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Abstract

In this work we demonstrate that tracing the
vapor-liquid equilibria for binary mixtures also
includes all the information needed to obtain
the three-phase-line if one is present. This
simple observation serves as a launching point
for calculation of liquid-liquid equilibrium and
three-phase equilibria, even when one compo-
nent is supercritical. We close with the demon-
stration of the automatic construction of an
isothermal pressure-composition figure, a capa-
bility enabled by solving for the three-phase
state. Examples in the Python programming
language demonstrate in detail how the method
is applied.

1 Introduction

The calculation of multi-phase equilibria from
a thermodynamic model appears at first glance
to be a straightforward task. One must “sim-
ply” equate the chemical potentials of all com-
ponents in all phases and the pressures in all
phases. Et voilà! On the contrary, reliable cal-
culations for phase equilibria are by no means
guaranteed, and as the model becomes increas-
ingly mathematically involved (often positively
correlated with its accuracy), the likelihood of

trouble increases. See for instance the crit-
icality plots in Ref. 1 for one example how
a more complicated (and accurate) model can
cause challenges in calculating critical points.
Therefore, it is desirable to develop algorithms
that are extremely reliable, even if they might
incur a computational speed penalty (though
this penalty is by no means guaranteed). For
this reason the authors have been developing
routines2–6 for phase equilibria that have at
their core the notion of starting at a well-
characterized point (a pure component value
for instance), and then tracing along the phase
equilibria surface from there, rather than car-
rying out a “blind” phase equilibrium calcula-
tion for which the algorithm must have a good
(sometimes very good) estimate of phase den-
sities and compositions in order to converge to
the correct phase equilibrium solution.
The three-phase (vapor, liquid, liquid) solu-

tion obtained from the two-phase vapor-liquid
equilibria is a good launching point for liquid-
liquid equilibria calculations. Therefore, the
focus of this paper is on how to obtain this
three-phase equilibrium in a very reliable fash-
ion. The algorithm we propose can be concisely
expressed, and implemented with the use of ex-
isting computational tools. A key advantage of
the approach proposed here is that because of
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the use of tracing we never solve for density at
a given temperature, pressure and composition,
a task that is challenging for some thermody-
namic models,7,8 and is not entirely foolproof
for cubic equations of state either.9

While the construction of isothermal
pressure-composition diagrams including three-
phase curves is not novel (a few examples: Refs.
6,10–15), the literature is quiet on the details
of the process. Some authors proposed algo-
rithms for constructing isothermal pressure-
composition diagrams for rather special ap-
plications, as for example the precipitation of
asphaltene phases16 or multi-phase equilibria
including minerals in geosciences.17 Michelsen
and Mollerup18 (page 310-317) propose two
different methods for identifying three-phase
vapor-liquid-liquid equilibria (VLLE) when
constructing p-x or T-x diagrams. The first
method is tracing the vapor-liquid equilibrium
(VLE) to meta- and unstable conditions. In the
case that the binary mixture exhibits a three-
phase equilibrium, there will be a minimum
and a maximum in the bubble line, which can
be detected by the algorithm. Michelsen and
Mollerup18 suggest to subsequently identify the
same vapor phase which is in equilibrium with
two different liquids in order to determine the
three-phase equilibrium. The second method
suggested by Michelsen and Mollerup18 is a
sophisticated method for finding the VLLE by
first generating a guess value for pressure (in
case of an isotherm in a p-x diagram). They
state that the guess value for pressure is in most
cases overestimated. Therefore, most likely, a
liquid-liquid equilibrium (LLE) will be found
and subsequently the LLE is traced to lower
pressures until the VLLE can be determined.
Venkatarathnam14 proposed a density march-
ing method to construct p-x and T-x diagrams
including the vapor-liquid-liquid equilibrium
line. The algorithm can pass through meta-
and unstable VLE and LLE solutions. From
the intersection of the stable liquid and the
stable vapor branch, the VLLE can be located.
Alternatively, Venkatarathnam14 proposes to
find the VLLE before constructing the diagram,
similar to the approach discussed in Ref. 18.
For this case, Venkatarathnam14 suggests to do

