Using CO₂ Monitoring to Manage Ventilation in Buildings

Andrew Persily, andyp@nist.gov National Institute of Standards and Technology Gaithersburg, Maryland USA

ISIAQ Webinar Managing buildings in the era of COVID-19 29 October 2021

Background

CO₂ part of ventilation & IAQ discussions since 17th century

- Impacts on occupants
- Bioeffluent odor perception
- Ventilation rate estimation
- Ventilation control

Lavoisier and Marie-Anne Pierrette Paulze

Antoine-Laurent

Misinterpretation of CO₂ for years More recently: more interest, more measurement, more confusion

Evaluating Building IAQ and Ventilation with Indoor Carbon Dioxide ASHRAE Transactions, 1997

Andrew K. Persily, Ph.D. Member Astronage

ABSTINGT To notice of granulation that is not observe that the second secon

Don't Blame Standard 62.1 for 1,000 ppm CO₂

Indoor concentrations of carbon dioxide (CO₂) have been widely promoted as metrics of indoor air quality (AQ) and vertiliation, in many cases without a sound explanation of what they are intended to characterize or an adequate discussion of the specific application and any limitations. Many practitioners and researchers use 1.800 mg/m³ froughly 1.000 gm/m, as a criteria for defining good IAQ and cite ASHRE Standard

CO₂ Monitoring to Manage Ventilation

Long-term: Demand control ventilation

Short-term: Today's focus
Multiple purposes & approaches
IAQ assessment
Ventilation rate estimation
Infection risk

Not always clear to user or listener

Long Term Indoor CO₂ Monitoring Demand Control Ventilation

Earliest references from 1970s

To avoid over- and under- per person ventilation rate

Required by building energy efficiency standards

Most relevant in spaces with unpredictable occupancy variations

Short-Term CO₂ Monitoring

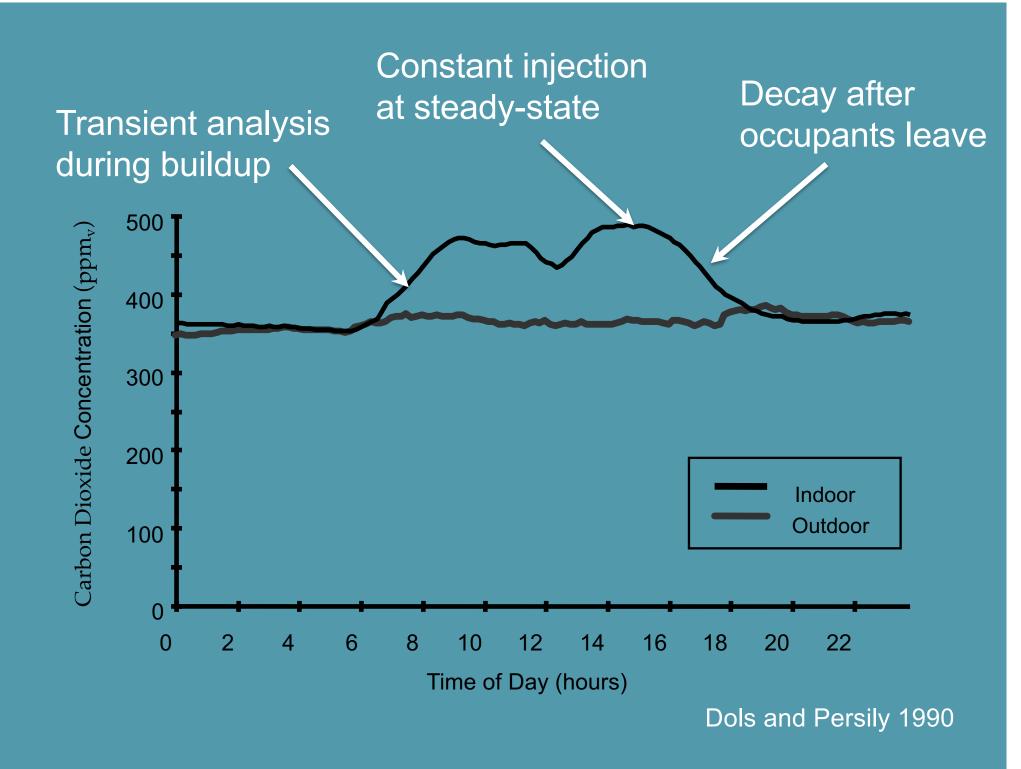
IAQ Metric

Ventilation Rate

Infection Risk

Courtesy of David Meyer, Shenandoah University

IAQ Metric


Maybe for contaminants related to # of occupants & activities But other important contaminants and sources

Ventilation Rate

CO₂ as a tracer gas: ASTM E741 (D6245 for CO₂), ISO 12569 Decay, Constant injection, Constant concentration Theory and assumptions; Single zone!!!

