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Abstract

The electronic properties of two-dimensional (2D) materials depend sensitively on

the underlying atomic arrangement down to the monolayer level. Here we present a

novel strategy for the determination of the bandgap and complex dielectric function in

2D materials achieving a spatial resolution down to a few nanometers. This approach is

based on machine learning techniques developed in particle physics and makes possible

the automated processing and interpretation of spectral images from electron energy
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loss spectroscopy (EELS). Individual spectra are classified as a function of the thickness

with K-means clustering and then used to train a deep-learning model of the zero-loss

peak background. As a proof-of-concept we assess the bandgap and dielectric function

of InSe flakes and polytypic WS2 nanoflowers, and correlate these electrical properties

with the local thickness. Our flexible approach is generalizable to other nanostructured

materials and to higher-dimensional spectroscopies, and is made available as a new

release of the open-source EELSfitter framework.

Introduction

Accelerating ongoing investigations of two-dimensional (2D) materials, whose electronic

properties depend on the underlying atomic arrangement down to the single monolayer level,

demands novel approaches able to map this sensitive interplay with the highest possible res-

olution. In this context, Electron Energy Loss Spectroscopy (EELS) analyses in Scanning

Transmission Electron Microscopy (STEM) provide access to a plethora of structural, chem-

ical, and local electronic information,1–5 from thickness and composition to the bandgap

and complex dielectric function. Crucially, EELS-STEM measurements can be acquired

as spectral images (SI), whereby each pixel corresponds to a highly localised region of the

specimen. The combination of the excellent spatial and energy resolution provided by state-

of-the-art STEM-EELS analyses6–8 makes possible deploying EELS-SI as a powerful and

versatile tool to realise the spatially-resolved simultaneous characterisation of structural and

electric properties in nanomaterials. Such approach is complementary to related techniques

such as cathodoluminescence in STEM (STEM-CL), which however is restricted to radiative

processes while STEM-EELS probes both radiative and non-radiative processes.9–11

Fully exploiting this potential requires tackling two main challenges. First, each SI is

composed by up to tens of thousands of individual spectra, which need to be jointly pro-

cessed in a coherent manner. Second, each spectra is affected by a different Zero-Loss Peak

(ZLP) background,12 which depends in particular with the local thickness.5,13 A robust sub-
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traction of this ZLP is instrumental to interpret the low-loss region, E ∼< few eV, in terms of

phenomena11 such as phonons, excitons, intra- and inter-band transitions, and to determine

the local bandgap. Furthermore, one should avoid the pitfalls of traditional ZLP subtraction

methods14–22 such as the need to specify an ad hoc parametric functional dependence.

In this work we bypass these challenges by presenting a novel strategy for the spatially-

resolved determination of the bandgap and complex dielectric function in nanostructured

materials from EELS-SI. Our approach is based on machine learning (ML) techniques orig-

inally developed in particle physics23–25 and achieves a spatial resolution down to a few

nanometers. Individual EEL spectra are first classified as a function of the thickness with

K-means clustering and subsequently used to train a deep-learning model of the dominant

ZLP background.26 The resultant ZLP-subtracted SI are amenable to theoretical process-

ing, in particular in terms of Fourier transform deconvolution and Kramers-Kronig analyses,

leading to a precise determination of relevant structural and electronic properties at the

nanoscale.

As a proof-of-concept we apply our strategy to the determination of the bandgap and

the complex dielectric function in two representative van der Waals materials, InSe flakes

and polytypic WS2 nanoflowers.27 Both electronic properties are evaluated across the whole

specimen and can be correlated among them, e.g. to assess the interplay between bandgap

energy or the location of plasmonic resonances with the local thickness. Our approach

is amenable to generalisation to other families of nanostructured materials, is suitable for

application to higher-dimensional datasets such as momentum-resolved EELS, and is made

available as a new release of the EELSfitter open-source framework.26

Computational Details

Spectral images in EELS-STEM are constituted by a large number, up to O(105), of in-

dividual spectra acquired across the analysed specimen. They combine the excellent spa-
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tial resolution, O(40 pm), achievable with STEM with the competitive energy resolution,

