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Application of machine learning to reflection high-energy electron diffraction images
for automated structural phase mapping
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We have developed a phase mapping method based on machine learning analysis of reflection high-energy
electron diffraction (RHEED) images. RHEED produces diffraction patterns containing a wealth of static and
dynamic information and is commonly used to determine the growth rate, the growth mode, and the surface
morphology of epitaxial thin films. However, the ability to extract quantitative structural information from the
RHEED patterns that appear during film growth is limited by the lack of versatile and automated analysis
techniques. We have created a deep learning-based analysis method for automating the identification of different
RHEED pattern types that occur during the growth of a material. Our approach combines several supervised
and unsupervised machine learning techniques and permits the extraction of quantitative phase composition
information. We applied this method to the mapping of the structural phase diagram of FexOy thin films grown by
pulsed laser deposition as a function of growth temperature and oxygen pressure close to the hematite-magnetite
phase boundary. The in situ RHEED-based mapping method produces results that are qualitatively similar to
postsynthesis x-ray diffraction analysis.
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I. INTRODUCTION

The ever-increasing demand for novel functional mate-
rials requires innovative approaches to the materials search
and discovery process [1]. High-throughput approaches that
combine parallelized synthesis with automated characteriza-
tion have been proposed as a solution to the long-standing
problem of long delays in bringing new materials from de-
sign or discovery to applications [2]. Such experimental
methods have already demonstrated their ability to quickly
map the structural phases of a compound as a function of
its chemical composition, synthesis parameters, and process
conditions—a crucial step in the exploration of new materials
[3]. More recently, high-throughput computational methods
have augmented such experimental approaches by predicting
properties of materials that have not or are difficult to syn-
thesize [4,5]. Besides traditional computational tools, modern
machine learning (ML) techniques and ab initio techniques
are greatly expanding the accessible composition space [6].
Despite the successes of computational techniques, there are
many materials systems, even deceptively simple ones such as
iron oxides [7–9], for which the formation of metastable poly-
morphs is extremely sensitive to process conditions. There is
thus a definite need and motivation to accelerate experimental
phase mapping workflows.

Structural phase mapping has traditionally relied almost
exclusively on x-ray diffraction (XRD). The pervasiveness of
this technique has led to the development of many special-
ized computational tools for rapid analysis of the collected
data. In some cases, advanced ML methods have been used
to automatically generate phase maps from XRD patterns of
combinatorial libraries [10–15]. Despite its widespread use,
XRD has some significant limitations. In particular, x-ray
measurements are challenging for epitaxial thin-film samples
because the small volumes of nanoscale films require long
exposure times or the use of high-flux synchrotron facilities.
Even then, the measurements may prove inconclusive due to
the small number of accessible x-ray reflections in epitaxial or
highly textured samples. This can contribute to delays in the
studies of many promising materials systems.

In this work, we address this rate-limiting constraint of
the standard characterization pipeline by developing a method
for phase mapping of thin-film samples that relies instead on
reflection high-energy electron diffraction (RHEED)—a ubiq-
uitous in situ characterization technique commonly used to
observe the growth process of nanoscale thin films on single-
crystal substrates [16]. RHEED utilizes an electron beam
irradiating the surface at grazing incidence, which produces a
forward-scattered diffraction pattern of high-intensity streaks
and spots on a phosphor screen, providing atomic-level
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structural information. Due to the small penetration depth of
electrons in solid matter, RHEED patterns are predominantly
sensitive to the topmost atomic layers of an atomically flat
surface. For three-dimensional growth, the electron beam can
penetrate nanoscale crystallites on a surface and thus also
produce a transmission diffraction pattern, which is superim-
posed on the surface diffraction image.

RHEED is compatible with thin-film deposition systems at
gas pressures of up to approximately 100 Pa (or approximately
1 Torr) and has become a standard tool for thin-film growth
monitoring. The shape, position, and relative intensity of the
observed diffraction features provide a wealth of information
on the flatness of the surface, sizes, and orientation of sur-
face unit cells, grains, and domains formation on the surface,
growth modes, and the numbers of layers grown. Some of this
information, such as the number of unit cell layers that have
been grown in layer-by-layer mode, can be easily determined
by monitoring the time oscillation of the intensity of the
specular reflection or a particular diffraction feature and used
as feedback for process control. However, other information
on the RHEED pattern is typically analyzed on a qualitative
level by visual inspection, and the majority of the quantitative
static and dynamic information is discarded. This can be at
least partially attributed to the lack of sufficiently general and
versatile analysis techniques for the automated processing of
RHEED images.

