
2022 Electron Devices Technology and Manufacturing Conference (EDTM)

Heteroscedastic Gaussian Process Regression for ReRAM Device Modeling 
Imtiaz Hossen1, Yi Zang2, Mark A. Anders3, Lin Wang2 and Gina C. Adam1* 

1Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA 
2Department of Statistics, the George Washington University, Washington, Dc 20052, USA 

3Alternative Computing Group, National Institution of Standards and Technology, Gaithersburg, MD 20899, USA 

*Corresponding author Email: ginaadam@gwu.edu

Abstract 
Jump tables are useful modeling approaches for 
emerging memory devices, e.g. ReRAM, and their 
use in neural network simulations because they rely 
only on experimental data. While binning is 
traditionally used for such modeling, this work 
proposes the use of Heteroscedastic Gaussian 
Process Regression (hetGP) to estimate signal mean 
and standard deviation simultaneously and develop a 
robust jump table model. The binning and hetGP 
approaches are verified using Kolmogorov-Smirnov 
(K-S) and maximum mean discrepancy (MMD) test. 
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Introduction 
New types of ReRAM (or memristive) devices are 
continually being developed for their promising 
application in efficient unconventional computing 
[1]. As new devices are developed, it takes extensive 
research to formulate their physical models [2-5]. 
Models based only on experimental data are 
beneficial since they provide a fast way to capture 
the switching behavior at the device population level 
and get reliable neural network simulations [6].  

Jump table modeling is an example of such 
modeling based entirely on experimental data [7]. 
The conductance response of ReRAM devices can 
exhibit stochastic behavior even when the 
programming pulses are identical. Moreover, there 
can be asymmetry between SET and RESET 
programming, even after the pulse amplitudes, 
shapes have been optimized. Jump tables are 
cumulative distribution functions used to model this 
stochastic nature of conductance change (ΔG) vs. 
initial conductance (G) in device programming. All 
these behaviors can be compactly captured in the 
form of a pair of jump tables, one for SET and one 
for RESET. While jump table methodology is not 
applicable for circuit modeling, it is useful in neural 
network simulations for the weight updating. 

Traditionally, these tables are derived using a 
binning and linear interpolation approach that can 
introduce unwanted artifacts or lose important 

device behavior (Fig 1). Prior work showed that 
Gaussian Process Regression can predict the mean 
signal well [8], but robust standard deviation 
modeling is still missing. This work proposes an 
alternative approach for ReRAM modeling called 
heteroscedastic Gaussian Process Regression 
(hetGP) [9-10] which can be used to model both the 
mean signal and the switching noise standard 
deviation simultaneously. The hetGP has been 
extensively used in research areas such as machine 
learning, statistics, and engineering to solve 
non-linear regression problem.  

Methods 
A. Binning and interpolation

Data binning is a process of grouping data G and 
ΔG into equally spaced bins using: 

and 
where Gm is the average of the mth G bin, Gm,i = G of 
datasets i in bin m, ΔGn = Average ΔG in bin n, Gn,j = 
ΔG of datasets j in bin n, Nm = Number of datasets 
in bin m, Nn = Number of datasets in bin n. 

The mean and standard deviation (SD) information 
can be extracted from binned data through a simple 
Gaussian fit. The mean and SD values are then 
linearly interpolated across the G bins to form a 
jump table. Choosing the correct number of bins to 
avoid artifacts is challenging. In this work, the 
number of G bins is 10 and of ΔG bins is 44. 

A. hetGP modeling
HetGP is a method of interpolation where the mean 
and variance (standard deviation) in data can be 
modeled simultaneously. It assumes a Gaussian  

Fig. 1: Challenges with the traditional binning and 
interpolation approach shown on a synthetic distribution 
with known mean and standard deviation. 
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process for ΔG as stochastic function of conductance 
G. Given the experimental data DN = (GN, ΔGN), the 
response to any conductance g value for desired 
prediction fits a Gaussian process N: 

                                                                         
where the mean is defined as: 
 
and the variance as: 
 
Here Kθ(g;g) is the correlation function with θ 
specifying the decay in correlation; v is the 
magnitude of variances attributed to the 
conductance; kN is the vector of correlations 
between modeled g and the experimental ΔGN; and 
KN is the sample covariance matrix. Once the type of 
correlation function Kθ(g;g) is chosen, the mean and 
variance can be determined through maximum 
likelihood estimation. In comparison with other 
Gaussian progress regression methods, hetGP 
supports joint likehood estimation for both the mean 
and variance models, as needed by our ReRAM 
jump table modeling. We used the Matern type 
covariance function and the hetGP package from R 
for modeling [11]. A comparative sketch of the 
binning and hetGP approaches is shown in Fig. 2. 

B. Experimental vs. reconstructed device data 
Experimental data (Fig. 3) were collected from a 10 
nm edge device with 2.5 nm Al2O3 / 15 nm TiOx / 5 
nm Ti / 30 nm Pt, via two fast SMUs, a probe station, 
and no current compliance. The pulse width was 500 
ns with a 50 % duty cycle. Four pulse amplitudes 
(±1.35 V, ±1.5 V, ±1.65 V, ±1.8 V) for set and reset 
respectively were investigated. From the measured 
set and reset data, a random subset of 4000 points 
was chosen for training the models and another 
non-overlapping 4000 points subset for testing them. 
This is iterated 20 times for each pulse amplitude for 

statistical significance. Each reconstructed data from 
hetGP and binning model were compared against the 
test subset using the Kolmogorov-Smirnov (KS) 
[12-13] test to quantify the distance between the 
distributions and the Maximum mean Discrepancy 
(MMD) [14] test to determine goodness of fit. 

 
 
 
 
 

 

Fig. 3: ReRAM device information a) Representative 
optical picture b) Experimental data for set and c) reset 
obtained at 1.35 V and 1.8 V pulse amplitudes.  

Results and discussions 
In Fig. 4, the averages of the KS and MMD values 
and their 1-σ deviation of 20 iterations are shown for 
every pulse amplitude. The K-S and MMD values 
for the hetGP model are lower than the binning for 
most of the iterations (16 out of 80 iterations of K-S 
values) of each pulse amplitude. Lower values of 
KS and MMD indicate a better model fit to the 
experimental data, as the distance between the 
experimental test data and the reconstructured data 
is lower. 

The results in Fig. 5 show that the reconstructed data 
based on the hetGP model successfully capture the 
overall distribution even of noisy experimental 
ReRAM data, with good low values for the K-S 
distances and MMD particularly for reset. Both 
models used in this work assume Gaussian data. 

Nevertheless, the set data, particularly at low pulse 
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Fig. 2: Binning modeling approach vs. proposed hetGP modeling approach. 
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Fig. 5: Experimental and reconstructed data based on 
binning and hetGP approaches for a) set and b) reset 
obtained at 1.8V pulse amplitude. 
amplitude seems to depart from the Gaussian 
assumption, so future hetGP expansions to support 
non-Gaussian distributions are needed. 

Conclusions 
This work proposes the use of heteroscedastic 
Gaussian Process regression for ReRAM jump table 
modeling and tests it vs. the binning approach using 
K-S and MMD tests. The hetGP modeling can 
determine the mean and standard deviation trends 
better than binning for all investigated pulse 
amplitudes. Future work will expand to non- 
Gaussian methods that consider physical constraints 
and test the models in machine learning simulations. 
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Fig. 4: K-S and MMD metrics for a) set and b) reset. 
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