a three-phase bubble point calculation, see Ref.
19. Venkatarathnam14 states that the proposed
algorithm might fail in some special cases.
Other publications propose algorithms for the
three-phase flash problem20–24 or methods for
tracing the vapor-liquid-liquid equilibrium lines
given a suitable starting point.25 Based on their
previous work,25 Cismondi and Michelsen 26

proposed a method to construct p-x and T-x
diagrams by first calculating critical points and
three-phase lines and then subsequently con-
structing all two phase regions. Many of the al-
gorithms proposed in the literature employ the
tangent plane distance criterion27,28 in order to
test for phase stability. In the thermophysical
property software TREND,29 three-phase equi-
libria of binary mixtures can currently only be
automatically calculated when choosing pres-
sure and enthalpy or pressure and entropy as
input. The corresponding algorithms imple-
mented in TREND are described in Ref. 22.
The REFPROP software library is the in-

dustry standard for high-accuracy thermophys-
ical property models and explicitly does not in-
clude the consideration of multiphase equilibria.
The warning message when opening the REF-
PROP user interface for the first time reads:
“The present version is limited to vapor-liquid
equilibrium (VLE) only and does not address
liquid-liquid equilibrium (LLE), vapor-liquid-
liquid equilibrium (VLLE) or other complex
forms of phase equilibrium.” The work in this
paper begins the process of making REFPROP
able to solve for multi-phase equilibria.
Therefore, in this work we propose a repro-

ducible and robust approach for calculating
three-phase equilibria by using the concept of
isochoric thermodynamics,2–6 which can also be
used to automatically construct p-x diagrams
for binary mixtures.

2 Algorithm

Before getting into the details, the approach is
explained in words:

� Vapor-liquid-liquid equilibrium (VLLE)
is the connection of two conventional
vapor-liquid-equilibrium (VLE) solutions.

2



So to obtain the VLLE solution, find the
two VLE solutions with the same vapor
phase and different liquid phases.

� In order to obtain this VLLE solution,
first we look for vapor phase intersec-
tions of the vapor-liquid phase equilibria
in pressure-composition coordinates along
an isotherm. There should be one valid
intersection if VLLE is present.

� If the vapor phases obtained are close
to being identical, then VLLE has likely
been found. Polishing of the approximate
solution from intersection yields the equi-
librium state for the three phases.

2.1 Isochoric Thermodynamics

In the formalism of isochoric thermodynamics,
the Helmholtz energy density Ψ is the indepen-
dent variable and the dependent variables are
temperature T and the vector of molar concen-
trations of the components ρ

Ψ(T,ρ) = a(T,ρ)× ρ (1)

and all derivatives are obtained from deriva-
tives of this potential with respect to temper-
ature and molar concentrations. The molar
Helmholtz energy a is obtained from the ther-
modynamic model (which may be considered to
be arbitrary at this point). Conversion to the
more commonly used molar density and mole
fractions go like

ρ =
∑
i

ρi (2)

xi =
ρi
ρ

(3)

The derivatives along the phase equilibrium
surface along an isotherm can be defined analyt-
ically in terms of the Helmholtz energy density.
A very similar process applies for derivatives
taken along isobars or isopleths (curves of con-
stant mixture composition). For a binary mix-
ture, the derivatives of each phase are obtained
from sequentially solving two linear problems

for the isothermal case:5[
(H ′ρ′′)⊺

(H ′ρ′)⊺

]
dρ′

dp

∣∣∣∣
T,σ

=

[
1
1

]
(4)

H ′′ dρ
′′

dp

∣∣∣∣
T,σ

= H ′ dρ
′

dp

∣∣∣∣
T,σ

(5)

where the bracketed term in the left-hand-side
of Eq. (4) has dimensions of 2×2 and the ρ are
considered to be column vectors. The matrixH
is the Hessian of the Helmholtz energy density
with entries given by