O(20 meV), offered by monochromated EELS. From these EELS-SI it is possible to evaluate

key quantities such as the local thickness, the bandgap energy and type, and the complex

dielectric function, provided one first subtracts the ZLP background which dominates the

low-loss region of the EEL spectra. The information provided by an EELS-SI can hence be

represented by a three-dimensional data cube, Fig. 1(a),

I
(i,j)
EELS(E`) = I

(i,j)
ZLP(E`) + I

(i,j)
inel (E`) , i = 1, . . . , nx , j = 1, . . . , ny , ` = 1, . . . , nE , (1)

where I(i,j)EELS indicates the total recorded intensity for an electron energy loss E` corresponding

to the position (i, j) in the specimen. This intensity receives contributions from the inelastic

scatterings off the electrons in the specimen, Iinel, and from the ZLP arising from elastic

scatterings and instrumental broadening, IZLP. In order to reduce statistical fluctuations,

it is convenient to combine the information from neighbouring spectra using the pooling

procedure described in the Supporting Information Sect. S1.

Since the ZLP intensity depends strongly on the local thickness of the specimen, first of all

we group individual spectra as a function of their thickness by means of unsupervised machine

learning, specifically by means of the K-means clustering algorithm presented in Supporting

Information Sect. S1. The cluster assignments are determined from the minimisation of a

cost function, CKmeans, defined in thickness space,

CKmeans =

nx×ny∑
r=1

K∑
k=1

drk

∣∣∣∣∣ln
(
Ñ (k)

N
(r)
tot

)∣∣∣∣∣
p

, r = i+ (ny − 1)j , (2)

with drk being a binary assignment variable, equal to 1 if r belongs to cluster k (drk = 1 for

r ∈ Tk) and zero otherwise, and with the exponent satisfying p > 0. Here N (r)
tot represents the

integral of I(i,j)EELS over the measured range of energy losses, which provides a suitable proxy

for the local thickness, and Ñ (k) is the k-th cluster mean. The number of clusters K is a

user-defined parameter.
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Figure 1: (a) Schematic data-cube representing EELS-SI measurements, with two directions
labeling the location across the specimen and the third one the energy loss, and whose entries
are the total intensity I(i,j)EELS(E`) in Eq. (1). (b) The network architecture parametrising the
ZLP. The input neurons are the energy loss E and the integrated intensity Ntot, while the
output neuron is the model prediction for the ZLP intensity. (c) The EI hyperparameter
defines the model training region, and is determined from the first derivative dIEELS/dE in
each thickness cluster. (d) The training and validation cost function CZLP, Eq. (3), evaluated
over 5000 models. Both (b) and (c) correspond to the WS2 nanoflower specimen.
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Subsequently to this clustering, we train a deep-learning model parametrising the spec-

imen ZLP by extending the approach that we developed in.26 The adopted neural network

architecture is displayed in Fig. 1(b), where the inputs are the energy loss E and the inte-

grated intensity Ntot. The model parameters θ are determined from the minimisation of the

cost function

CZLP(θ) ∝
K∑
k=1

n
(k)
E∑

`k=1

[
I(ik,jk)(E`k)− I

(NN)
ZLP

(
E`k , ln

(
N

(ik,jk)
tot

)
;θ
)]2

σ2
k (E`k)

, E`k ≤ EI,k , (3)

where within the k-th thickness cluster a representative spectrum (ik, jk) is randomly se-

lected, and with σk (E`k) being the variance within this cluster. The hyperparameters EI,k

in Eq. (3) define the model training region for each cluster (E`k ≤ EI,k) where the ZLP dom-

inates the total recorded intensity. They are automatically determined from the features of

the first derivative dIEELS/dE, e.g. by demanding that only f% of the replicas have crossed

dIEELS/dE = 0, with f ≈ 10%. Typical values of EI,k are displayed in Fig. 1(c), where vac-

uum measurements are also included as reference. To avoid overlearning, the input data is

separated into disjoint training and validation subsets, with the latter used to determine the

optimal training length using look-back stopping.24 Fig. 1(d) displays the distribution of the

training and validation cost functions, Eq. (3), evaluated over 5000 models. Both Figs. 1(c)

and (d) correspond to the WS2 nanoflower specimen first presented in26 and revisited here.