Infection Risk

To verify protective ventilation rate OR Indicator of risk *What is a protective ventilation rate? Rebreathed air Fate & transport of* $CO_2 \neq F$ &*T of virus-laden aerosol*

Using Peak CO₂ to Estimate per Person Outdoor Ventilation Rates

Single-zone constant injection tracer gas method

$$Q_{out} = \frac{G_{CO2}}{(C_{in,Steady-state} - C_{out})}$$

<u>Assumptions</u>: Single-zone, constant air change, CO₂ generation rate constant and known, ...

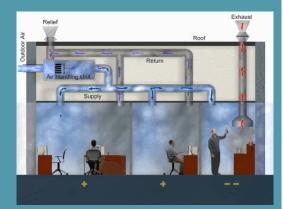
<u>CO₂ generation</u> depends on activity, sex, age, body mass <u>Estimating before steady-state</u> overestimates air change rate <u>Uncertainty calculations</u> per ASTM D6245

Thoughts on CO₂ monitoring

Variation happens Occupancy, activities, ventilation system operation, weather

Measurement <u>Repeat</u>; Calibration; Sampling location; Relative to outdoors; Relative to time of occupancy; Uncertainty; <u>Repeat</u>

What value: Base on target OA/person or infection risk? CDC: 800 ppm_v, "potential target benchmark for good ventilation" REHVA: 800 ppm_v "indicator of good ventilation and IAQ." UK SAGE: Spaces with high aerosol generation, < 800 ppm_v


Rationale for values?

More Thoughts on CO₂ monitoring

Make sure ventilation system is operating as intended *Outdoor air, filtration, controls, T & RH, ...* Always been a good idea; more so now

Use CO₂ to estimate ventilation rate, OR To prioritize for inspection & repair if needed

No OA ventilation system? Natural ventilation or leakage only Tracer gas methods can be challenging

Example Calculations

ASHRAE Standard 62.1 rates and default occupancies Occupants (sex, age, mass, physical activity) to estimate CO_2 generation rate; Ceiling height; $C_{out} = 400 \text{ ppm}_v$

Restaurant

Classroom

Auditorium

	Office	Classroom	Restaurant	Auditorium			
Steady-state CO ₂ , ppm _v							
Baseline (Std 62.1)	1000	1030	1594	2159			
50 % occupancy	700	748	1058	1280			
+50 % ventilation	800	820	1196	1573			

On-Line Calculator

https://pages.nist.gov/CONTAM-apps/webapps/CO2Tool/#/

CO2 Metric	c Analysis Tool								
	Building Type Commercial/Institution	Residential		lel Type redefined	User-Defined				
Predefined Commercial Buildings (from ASHRAE Standard 62.1-2016)									
	Classroom (5-8 y)	\$							
	Outdoor CO2 Concentration Initial Indoor C 0 mg/m ³ 0 mg/m ³		ntration <u>Ceilin</u> 3 m	<u>g Height</u>	62.1 Ventilation per Person 5 L/s				
	62.1 Ventilation per Floor Area 0 L/s ⁻ m ²	Der Floor Area Occupant Density 25 #/100 m ²		ation Rate per Person 's	<u>Time to Metric</u> 2 h				
	Alternate Ventilation per Person:								
	Predefined Occupants								
	Number of Occupants	Sex	Mass (kg)	Age Group 3 to 9	Activity Level (met)				
	12	F	23	3 to 9	2				
	1	Μ	85	30 to 59	3				
	Copy to User-Defined Model								
	Get Results								

Search on: NIST CO2 tool

Summary

Ventilation important But won't eliminate risk Use a layered approach

When monitoring CO₂... Measure and interpret with care Measure more than once Same reference value for all spaces? More to evaluating ventilation than measuring CO_2 **Report:** Space & system types, design ventilation rate, occupant density, time of measurement relative to occupancy, outdoor concentration, uncertainty.

For your reading pleasure

ASTM D6245-2018, Standard Guide for Using Indoor Carbon Dioxide Concentrations to Evaluate Indoor Air Quality and Ventilation. *In revision.*

Coming soon... Persily, 2021?, Evaluating Ventilation Performance, Handbook of Indoor Air Quality, Springer Publishing ASHRAE Position Document on Indoor CO₂

Persily, 1997. Evaluating Building Ventilation with Indoor Carbon Dioxide. ASHRAE Transactions, 103(2).

Persily, 2015. Challenges in developing ventilation and indoor air quality standards: The story of ASHRAE Standard 62, Building and Environment, 91.

Persily and de Jonge. 2017. Carbon Dioxide Generation Rates of Building Occupants, Indoor Air, 27, 868-879.

Persily, 2018. Development of an Indoor Carbon Dioxide Metric, *39th AIVC Conference*, Antibes Juan-les-Pins, France, 791-800.

Persily and Polidoro. (2019) Residential Application of an Indoor Carbon Dioxide Metric, *40th AIVC Conference*, Ghent, Belgium, 995-1007.

Persily, 2021. Don't Blame Standard 62.1 for 1000 ppm CO₂, ASHRAE Journal, 63(2).

Wargocki, 2021. What we know and should know about ventilation, REHVA Journal, 58 (2).