To overcome this limitation, we have developed an ML
tool that is specifically designed to automate the classification
of RHEED pattern types for the purpose of distinguishing
crystalline phases that appear during the film growth (the code
and model are publicly available [17]). The tool combines
several supervised and unsupervised ML methods and per-
mits the extraction of important information characterizing the
crystal structure. The key to identifying regions of interest in
diffraction patterns is the use of a deep learning (DL) model
that is pretrained on millions of images from ImageNet [18].
DL methods have been behind most of the recent dramatic
breakthroughs in computer vision and have been used in
many sophisticated algorithms for image analysis tasks. These
methods are already being used to analyze materials physics
data [19,20]. Yet, so far, DL has not been applied to RHEED
images. Our purpose here is to fully embrace the ability of
DL to recognize and distinguish complex patterns for novel
high-throughput materials development workflows.

II. RELATED WORKS

Only a handful of works have utilized even conventional
ML methods in this field. In one notable effort, Vasudevan
et al. combined principal component analysis (PCA) and K-
means clustering to analyze sequences of RHEED patterns
collected during thin-film growth [21]. A recent work applied
this approach during the growth of several perovskite oxide
thin-film samples, extracting important dynamic information
[22]. The PCA method uses the covariant matrix of vectorized
two-dimensional (2D) RHEED patterns to infer the topmost
variating directions (principal components) in the patterns.
The patterns are projected onto these orthonormal directions
to obtain the corresponding weights. This allowed the authors
to isolate and visualize distinct growth mode patterns in the

form of principal components and their weights. Due to the
nature of vectorization, the PCA method is not shift invariant.
The RHEED pattern must be aligned by other methods before
getting fed into PCA. Besides, the orthonormal constraint on
principal components forces them to possess negative inten-
sity values which are not physically meaningful and are hard
to interpret. In another work, a convolutional neural network
was used to classify surface structures of GaAs films from
RHEED patterns taking in two azimuth angles [23]. This work
utilized a VGG-like neural network architecture which is not
similar to the architecture we proposed here. In their case,
classification training labels of each desired surface structure
must be provided so that the model can recognize each one
of them. The formulation of a classification task here is data
inefficient despite being capable of generalizing to other struc-
tures. In contrast, our model only extracts generic features and
is more interpretable.

III. MATERIALS AND METHODS

As a test of the performance of the ML pipeline, we used it
to map the phase diagram of hematite-related structures grown
at different temperatures and oxygen pressures. The FexOy

system was selected for the RHEED mapping experiments
due to the large variety of known crystal phases that can be
stabilized as a function of growth temperature, ambient oxy-
gen pressure, and film thickness [9]. Well-known iron oxides
include wüstite (FeO), hematite (α-Fe2O3), and magnetite
(Fe3O4), with multiple known polymorphs for hematite and
multiple metastable phases that may be stabilized in thin and
possibly epitaxially strained layers [7,8]. All films were grown
by pulsed laser deposition on c-plane sapphire substrates,
which were preannealed in air at 1300 °C for 2 h to obtain
a step surface morphology with atomically flat terraces. The
films were grown by firing 500 ablation pulses at 2 Hz on
a polycrystalline α-Fe2O3 target, yielding nominally 40-nm-
thick layers. The growth temperature was varied between 400
and 1100 °C at oxygen pressures between 10–5 and 10–1 Torr
(10–3–10 Pa). The 25 kV high-pressure RHEED images were
acquired with a 14-bit grayscale digital camera at a rate of
two frames per second. The film surfaces were imaged by
contact-mode atomic force microscopy (AFM) immediately
after deposition. XRD patterns were collected with Cu-Kα1

radiation. The signal-to-noise ratio of the XRD scans was
limited by the available measurement time, which was set
at 1 h per sample. The total synthesis time for each sample,
including loading into the vacuum chamber, was less than 30
min.

The crystalline phases present in the thin-film samples
were determined by XRD analysis as a baseline to compare
with the RHEED analysis. The diffraction peaks were in-
dexed using the reference structures of FexOy in the Inorganic
Crystal Structure Database (ICSD) database to determine the
existence of the crystalline phase. The number of accessible
diffraction peaks in a symmetric XRD scan of an epitaxial
film is limited. Thus, only a handful of hkl indexes were
used in the analysis of the entire data set. Information on
the reference structures and their diffraction peak positions
are detailed in Supplemental Material Sec. D [24]. The final
XRD phase map is compared with the RHEED phase map in
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FIG. 1. Schematic diagram of U-Net and example results: (a) A
simplified schematic of the U-Net model that takes in an RHEED
pattern and outputs a binary mask of features of interest. (b) An
example of input RHEED pattern to the U-Net model. Note that
this pattern contains both spot and streak features. (c) The predicted
masks for spot and streak features are shown in gray and orange
colors, respectively.