Further details on the deep-learning model training are reported in Supporting Information

Sect. S2.

This procedure is repeated for a large number of models Nrep, each based on a different

random selection of cluster representatives, known in this context as “replicas”. One ends up

with a Monte Carlo representation of the posterior probability density in the space of ZLP

models, providing a faithful estimate of the associated uncertainties,

I
(NN)
ZLP ≡

{
I
(NN)(n)
ZLP (E, ln (Ntot)) , n = 1, . . . , Nrep

}
, (4)
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which makes possible a model-independent subtraction of the ZLP and hence disentangling

the contribution from inelastic scatterings Iinel. Following a deconvolution procedure based

in discrete Fourier transforms and reviewed in Supporting Information Sect. S3, these sub-

tracted spectra allow us to extract the single-scattering distribution across the specimen

and in turn the complex dielectric function from a Kramers-Kronig analysis. In contrast to

existing methods, our approach provides an detailed estimate of the uncertainties associated

to the ZLP subtraction, and hence quantifies the statistical significance of the determined

properties by evaluating confidence level (CL) intervals from the posterior distributions in

the space of models.

Results and discussion

As a proof-of-concept we apply our strategy to two different 2D material specimens. First,

to horizontally-standing WS2 flakes belonging to flower-like nanostructures (nanoflowers)

characterised by a mixed 2H/3R polytypism. This nanomaterial, member of the transition

metal dichalcogenide (TMD) family, was already considered in the original study26,27 and

hence provides a suitable benchmark to validate our new strategy. One important property

of WS2 is that the indirect bandgap of its bulk form switches to direct at the monolayer

level. Second, to InSe nanosheets prepared by exfoliation of a Sn-doped InSe crystal and

deposited onto a holey carbon TEM grid. The electronic properties of InSe, such as the

band gap value and type, are sensitive to both the layer stacking (β, γ, or ε-phase) as well as

to the magnitude and type of doping.28–31 Supporting Information Sect. S5 provides further

details on the structural characterisation of the InSe specimen.

Fig. 2(a) shows a representative EEL spectrum from the InSe specimen, where the original

data is compared with the deep-learning ZLP parametrisation and the subtracted inelastic

contribution. The red dashed region indicates the onset of inelastic scatterings, from which

the bandgap energy Ebg and type can be extracted from the procedure described in Support-
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Figure 2: (a) Representative EEL spectrum from the InSe specimen, where we display the data,
the ZLP parametrization, and the subtracted inelastic spectrum. The red dashed region indicates
the onset of inelastic scatterings where the bandgap is extracted. (b) Same spectrum, now zooming
in the low-loss region marked with a blue square in (a). (c) EELS-SI acquired on the InSe specimen
displayed on Fig. E.1(a,b) in the Supplementary Information, where each pixel corresponds to an
individual spectrum. (d,e) The thickness map corresponding to the InSe SI of (c) and the associated
relative uncertainties respectively.

ing Information Sect. S4. We zoom in Fig. 2(b) in the low-loss region of the same spectrum,

where the ZLP and inelastic components become of comparable size. The error bands denote

the 68% CL intervals evaluated over Nrep = 5000 Monte Carlo replicas.

By training the ZLP model on the whole InSe EELS-SI displayed in Fig. 2(c), see

Fig. E.1(a,b) in the Supplementary Information for the corresponding STEM measurements,

we end up with a faithful parameterisation of I(NN)
ZLP (E,Ntot) which can be used to disentangle

the inelastic contributions across the whole specimen and carry out a spatially-resolved deter-

mination of relevant physical quantities. To illustrate these capabilities, Fig. 2(d,e) displays

the maps associated to the median thickness and its corresponding uncertainties respectively
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Figure 3: (a) Spatially-resolved map of the bandgap for the WS2 nanoflower specimen, where a
mask has been applied to remove the vacuum and pure substrate pixels. (b,c) The median value
of the bandgap energy Ebg and its corresponding 68% CL relative uncertainties across the InSe
specimen, respectively.

for the same InSe specimen, where a resolution of 8 nm is achieved. One can distinguish the

various terraces that compose the specimen, as well as the presence of the hole in the carbon

film substrate as a thinner semi-circular region, see also the TEM analysis of Supporting

Information Sect. S5 The specimen thickness is found to increase from around 20 nm to up

to 300 nm as we move from left to right of the map, while that of the carbon substrate is

measured to be around 30 nm consistent with the manufacturer specifications. Uncertainties

on the thickness are below the 1% level, as expected since its calculation depends on the

bulk (rather than the tails) of the ZLP.