Hij =


1

ρi
+

(
∂2Ψr

∂ρ2i

)
ρk ̸=i

if i = j(
∂2Ψr

∂ρi∂ρj

)
if i ̸= j

(6)

Deriving a set of differential equations along
the phase equilibrium surface is the first step.
The next step is to develop an algorithm for in-
tegrating the set of differential equations along
the phase envelope. In principle it is possible
to integrate these equations with temperature,
pressure, or a molar concentration of a compo-
nent as the tracing variable,3–5 but it is difficult
to know a priori which tracing approach is most
appropriate for a particular case (curve of con-
stant temperature, pressure, or molar composi-
tion), and not all will be able to yield a complete
trace due to local extrema in the tracing vari-
able curve.6 A new approach eliminating the
need to select the tracing variable is to trace in
terms of an arclength variable. This paramet-
ric tracing approach does not require any user
intervention to trace the isoline or selection of
tracing variable. The arclength parameter (the
parameter in parametric tracing) is not a mea-
sureable quantity, rather it is a mathematical
convenience. But this approach has proven its
reliability in tracing complex phase equilibria
behaviors as well as tracing critical curves by a
similar approach.30

The differential of the new parametric tracing
variable t is defined based on the norm of the
differentials of the concentration vectors:

dt = ±
√
(dρ′)2 + (dρ′′)2 (7)
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where the sign of the ± is selected such that the
tracing does not result in an abrupt change in
direction; phase envelopes tend to be smooth.
The sign may need to be updated during the
course of integration, and needs to be specified
at the beginning of the integration. The norm
operation is defined by

(dρχ)2 =
∑
i

(dρχ
i )

2 , χ = ′,′′ (8)

and dividing through by the differential of p
yields the derivative at constant temperature

dt

dp
= ±

√√√√( dρ′

dp

∣∣∣∣
T,σ

)2

+

(
dρ′′

dp

∣∣∣∣
T,σ

)2

(9)

from which derivatives of the concentration vec-
tors may be defined6

dρ′

dt
=

dρ′

dp

∣∣∣∣
T,σ

dp

dt
(10)

dρ′′

dt
=

dρ′′

dp

∣∣∣∣
T,σ

dp

dt
(11)

and the pressure derivatives are as given above
in Eq. (4) and Eq. (5).
The integration of the above set of differen-

tial equations, for which an adaptive step size
algorithm should be used, traces away from a
known state. In this work, we always start our
tracing from a pure fluid endpoint. That is, we
carry out a pure fluid phase equilibrium calcula-
tion and the values for the co-existing densities
for a given temperature are obtained. From this
pure fluid solution is obtained the values of ρ at
a pure fluid endpoint. Supposing the pure-fluid
saturated liquid and vapor densities of compo-
nent A are ρ′A and ρ′′A, respectively, the vector
of molar densities would be ρ′ = [ρ′A, 0] for the
liquid phase ρ′′ = [ρ′′A, 0] for the vapor phase
for the mixture of A + B. If the temperature
is subcritical for both members of the binary
mixture, the tracing can in principle be initi-
ated at either pure fluid endpoint. There are
some additional numerical concerns in the case
of infinite dilution (one component density be-
ing zero), which are handled properly in the
code, and described in the literature.3

Tracing proceeds until a) the other pure fluid
has been obtained (a mole fraction less than
zero is obtained) or b) when a critical point is
approached. Heuristic metrics in the tracer are
used to stop when either of these cases are en-
countered, as well as to handle some other cor-
ner cases (not relevant to the system of nitro-
gen + ethane, which we will be using as an ex-
ample). An advantage of this approach is that
azeotropy is not a hindrance to the tracing.

