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I. Introduction 

Time-frequency transfer between the ground and satellites has been accomplished for many 

decades through microwave/rf signals.  With the advent of highly precise optical clocks and 

oscillators, these microwave/rf transfer techniques are no longer appropriate since their residual 

noise is much higher than that of the optical clocks. Not surprisingly, as atomic clocks move into 

the optical domain, so too must time-frequency transfer. Figure 1 summarize the achievable 

performance of time-frequency transfer techniques in terms of the modified Allan deviation, 

which is a measure of the fractional uncertainty in frequency or time.   

 

Figure 1: Residual fractional uncertainty of time-frequency transfer methods versus averaging 
time, as well as current absolute uncertainty for state-of-the-art optical atomic clocks (green 
band). The grey band represents techniques where both timing signals and transmission are in 
the microwave/RF domain. The red band represents techniques where the timing signals are in 
the microwave/RF domain but transmission is via an rf-modulated laser beam, e.g. pulsed laser. 
Finally, the blue band represents techniques where both timing signals and transmission remain 
in the optical domain through a self-referenced frequency comb. See Ref 1 for references that 
support the general bands shown in the figure.    

To this end, several techniques have been developed for optical frequency transfer.  Fiber-optic 

optical frequency transfer has shown excellent ability for frequency comparisons between optical 

clocks via “Doppler cancelled links” across a dark fiber or dark channel 2–5. However, this 

approach is best suited for the continuous links provided by optical fiber connections. In contrast, 

a ground-to-space link will be highly intermittent due to air turbulence, weather, and orbit-

related visibility between the satellite and ground stations. To deal with link intermittency, free-

space time-frequency transfer techniques should be “phase-sensitive” and able to re-acquire the 

relative timing without ambiguity. In that case, one can “ride over” link dropouts and compare 

the elapsed time between clocks with minimal performance penalty.  Given the 5-fs period of a 

cw laser at 1550-nm, this is effectively impossible for a Doppler cancelled link using a cw laser, 



but it is possible by use of a pulsed source, such as a frequency comb, that has a much broader 

timing ambiguity range. 

For this reason, NIST and collaborators have developed frequency-comb-based techniques for 

optical time-frequency transfer 6–16.  This approach relies on the coherent exchange of frequency 

comb pulse trains, each phase-locked to their local clock, between the distant sites. It exploits the 

reciprocal nature of a single-mode optical link, which allows one to compare the timing of the two 

clocks independently from the time-of-flight. It is very similar to current rf two-way satellite time-

frequency transfer 17–19, except that it uses the much higher bandwidth optical signals to enable 

high precision, femtosecond-level measurements of the clock time offset, independent of 

variations in the time-of-flight due to satellite motion and atmospheric turbulence.    

II. Comb-based Optical Time Transfer: Background 

This approach has been demonstrated, thus far, over free space links at terrestrial ~15-km 

distances and terrestrial ~25 m/s velocities. Note that the turbulence along many of these links far 

exceeds that encountered in future ground-to-space links. These demonstrations have included 

operation to a quadcopter-mounted retroreflector 9,10,  operation across a three-node network 14, 

and frequency ratio comparison of two state-of-the-art optical lattice clocks (Yb and Sr) at 18 digits 
20,21. Figure 2 illustrates a few of these experiments.  

 

Figure 2: Demonstrations of comb-based optical time transfer (a) to a quadcopter-mounted 

retroreflector, (b)between state-of-the-art Sr and Yb lattice clocks, (c) over a 3-node network 

across 28 km of turbulent air. (d) Example modified Allan deviation of residual noise. 

 In all cases, the residual timing and frequency noise was well below that required for the 

“Fundamental Physics with a State-of-the-Art Optical Clock in Space (FOCOS)” mission 1 or other 

optical clock missions.   
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III. Comb-based Optical Time Transfer: Future Development for Satellites 

However unlike conventional rf or microwave approaches, comb-based time transfer has not 

yet been demonstrated at the distance and relative velocities needed for ground-to-satellite links. 

Figure 3 provides context for the existing demonstrations compared to the future space-based links.   

 
Figure 3: Comb-based Optical time-frequency transfer demonstrations (solid green circles) and 

the potential path (red lines) towards operation over ground-to-satellite links.   

A significant technology development effort is required to address three inter-related issues: 

1) Size, Weight and Power: There are two critical subsystems: the frequency combs and free space 

optical terminals. The only current option for the frequency comb is a fiber-based system as 

these can be self-referenced to provide the requisite femtosecond timing, exist in small form 

factor, and produce sufficient optical power.  (The alternatives of electro-optic combs or 

microresonator based combs are generally not self-referenced, have a significantly larger 

system size, and output very low power.)  Fortunately, there has been recent significant progress 

towards space-based operation of frequency combs and 10-Watt systems seem viable22–25. 

Similarly, free-space optical communications are driving the development of relatively 

inexpensive, low-SWAP optical terminals for space-based optical communications in both 

Europe and the US26–28. As these communication systems move toward higher data rates, they 

necessarily use coherent processing which has many of the same requirements, e.g. single mode 

operation, as optical time transfer. As a result, comb-based optical time transfer can leverage 

much of this technology development for a low SWAP system.  

2) Long distance operation: In the previous demonstrations, the comb-based time transfer had a 

required received power of a few nanoWatts. A recent trade study has indicated this threshold 

could be even lower, depending on the configuration 15. To put this in the context of a free-
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space optical communication link, a 10 Gbps system at only 10 photons per pulse would require 

a similar 10 nW of received power. Therefore, the comb-based time transfer optical power 

requirements are very similar to optical free-space communication requirements.  As noted 

above, for this reason comb-based time transfer can leverage continued improvements in the 

SWAP of coherent free-space optical terminals for space-based optical communications.  

Nevertheless, additional trade studies, algorithm modifications, hardware modifications and 

long-range experimental tests are needed to verify operation at very long distances. As noted in 

Figure 4, one possible testbed is to demonstrate operation between the Mauna Loa Observatory 

and Haleakala. A “round trip” link with a retoreflector located on Haleakal would have a total 

link loss equivalent to future ground-to-MEO point-to-point link.  

3) Operation at extremely high closing velocities: While comb-based optical time transfer has been 

shown to perform without degradation at terrestrial velocities of ~ 25 m/s, future satellite-based 

networks will require operation at over 100x greater closing velocities. Although there do not 

appear to be any fundamental roadblocks, the effects of motion are of course amplified 

dramatically at the much  higher velocities associated with satellite motion.The fundamental 

relativistic effects can be calculated and corrected. The systematic effects, for example related 

to Doppler shifts combined with system dispersion, are much more insidious and will require a 

significant effort to identify and then correct. In addition to the Doppler shifts caused by the 

high closing velocities over the link, motion perpendicular to the link causes point ahead issues. 

Fortunately both simulation and experiment indicate timing issues associated with point ahead 

are manageable29–32. Finally, we note that any modification to the system design to account for 

these high Doppler shifts must be compatible with both low SWAP and long distance operation. 

Therefore, the approach will focus on more sophisticated signal processing algorithms over the 

addition of hardware.  

Figure 4 provides a roadmap to address these three issues through field experiments that provide 

a low-risk path towards future space-based optical time transfer.  

 
 

Figure 4: Example roadmap for the technological development of comb-based optical two-way 

time-frequency transfer. In all cases, the demonstrations could include optical atomic clocks.  
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