In the same manner as for the thickness, the ZLP-subtracted SI contains the required

information to carry out a specially-resolved determination of the bandgap. For this, we

adopt the approach of4 where the behaviour of Iinel(E) in the onset region is modeled as

Iinel(E) ' A(E − Ebg)
b, E ∼> Ebg , (5)

where both the bandgap energy Ebg and the exponent b are extracted from a fit to the

subtracted spectra. The value of the exponent is expected to be around b ≈ 0.5 (≈ 1.5)

for a semiconductor material characterised by a direct (indirect) bandgap. See Supporting
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Information Sect. S4 for more details of this procedure. Fig. 3(a) displays the bandgap map

for the WS2 nanoflower specimen, where a mask has been applied to remove the vacuum

and pure-substrate pixels. A value b = 1.5 for the onset exponent is adopted, corresponding

to the reported indirect bandgap. The uncertainties on Ebg are found to range between 15%

and 25%. The map of Fig. 3(a) is consistent with the findings of Ref.26 , which obtained

a value of the bandgap of 2H/3R polytypic WS2 of Ebg = (1.6± 0.3) eV with a exponent

of b = 1.3+0.3
−0.7 from a single spectrum. These results also agree within uncertainties with

first-principles calculations based on Density Functional Theory for the band structure of

2H/3R polytypic WS2.32 Furthermore, the correlation between the thickness and bandgap

maps points to a possible dependence of the value of Ebg on the specimen thickness, though

this trend is not statistically significant. Further details about the bandgap analysis of the

WS2 nanoflowers are provided in Supporting Information Sect. S6.

Moving to the InSe specimen, Figs. 3(b) and (c) display the corresponding maps for the

median value of the bandgap energy and for its uncertainties, respectively. Photolumines-

cence (PL) measurements carried out on the same specimen, and described in the Supporting

Information Sect. S5., indicate a direct bandgap with energy value around Ebg ≈ 1.27 eV,

hence we adopt b = 0.5 for the onset exponent. The median values of Ebg are found to lie

in the range between 0.9 eV and 1.3 eV, with uncertainties of 10% to 20% except for the

thickest region where they are as large as 30%. This spatially-resolved determination of the

bandgap of InSe is consistent with the spatially-averaged PL measurements as well as with

previous reports in the literature.33 Interestingly, there appears to be a dependence of Ebg

with the thickness, with thicker (thinner) regions in the right (left) parts of the specimen

favoring lower (higher) values. This correlation, which remains robust once we account for

the model uncertainties, is suggestive of the reported dependence of Ebg in InSe with the

number of monolayers.34

Within our approach it is also possible to determine simultaneously the exponent b to-

gether with the bandgap energy Ebg. As already observed in Ref. 26 , this exponent is
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Figure 4: (a) A representative EEL spectrum from the InSe specimen. (b) The real, ε1(E), and
imaginary, ε2(E), components of the complex dielectric function associated to the same location.
(c) The energy value associated to the global maximum of the inelastic scattering intensity Iinel(E)
across the InSe specimen. (d,e) The numbers of crossings of ε1(E) and the associated value of the E
respectively across the same specimen, where the SI has been masked to remove pixels with carbon
substrate underneath.

typically affected by large uncertainties. Nevertheless, it is found that in the case of the InSe

specimen all pixels in the SI are consistent with b = 0.5 and that the alternative scenario with

b = 1.5 is strongly disfavored. By retaining only those pixels where the determination of b is

achieved with a precision of better than 50%, one finds an average value of b = 0.50± 0.26,

confirming that indeed this material is a direct semiconductor and in agreement with the

spatially-integrated PL results. In addition, the extracted values of Ebg are found to be stable

irrespectively of whether the exponent b is kept fixed or instead is also fitted. Supplementary

Information Sect. S8 provides more details on the joint (Ebg, b) analysis.