2.2 Obtaining Approximate So-
lution

The advent of parametric tracing of phase equi-
libria6 has resulted in a very reliable means of
obtaining contiguous portions of cross-sections
of the phase-equilibrium surface. In this case,
we use the Python package isochoric to do the
tracing, and the results for a low-temperature
isotherm of 120.3420 K for the mixture of nitro-
gen + ethane are presented in Figure 1. To gen-
erate this figure, one trace was initiated at pure
nitrogen (x1 = 1 at a pressure of 2.55 MPa) and
another at pure ethane (x1 = 0 at a pressure of
370 Pa). Each portion of the isothermal phase
equilibria was traced with the parametric tracer
until it terminated, yielding the curves shown
in the figure. Note that the right portion of the
graph has a very different axis scale to improve
the legibility. The calculated values are given
in the tables in the supporting information for
verification purposes.
In this figure, the three-phase pressure is

highlighted, and the liquid-phase solutions are
rendered more subtly so that the focus is on
the vapor phase. The intersection of the va-
por phase solutions occurs at the three-phase
solution. The thermodynamic state can be
fully specified by the temperature, pressure and
composition. The crossing of the vapor phase
curves (crossing indicating that they are at the
same composition and pressure) implies that
the thermodynamic states must be identical.
While it is by no means guaranteed, in this

case the three-phase solution is in very good
agreement with experimental data from the
literature because the thermodynamic model
represents the experimental data well. The
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Figure 1: Nitrogen(1) + ethane(2) tracing at a temperature of 120.3420 K. Open markers are
experimental values from Llave et al.31 Thick lines are vapor phases, thin lines are liquid phases.

isotherm temperature was selected because it
matches a temperature measured by Llave et
al.31 (after conversion to the ITS-90 tempera-
ture scale32) and is below the critical tempera-
ture for both fluids.
In this particular case, a single trace, started

at either of the pure components, marching in
ρ1, would have also allowed for the full trace in
one shot, but that is not guaranteed, and the
parametric approach is more generally applica-
ble. The advantage of the parametric approach
is that no control variables or human decisions
are needed; the algorithm stops when it hits a
critical point or a pure fluid.
While the human vision system is an ad-

vanced tool for identifying intersections of space
curves in two dimensions, computers struggle
with this task. Curve intersection algorithms
tend to be surprisingly slow, and there are many
numerical pitfalls that can be introduced (de-
generacy, etc.). Vectorization allows for a more
computationally efficient solution, as is neces-
sary here. The intersection problem is dele-
gated to specialized routines, providing the ar-
rays of points xA, yA in the search for self-
intersection of space curve A, or xA, yA, xB, yB
for the case of intersection of the space curves A

and B. Figure 2 shows the case of a Maclaurin
trisectrix intersecting itself and intersecting a
line. The mathematically continuous curves are
discretized, to highlight the fact that the same
discretized approach is needed in this work.
These two cases are identical to the self- and
cross-intersections needed in this work.

2.0 1.5 1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

A

B

Figure 2: The Maclaurin trisectrix (curve A),
given by x = a(t2 − 3)/(t2 + 1), y = at(t2 −
3)/(t2 + 1), with t in [−3, 3] and a = 0.5, inter-
secting itself (star) and intersecting the curve
B given by the line y = 0.1x+ 0.1 (squares)
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The intersection routines return the indices
of the array where the intersection occurred
and linearly interpolated values of x and y
at the intersection. Returned intersections
then are filtered to remove undesirable solu-
tions caused by numerical artifacts, mostly
in the self-intersection case, where spurious
self-intersection is much more likely, especially
around critical points and cusps. The fil-
ter is that the two endpoints of each of the
line segments forming the intersection should
be thermodynamically stable, which is guaran-
teed by λ1(H) > 0.01 (λ1 being the minimum
eigenvalue of the Hessian matrix H defined by
Eq. (6)).
Locating the vapor phase intersection yields

the pressure of the three-phase solution and
the composition of the vapor phase. The next
step is to backwards interpolate the liquid-
phase portions of the trace(s) to obtain the ap-
proximate molar concentrations for the liquid
phases. To do so, each of the space curves ρ′k(p)
is linearly interpolated for the three-phase pres-
sure obtained from intersection to yield the es-
timated values at VLLE. This yields the molar
concentrations of each component in the liquid
phases that are in equilibrium with the paired
vapor phase solution. While not especially ac-
curate in general, the error introduced by linear
interpolation a) is very small because the curves
are nearly linear near the intersections b) will
be removed by the phase equilibrium polishing
routine described next. A numerical example
of the procedure is provided below.