Sec. V, along with the RHEED phase map to illustrate their
similarity.

IV. ML IMAGE ANALYSIS

A. Identification of diffraction features

The diffraction process imprints important structural in-
formation in several distinct features of a RHEED image:
the location, shape, and intensity of each spot or streak in
a diffraction pattern all carry signatures of the structure and
morphology of the surface. In terms of image analysis, the
intensity variations, which can range from very low to ex-
ceeding the dynamic range of the camera, can be particularly
problematic. Thus, as the first step in our RHEED image anal-
ysis pipeline, we created a system for extracting the diffraction
pattern features of interest. This helps to reduce the dynamic
range problem since it allows different pattern regions to be
separated and analyzed individually.

This step can be approached as a standard image segmen-
tation task. To tackle it, we use U-Net, a convolutional neural
network (CNN) architecture shown in Fig. 1(a) that can pro-
duce pixel-level masks and has demonstrated state-of-the-art
performance in many image segmentation problems [25–27].
U-Net has two components: an encoder and a decoder. The
encoder hierarchically extracts relevant image features on dif-
ferent length scales. The decoder merges the output of the
encoder with the original image on several different resolution
levels and finally outputs a mask with a probability for each
pixel to belong to a given class. One additional benefit of the
use of U-Net is its intrinsic translational invariance. This al-
lows it to easily handle misaligned patterns caused by camera
or sample stage shifts and tilts, in contrast to other algorithms
(most notably PCA) that require careful alignment.

The present data set has two distinct classes of patterns
related to the surface structure and close to the zero-order
Laue zone. Vertical streaks are characteristic of the locally
disordered but otherwise flat parts of the film surface, while
arrays of spots that do not fall on Laue circles are due to

FIG. 2. Different stages of the analysis of RHEED images: (a)
Labeled bounding boxes overlaid on an RHEED image. Each rect-
angular bounding box is drawn around a region labeled by the
connected component algorithm. (b) Detected direct beam spot,
bound by a box. The red dot shows the center of gravity of the
intensity of the beam.

electron transmission through nanoscale crystallites on the
surface. Thus, for each RHEED image, two different masks
are used to find and separate features with these shapes. Fea-
tures’ binary masks were hand labeled from a set of images
using the software DJANGO-LABELLER [28], and were used as
labels to train the U-Net model. Each image takes 2–5 min to
annotate, depending on the complexity of the RHEED pattern.
The time series of RHEED patterns for each film growth
experiment was divided into ten sections, and the first image
of each section was selected for labeling. In the end, this pro-
cess yielded 158 labeled RHEED images from 16 recordings
representing the growth of 16 distinct thin-film samples. The
validation data set was constructed by removing two entire
series of RHEED images from the training set, so the model
did not train on any images from these two experiments.

The U-Net model was created and trained using the Fastai
Python library [18,29]. As the main benchmark of its perfor-
mance, we use the Dice metric, which evaluates the overlap
between the target mask and the predicted mask:

Dice = 2|X ∩ Y |
|X | + |Y | , (1)

where X and Y are the target (true) and predicted binary
masks, respectively. This metric is commonly used in image
segmentation since it is less susceptible to class-imbalance
issues than conventional accuracy.

The Dice metric for the validation set is 0.77, which can
be considered high, especially taking into account that the
hand-labeling procedure is not perfect. Indeed, by visually
inspecting an example prediction and comparing it to the input
RHEED pattern, Fig. 1(b), it is clear that the model produces
masks with high fidelity [Fig. 1(c)].

B. Separating diffraction regions

Both the shape and the location of each diffraction feature
contain important information, thus implementing an accurate
method for extracting these properties is crucial. Since the
spot and streak features in RHEED images are typically well
separated spatially, we use a simple Connected Component
labeling algorithm [30,31] implemented by the Scikit-Image
Python library [32] to give each connected area a unique label.
The algorithm works by finding and connecting neighboring
pixels classified by the U-Net as either a spot or a streak.
Pixels from disconnected areas are grouped into different re-
gions. Figure 2(a) shows an example of the extracted regions,
with their bounding boxes for a diffraction pattern recorded

063805-3



HAOTONG LIANG et al. PHYSICAL REVIEW MATERIALS 6, 063805 (2022)

FIG. 3. An illustration of a region covering two features of overlapping diffraction patterns from two phases: (a) The region, bound by a
red rectangle, although not visible by eyes at this intensity scale, contains two streak patterns. The zoom-in on the right contains the same box,
but with intensity rescaled for better visualization. (b) The integrated one-dimensional intensity variation of the region. The detected peaks are
marked with triangles.

on the bare sapphire surface before film growth. Note that the
diffraction spots are strongly distorted by substrate chargeup.