We evaluate now the properties of the complex dielectric function ε(E) using the Kramers-

Kronig analysis described in Supporting Information Sect. S3. In the following we focus on

the InSe specimen, see Supporting Information Sect. S7 for corresponding results for the
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WS2 nanoflowers. The local dielectric function provides key information on the nature

and location of relevant electronic properties of the specimen. To illustrate the adopted

procedure, Fig. 4(a) displays another representative InSe spectrum from the same EELS-SI

of Fig. 3(c). Noticeable features include a marked peak at E ≈ 14 eV, corresponding to

the bulk plasmon of InSe, as well as a series of smaller peaks in the low-loss region. The

real and imaginary parts of the complex dielectric function associated to the same location

in the InSe specimen are shown in Fig. 4(b). The values of the energy loss for which the

real component exhibits a crossing, ε1(Ec) = 0, with a positive slope can be traced back

to collective excitations such as a plasmonic resonances. Indeed, one observes how the real

component ε1(E) exhibits a crossing in the vicinity of E ≈ 13 eV, consistent with the location

of the bulk plasmon peak.

Furthermore, the local maxima of the imaginary component ε2(E) can be associated to

interband transitions. From Fig. 4(b), one finds that ε2(E) exhibits local maxima in the

low-loss region, immediately after the onset of inelastic scatterings, at energy losses around

3 eV, 6 eV, and 9 eV. The location of these maxima do match with the observed peaks in

the low-loss region of Fig. 4(a), strengthening their interpretation of interband transitions

between the valence and conduction bands, and consistent also with previous reports in

the literature.35 The dielectric function in Fig. 4(b) provides also access to ε1(0), the static

dielectric constant and hence the refractive index n of bulk InSe. Our results are in agreement

with previous reports36 once the thickness of our specimen is taken into account.

As for the thickness and the bandgap, one can also map the variation of relevant features

in the dielectric function ε(E) across the specimen. Extending the analysis of Figs. 4(a,b),

Fig. 4(c) shows the value of the energy loss associated to the maximum of the inelastic

scattering intensity Iinel(E), while Figs. 4(d,e) display the numbers of crossings of ε1(E)

and the corresponding value of the energy loss respectively. In Figs. 4(d,e), the SI has

been masked to remove pixels with carbon substrate underneath, the reason being that its

contribution contaminates the recorded spectra and hence prevents from robustly extracting
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ε(E) associated to InSe. It is found that the specimen exhibits a single crossing whose energy

Ec ranges between 12.5 eV and 13 eV, close to the maximum of Iinel and hence consistent with

the location of the InSe bulk plasmonic resonance. Uncertainties on Ec are below the 1%

level, since the calculation of ε(E) depends mildly on the onset region where model errors are

the largest. Dielectric function maps such as Fig. 4(e) represent a sensitive method to chart

the local electronic properties of a nanostructured material, complementing approaches such

as fitting multi-Gaussian models to EELS spectra to identify resonances and transitions. In

particular, maps for the local maxima of ε1(E) and ε2(E) could be also be constructed to

gauge their variation across the specimen.

Interestingly, as was also the case for the bandgap energy in Fig. 3(c), by comparing

Fig. 4(e) with Fig. 2(d) there appears to be a moderate correlation between the crossing

energy and the specimen thickness, whereby Ec decreases as the specimen becomes thicker.

While dedicated theoretical and modelling work would be required to ascertain the origin of

this sensitivity on the thickness, our results illustrate how our framework makes possible a

precise characterisation of the local electronic properties of materials at the nanoscale and

their correlation with structural features.

Summary and outlook

In this work we have presented a novel framework for the automated processing and interpre-

tation of spectral images in electron energy loss spectroscopy. By deploying machine learning

algorithms originally developed in particle physics, we achieve the robust subtraction of the

ZLP background and hence a mapping of the low-loss region in EEL spectra with precise

spatial resolution. In turn, this makes possible realising a spatially-resolved (≈ 10 nm) de-

termination of the bandgap energy and complex dielectric function in layered materials, here

represented by 2H/3R polytypic WS2 nanoflowers and by InSe flakes. We have also assessed

how these electronic properties correlate with structural features, in particular with the local
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specimen thickness. Our results have been implemented in a new release of the Python

open-source EELS analysis framework EELSfitter, available from GitHub1, together with

a detailed online documentation2.