2.3 Polishing

Once an approximate three-phase solution de-
fined by the molar concentration arrays in each
phase (ρ′, ρ′′, ρ′′′) has been identified for a given
temperature, the next step is to polish the so-
lution to obtain the “true” thermodynamic so-
lution to numerical precision. The phase equi-
librium problem is expressed as

µ′
k = µ′′

k = µ′′′
k (12)

p′ = p′′ = p′′′ (13)

for each of the k components (here k = 2 be-
cause there are two components) in the three
(′,′′,′′′) phases. For a binary mixture at fixed
temperature there are six independent variables
(two molar concentrations per phase), and the
six equations to be forced to zero by a non-
linear rootfinding algorithm are:

r =


p′ − p′′

p′′ − p′′′

µ′
0 − µ′′

0

µ′
0 − µ′′′

0

µ′
1 − µ′′

1

µ′
1 − µ′′′

1

 (14)

Dropping portions of the chemical potential
that are the same in each phase, the phase equi-
librium problem can be refactored5 in terms of
residual properties only as

Ωr
k =

1

RT

(
∂Ψr

∂ρk

)
ρj ̸=k,T

+ ln(ρk) (15)

yielding

r =


p′ − p′′

p′′ − p′′′

(Ωr)′0 − (Ωr)′′0
(Ωr)′0 − (Ωr)′′′0
(Ωr)′1 − (Ωr)′′1
(Ωr)′1 − (Ωr)′′′1

 (16)

The residua of chemical potentials could also
be expressed as differences in fugacities with no
loss in generality. The derivation is in Section
2 of the supporting information.
In this case, we know that the guess value

for the three-phase solution is very close to
the full solution, so standard multidimensional
rootfinding can be used. In this case we used
the root function from the scipy.optimize pack-
age which uses finite differentiation to build
the Jacobian matrix. If additional speed were
needed for this rootfinding step, analytical
derivatives of the residual functions could be
derived.

6



2.4 Supercritical Extension

If the mixture is supercritical (is above the crit-
ical temperature of at least one component), it
is no longer possible to initialize a trace from at
least one of the pure fluids at its saturation tem-
perature because the pure fluid solution does
not exist. An alternative approach is there-
fore needed, following the approach used for
the other phase equilibrium tracing: we express
the conditions of three-phase equilibrium alge-
braically, take the differentials of these condi-
tions, and develop systems of differential equa-
tions along the phase envelope. We then inte-
grate this system of differential equations from
a subcritical temperature where the three-phase
solution can be obtained (with the molar con-
centrations ρ′, ρ′′, and ρ′′′) in order to obtain
supercritical solutions. More precisely, we ob-
tain a set of derivatives dρα/dT for α corre-
sponding to each of the three phases, and inte-
grate this system of derivatives from a subcrit-
ical temperature to the supercritical tempera-
ture of interest to obtain the molar concentra-
tions in each phase. If temperature and mo-
lar concentrations are known in each phase, so
too is the pressure from p = f(T,ρ); the pres-
sure should be the same in each phase. The
mathematics required for these derivatives are
summarized in Fig. 3 and laid out in detail in
Section 1 of the supporting information.

