we have a small final lower bound for promising boxes and a large final lower
bound for inauspicious boxes. Similarly, we can find large final upper bound values in promising
boxes, indicating non-converged optimization runs, and—for some sample scenarios—small final
upper bounds in inauspicious boxes. But again, the median values of the final upper bounds of the
sample scenarios are consistent to the categories defined via the base scenario.
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Table A2. Order of magnitude of final lower and upper bound for the base scenario and sample sce-
narios 50_1 to 50_5 and 100_1 to 100_5 indicated by theminimum value, maximum value, andmedian
when dividing the parameter boxes into two categories.

Base scenario Sample scenarios

min max median min max median

Final lower bound
Promising boxes1 0.00 1.71 × 10−4 1.12 × 10−4 0.00 6.68 × 10−3 2.77 × 10−5

Inauspicious boxes2 1.66 × 102 5.38 × 1014 8.30 × 105 8.93 × 10−21 1.31 × 1014 2.61 × 103

Final upper bound
Promising boxes1 5.67 × 10−8 8.30 × 105 1.31 × 10−1 1.27 × 10−18 5.01 × 103 2.08 × 10−3

Inauspicious boxes2 1.72 × 102 5.38 × 1014 8.30 × 105 1.39 × 104 1.31 × 1014 2.61 × 103

1 Set of all boxes with base LB< 0.01 = optimality tolerance, i.e. the boxes which potentially contain a perfect fit
2 Set of all boxes with base LB≥ 0.01 = optimality tolerance, i.e. the boxes which can not contain a perfect fit
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