While here we have focused on the interpretation of EELS-SI for layered materials, our

approach is fully general and can be extended both to higher-dimensional datasets, such as

momentum-resolved EELS37 acquired in the energy-filtered TEMmode, as well as to different

classes of nanostructured materials, from topological insulators to complex oxides. One

could also foresee extending the method to the interpretation of nanostructured materials

stacked in heterostructures, and in particular to the removal of the substrate contributions,

e.g. for specimens fabricated on top of a solid substrate. In addition, in this work we

have restricted ourselves to a subset of the important features contained in EEL spectra,

while our approach could be extended to the automated identification and characterisation

across the entire specimen (e.g. in terms of peak position and width) of the full range of

plasmonic, excitonic, or intra-band transitions to streamline their physical interpretation.

Finally, another exciting application of our approach would be to assess the capabilities of

novel nanomaterials as prospective light (e.g. sub-GeV) Dark Matter detectors38 by means

of their electron energy loss function,39 which could potentially extend the sensitivity of

ongoing Dark Matter searches by orders of magnitude.

Supporting Information

• Technical details about the processing and theoretical interpretation of EELS spectral

images and the ZLP subtraction.

• Additional information about the determination of the bandgap energy and type as

well as of the dielectric function.

• Details on the structural characterisation of the InSe specimen, including PL measure-

ments.
1https://github.com/LHCfitNikhef/EELSfitter
2Available from https://lhcfitnikhef.github.io/EELSfitter/index.html.
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Methods

STEM-EELS measurements. The STEM-EELS measurements corresponding to the

WS2 specimen were acquired with a JEOL 2100F microscope with a cold field-emission

gun equipped with aberration corrector operated at 60 kV. A Gatan GIF Quantum ERS

System (Model 966) was used for the EELS analyses. The spectrometer camera was a

Rio (CMOS) Camera. The convergence and collection semi-angles were 30.0 mrad and 66.7

mrad respectively. EEL spectra were acquired with an entrance aperture diameter of 5 mm,
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energy dispersion of 0.025 eV/ch, and exposure time of 0.001s. For the STEM imaging and

EELS analyses, a probe current of 18.1 pA and a camera length of 12 cm were used. EEL

spectra size in pixels was a height of 94 pixels and a width of 128 pixels. The EELS data

corresponding to the InSe specimen were collected in a ARM200F Mono-JEOL microscope

equipped with a GIF continuum spectrometer and operated at 200 kV. The spectrometer

camera was a Rio Camera Model 1809 (9 megapixels). For these measurements, a slit in the

monochromator of 1.3 µm was used. A Gatan GIF Quantum ERS System (Model 966) was

used for the EELS analyses with convergence and collection semi-angles of 23.0 mrad and

21.3 mrad respectively. EEL spectra were acquired with an entrance aperture diameter of

5 mm, energy dispersion of 0.015 eV/ch, and pixel time of 1.5 s. EEL spectra size in pixels

was a height of 40 pixels and a width of 131 pixels. For the STEM imaging and EELS

analyses, a probe current of 11.2 pA and a camera length of 12 cm were used.

Photoluminiscence measurements. The optical spectra are acquired using a home-built

spectroscopy set-up. The sample is illuminated through an 0.85 NA Zeiss 100x objective.

The excitation source is a continuous wave laser with a wavelength of 595 nm and a power of

1.6 mW/mm2 (Coherent OBIS LS 594-60). The excitation light is filtered out using colour

filters (Semrock NF03-594E-25 and FF01-593/LP-25). The sample emission is collected in

reflection through the same objective as in excitation, and projected onto a CCD camera

(Princeton Instruments ProEM 1024BX3) and spectrometer (Princeton Instruments SP2358)

via a 4f lens system.

References

(1) Geiger, J. Inelastic Electron Scattering in Thin Films at Oblique Incidence. Phys. Stat.

Sol. 1967, 24, 457–460.