3 Results

In order to demonstrate the approach, we have
selected the mixture nitrogen + ethane. This
non-polar and non-associating system has been
considered because three independent experi-
mental datasets from the literature exist for
cross-comparison. In this work we use the
multi-fluid approach with the pure fluid EOS
from their respective reference equation of state
(nitrogen: Ref. 33, ethane: Ref. 34) and the
mixture model from GERG-2004.35 This is
the default model used in REFPROP,36 Cool-
Prop,37 and TREND.29 This system can also
be reasonably modeled by a range of other less
accurate thermodynamic models (cubic EOS,
etc.). The approach employed in this work is

agnostic as to the particular equation of state
selected; all that is needed is an implementation
of αr and its thermodynamic derivatives.
The entire codebase of the tracer is avail-

able at https://github.com/usnistgov/

isochoric, which is available in the python
package index (PYPI). Version 0.10.2 of the
tracer was used to generate all the figures in
this paper. The scripts used to generate the fig-
ures in the paper as well as an environment file
for conda are included in the deposited data at
https://doi.org/10.18434/mds2-2487. The
thermodynamic backend is the core thermody-
namic backend of CoolProp.37

In order to explain the procedure in some-
what more detail, a worked example is provided
here along with plenty of significant digits to
ensure that the values are in agreement. Again
we select the 120.3420 K isotherm, matching
the data from Llave et al.,31 which has the two
traces shown in Fig. 1. The numerical intersec-
tion code yields the approximate solutions for
the molar concentrations of the three phases (in
units of mol/m3, for the pair nitrogen + ethane
in that order) of

ρ′ = [5676.16238, 16112.5673] (20)

ρ′′ = [19895.8089, 1659.22076] (21)

ρ′′′ = [3686.40274, 3.27912599] (22)

for which the calculated values of pressure (in
Pa) in the three phases are

p′,′′,′′′ = [2328534, 2323538, 2326234] (23)

After carrying out the complete phase equilib-
rium, the pressures are equated to numerical
precision, and the molar concentrations of each
of the phases (in units of mol/m3, with the same
ordering as before) are equal to

ρ′ = [5640.76015, 16141.2539] (24)

ρ′′ = [19890.1584, 1698.9167] (25)

ρ′′′ = [3669.84793, 3.25894533] (26)

Comparing these results with the approxi-
mate solution above highlights that the pol-
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[
(Ψ′(ρ′′ − ρ′))⊺

(Ψ′(ρ′′′ − ρ′))⊺

]
· dρ

′

dT
=


[(

∂µ′′

∂T

)
ρ
−
(

∂µ′

∂T

)
ρ

]
· ρ′′ −

[(
∂p′′

∂T

)
ρ
−
(

∂p′

∂T

)
ρ

]
[(

∂µ′′′

∂T

)
ρ
−
(

∂µ′

∂T

)
ρ

]
· ρ′′′ −

[(
∂p′′′

∂T

)
ρ
−
(

∂p′

∂T

)
ρ

]
 (17)

Ψ′′dρ
′′

dT
= Ψ′dρ

′

dT
−

[(
∂µ′′

∂T

)
ρ

−
(
∂µ′

∂T

)
ρ

]
(18)

Ψ′′′dρ
′′′

dT
= Ψ′dρ

′

dT
−

[(
∂µ′′′

∂T

)
ρ

−
(
∂µ′

∂T

)
ρ

]
(19)

Figure 3: The set of equations to be sequentially solved in order to obtain the temperature deriva-
tives dρ′/dT , dρ′′/dT , and dρ′′′/dT along the VLLE curve. In the first equation, the bracketed
term in the left-hand-side is of dimension 2× 2 and µ and ρ are considered to be column vectors.

ishing is doing only a tiny modification to the
phase equilibrium solution because the tracing
+ intersection approach tracks so closely the
true thermodynamic solution.
To begin, we consider the three-phase pres-

sure, as shown in Fig. 4. The critical temper-
ature of nitrogen, at 126.192 K, is the lower
of the two pure components, so for any tem-
peratures above 126 K, a full phase equilib-
rium solution was carried out at 120 K (low
enough to avoid numerical difficulties too close
to the critical point of nitrogen) and then the
system of differential equations shown in Fig. 3
was integrated from 120 K to the temperature
of interest, yielding an approximate (but very
good) VLLE solution at the temperature of in-
terest. A complete phase equilibrium solution
was then carried out at the target temperature
to obtain the exact solution. We plot the ob-
tained VLLE pressure according to the litera-
ture sources31,38,39 and the model values as a
function of temperature, as well as the relative
deviations. Aside from the data of Yu et al.,38

which we deem to be less reliable, the relative
deviations in pressure are all within 4%, with a
clear systematic bias of approximately -3%.