(2) Schaffer, B.; Riegler, K.; Kothleitner, G.; Grogger, W.; Hofer, F. Monochromated,

16



spatially resolved electron energy-loss spectroscopic measurements of gold nanoparticles

in the plasmon range. Micron 2008, 40, 269–273.

(3) Erni, R.; Browning, N. D.; Rong Dai, Z.; Bradley, J. P. Analysis of extraterrestrial

particles using monochromated electron energy-loss spectroscopy. Micron 2005, 35,

369–379.

(4) Rafferty, B.; Brown, L. M. Direct and indirect transitions in the region of the band gap

using electron-energy-loss spectroscopy. Phys. Rev. B 1998, 58, 10326.

(5) Stöger-Pollach, M. Optical properties and bandgaps from low loss EELS: Pitfalls and

solutions. Nano Lett. 2008, 39, 1092–1110.

(6) Terauchi, M.; M., T.; Tsuno, K.; Ishida, M. Development of a high energy resolution

electron energy-loss spectroscopy microscope. J. Microsc. 2005, 194, 203–209.

(7) Freitag, B.; Kujawa, S.; Mul, P. M.; Ringnalda, J.; Tiemeijer, P. C. Breaking the

spherical and chromatic aberration barrier in transmission electron microscopy. Ultra-

microscopy 2005, 102, 209–214.

(8) Haider, M.; Uhlemann, S.; Schwan, E.; Rose, H.; Kabius, B.; Urban, K. Electron

microscopy image enhanced. Nature 1998, 392, 768–769.

(9) Polman, A.; Kociak, M.; de Abajo, F. J. Electron-beam spectroscopy for nanophotonics.

Nat. Mater. 2019, 18, 1158–1171.

(10) de Abajo, F. J.; Di Giulio, V. Optical Excitations with Electron Beams: Challenges

and Opportunities. ACS Photonics 2021, 8, 945–974.

(11) de Abajo, F. J. Optical excitations in electron microscopy. RevModPhys 2010, 82,

209–256.

(12) Egerton, R. F. Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys 2009,

72, 1.

17



(13) Park, J.; Heo, S.; Others, Bandgap measurement of thin dielectric films using monochro-

mated STEM-EELS. Ultramicroscopy 2008, 109, 1183–1188.

(14) Rafferty, B.; Pennycook, S. J.; Brown, L. M. Zero loss peak deconvolution for bandgap

EEL spectra. J. Electron Microsc. (Tokyo). 2000, 49, 517–524.

(15) Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope; Plenum

Press, 1996.

(16) Dorneich, A. D.; French, R. H.; Müllejans, H.; Others, Quantitative analysis of valence

electron energy-loss spectra of aluminium nitride. J. Microsc. 1998, 191, 286–296.

(17) van Benthem, K.; Elsässer, C.; French, R. H. Bulk electronic structure of SrTiO3:

Experiment and theory. J. Appl. Phys. 2001, 90 .

(18) Lazar, S.; Botton, G. A.; Others, Materials science applications of HREELS in near

edgestructure analysis an low-energy loss spectroscopy. Ultramicroscopy 2003, 96, 535–

546.

(19) Egerton, R.; Malac, M. Improved background-fitting algorithms for ionization edges in

electron energy-loss spectra. Ultramicroscopy 2002, 92, 47–56.

(20) Held, J. T.; Yun, H.; Mkhoyan, K. A. Simultaneous multi-region background subtrac-

tion for core-level EEL spectra. Ultramicroscopy 2020, 210, 112919.

(21) Granerød, C. S.; Zhan, W.; Prytz, Ø. Automated approaches for band gap mapping in

STEM-EELS. Ultramicroscopy 2018, 184, 39–45.

(22) Fung, K. L. Y.; Fay, M. W.; Collins, S. M.; Kepaptsoglou, D. M.; Skowron, S. T.; Ra-

masse, Q. M.; Khlobystov, A. N. Accurate EELS background subtraction, an adaptable

method in MATLAB. Ultramicroscopy 2020, 217, 113052.

(23) Ball, R. D.; Others, A determination of parton distributions with faithful uncertainty

estimation. Nucl. Phys. 2009, B809, 1–63.

18



(24) Ball, R. D.; Others, Parton distributions for the LHC Run II. JHEP 2015, 04, 40.