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

p 
/ M

Pa

Yu et al. (1969)
Gasem et al. (1981)
Llave et al. (1985)

105 110 115 120 125 130 135 140
T / K

12
10
8
6
4
2
0
2

10
0

×
(p

ca
lc

/p
ex

p
1)

Figure 4: Three phase pressure and deviations
as a function of temperature for nitrogen +
ethane.
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Figure 5: Three phase mole fraction of nitrogen
in the nitrogen-weak liquid phase L1 and model
deviations as a function of temperature for ni-
trogen + ethane.
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Figure 6: Three phase mole fraction of nitrogen
in the nitrogen-rich liquid phase L2 and model
deviations as a function of temperature for ni-
trogen + ethane.

On the other hand, the liquid phase compo-
sitions are less well predicted. Figure 5 and
Fig. 6 show the same figure for the mole frac-
tions of nitrogen in each liquid phase. While
the qualitative agreement is good, the quanti-
tative agreement is poor. The disagreement is
due to the thermodynamic model itself, not a
problem in the three-phase solving routines.

3.1 Automatic p-x Diagrams

A challenge when trying to automatically con-
struct isothermal pressure-composition dia-
grams for binary mixtures is that portions of
the phase equilibrium not attached to the pure
fluid are difficult to obtain. For instance, in
the case of nitrogen + ethane, at a tempera-
ture of 130 K, it is not possible to initialize the
tracing at pure nitrogen because we are above
the critical point of nitrogen. On the other
hand, if the three-phase curve has been ob-
tained from a calculation at lower temperature
followed by integration to higher temperature,

9



it is possible to initiate the three portions of
the p-x phase boundary from the three solu-
tions: L1+L2, V+L1, and V+L2. In this way
we can automatically build some p-x bound-
aries that are difficult to construct by other
means. As a demonstration, taking inspiration
from a similar figure for nitrogen + ethylene
in Gasem et al.,39 we present in Fig. 7 the
pressure-composition diagram for nitrogen +
ethane at 130 K. First the three-phase solution
is obtained as described above, yielding the L1,
L2, and V equilibrium phases. Then parametric
tracing is launched away from the three-phase
solution, yielding the p-x plot of the isotherm.
This approach is identical to that used in Fig.
8 of Ref. 6. The computational code is quite
efficient; the entire diagram is plotted in less
than a second.

0.0 0.2 0.4 0.6 0.8 1.0
xN2 / mole frac.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

p 
/ M

Pa

0.95 1.00
3.5

3.6

3.7

3.8

3.9

4.0

Figure 7: Pressure-composition plot for nitro-
gen + ethane at 130 K constructed by ob-
taining the three-phase solution and paramet-
rically tracing away from the three-phase so-
lution. “Vapor” phases are thick curves (the
other liquid phase for LLE portion), and “liq-
uid” phases are thin curves. The inset is in the
same units as the main figure, and is indicated
by the shaded region.

Conclusions

This method is able to find the three-phase so-
lution if it exists, in a reliable fashion. Only
very minimal assistance from the user is needed
to guide the algorithm, and this guidance is
only needed when the temperature is outside
the range of allowed saturation temperatures of
the two pure component EOS.
There is nothing special about constructing a

constant temperature cross-section of the phase
equilibrium surface; constant pressure cross-
sections could also be constructed, following the
same procedure for parametric tracing, followed
by curve intersection, and obtaining the VLLE
solution.

4 Data Availability

The scripts and data used to generate the fig-
ures in this paper have been deposited in the
NIST institutional repository at https://doi.
org/10.18434/mds2-2487

5 Supplementary Material

The supplementary material includes the
derivation of the three-phase temperature
derivatives
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