(25) Ball, R. D.; Others, Parton distributions from high-precision collider data. Eur. Phys.

J. 2017, C77, 663.

(26) Roest, L. I.; van Heijst, S. E.; Maduro, L.; Rojo, J.; Conesa-Boj, S. Charting the low-loss

region in Electron Energy Loss Spectroscopy with machine learning. Ultramicroscopy

2021, 222, 113202.

(27) van Heijst, S. E.; Mukai, M.; Okunishi, E.; Hashiguchi, H.; Roest, L. I.; Maduro, L.;

Rojo, J.; Conesa-Boj, S. Illuminating the Electronic Properties of WS2 Polytypism with

Electron Microscopy. Ann. Phys. 2021, 533, 2000499.

(28) Gürbulak, B.; cSata, M.; Dogan, S.; Duman, S.; Ashkhasi, A.; Keskenler, E. F. Struc-

tural characterizations and optical properties of InSe and InSe:Ag semiconductors

grown by Bridgman/Stockbarger technique. Phys. E Low-dimensional Syst. Nanos-

tructures 2014, 64, 106–111.

(29) Julien, C. M.; Balkanski, M. Lithium reactivity with III–VI layered compounds. Mater.

Sci. Eng. B 2003, 100, 263–270.

(30) Rigoult, J.; Rimsky, A.; Kuhn, A. Refinement of the 3R γ-indium monoselenide struc-

ture type. Acta Crystallogr. Sect. B 1980, 36, 916–918.

(31) Lei, S.; Ge, L.; Najmaei, S.; George, A.; Kappera, R.; Lou, J.; Chhowalla, M.; Yam-

aguchi, H.; Gupta, G.; Vajtai, R. et al. Evolution of the Electronic Band Structure and

Efficient Photo-Detection in Atomic Layers of InSe. ACS Nano 2014, 8, 1263–1272.

(32) Maduro, L.; van Heijst, S. E.; Conesa-Boj, S. First-Principles Calculation of Optoelec-

tronic Properties in 2D Materials: The Polytypic WS2 Case. ACS Phys. Chem. Au

2022, in press, doi:10.1021/acsphyschemau.1c00038.

19



(33) Henck, H.; Pierucci, D.; Zribi, J.; Bisti, F.; Papalazarou, E.; Girard, J.-C.; Chaste, J.;

Bertran, F. m. cc.; Le Fèvre, P.; Sirotti, F. et al. Evidence of direct electronic band gap

in two-dimensional van der Waals indium selenide crystals. Phys. Rev. Mater. 2019, 3,

34004.

(34) Hamer, M. J.; Zultak, J.; Tyurnina, A. V.; Zólyomi, V.; Terry, D.; Barinov, A.; Gar-

ner, A.; Donoghue, J.; Rooney, A. P.; Kandyba, V. et al. Indirect to Direct Gap

Crossover in Two-Dimensional InSe Revealed by Angle-Resolved Photoemission Spec-

troscopy. ACS Nano 2019, 13, 2136–2142.

(35) Politano, A.; Campi, D.; Cattelan, M.; Ben Amara, I.; Jaziri, S.; Mazzotti, A.; Bari-

nov, A.; Gürbulak, B.; Duman, S.; Agnoli, S. et al. Indium selenide: an insight into

electronic band structure and surface excitations. Sci. Rep. 2017, 7, 3445.

(36) Allakhverdiev, K. R.; Babaev, S. S.; Salaev, E. Y.; Tagyev, M. M. Angular behaviour of

the polar optical phonons in AIIIBVI layered semiconductors. Phys. status solidi 1979,

96, 177–182.

(37) Senga, R.; Suenaga, K.; Barone, P.; Morishita, S.; Mauri, F.; Pichler, T. Position and

momentum mapping of vibrations in graphene nanostructures. Nature 2019, 573, 247–

250.

(38) Knapen, S.; Lin, T.; Zurek, K. M. Light Dark Matter: Models and Constraints. Phys.

Rev. D 2017, 96, 115021.

(39) Knapen, S.; Kozaczuk, J.; Lin, T. Dark matter-electron scattering in dielectrics. Phys.

Rev. D 2021, 104, 15031.

20



TOC Graphic

21