C. Tracking the direct beam

When using small substrates in a typical RHEED setup,
the finite width of the electron beam means that a part of the
direct beam misses the substrate surface and hits the top part
of the phosphor screen. The position of the direct beam spot
can thus be used as a reference position even when the diffrac-
tion pattern is weak or distorted due to surface chargeup.
Correctly determining the direct beam spot position is useful
for aligning the RHEED images and calibrating the image
scale, ensuring that each image is correctly centered. This
step ensures that at each time stamp the subsequent algorithm
is analyzing the same Laue zone. Algorithmically finding
the spot of the direct beam appears trivial since this spot is
always located at the top of the RHEED image. However,
simply picking the region that is closest to the top part of the
image does not work if the sample stage position inside the
deposition chamber changes relative to the RHEED screen or
the camera position or field-of-view changes—there can be
multiple diffraction spots close to the direct beam spot when
measurements are done at very low incident beam angles. For
this reason, we implemented an object tracking algorithm that
matches regions from the current frame to regions from the
previous frame. The Intersection over Union (IoU) tracking
algorithm is sufficient for this application, as it selects the
region that mostly overlaps with the previously matched direct
beam region [33]. The degree of overlap is measured by the
IoU, which is given by

IoU = |A ∩ B|
|A ∪ B| , (2)

where A and B are the two masked areas of the corresponding
regions. Tracking the shared region between image frames is
done by finding the region pairs with the highest IoU value.
The naïve approach of identifying the direct beam spot as the
top one is only used in the first image of the series or when the
algorithm loses track of the direct beam, an example of which
is shown in Fig. S5 of the Supplemental Material [24]. The
center position of the direct beam is computed as the center of
gravity of the intensity within the bounding box.

D. Identifying structural phases

A RHEED pattern, as any diffraction pattern, can be
viewed as a representation of the collection of real-space
periodicities in a sample structure. The horizontal distances
between diffraction spots or streaks thus represent different
atomic spacings. Even if we ignore any internal structure of
the streaks or the vertical positions of the spots, the horizontal
spacings alone can be used to generate a fingerprint of a
structural phase and thus distinguish different crystal phases.
To accelerate computations and get better precision, we only
analyze the region around the zero-order Laue circle of the
substrate material. This is done by cropping the images and
only considering a window below the direct beam, while the
size of the window and its distance from the direct beam
can be tuned. The trained U-Net model is used to create the
spot and streak masks for each cropped image; these masks
are then used to extract individual pattern features. For each
spot and streak type feature, the signal is integrated verti-
cally, compressing the image data in the analysis window to a
one-dimensional feature. The background signal in these one-
dimensional features can be easily subtracted after fitting with
a simple linear model. The central positions of the diffraction
spots and streaks are found by the peak finding algorithm
implemented in the SciPy python library [34], which is effec-
tive even when a region contains multiple nearly overlapping
diffraction features due to connected mask regions as shown
in an example in Fig. 3.

The distances between the extracted peak locations and the
central specular peak can be used to discover periodicities in
the atomic spacings. The analysis of the periodicity is done
by finding sets of distances that are multiples of a base dis-
tance. This is achieved by determining all horizontal distances
present in each image and picking the shortest distance of
a peak from the specular position. The algorithm then iter-
atively extracts the base distances by choosing at each step
the smallest unselected distance and adding it to the list of
base distances. It then determines all peak distances that are
multiples of the current base distance within a given tolerance
and marks these distances as selected, assuming that all these
peaks belong to the same base distance. The algorithm contin-
ues until all distances have been selected, producing a set of
base distances characterizing each image.

An illustration of this workflow is shown in Fig. 4(a).
The final result of this example is plotted in Fig. 4(b). The
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FIG. 4. Analysis of the peak location periodicities: (a) Diagram illustrating how peaks are grouped based on the distance from the origin.
Solid lines show peak locations. Step 1: lists all the peaks discovered by our algorithm. Step 2: The peak closest to the origin is selected and
labeled in red. Based on this peak, its multiplicity is constructed and shown in the red dash line with an error box. Step 3: Any peaks that are
within the range of the error box are considered to be in the same base distance and are labeled in red. (b) All labeled peaks overlaid on the
original diffraction pattern. The number shows the average peak distance from the origin normalized by the multiplicity. The red dash line
highlights the position of peaks that are analyzed and grounded in (a).

detailed algorithm is described in Supplemental Material
Sec. A [24].

The spacing in pixel space is further converted into the
reciprocal space using the relationship

ngh = nαl

L
k0 (3)

where n is the periodicity, l is the feature length in pixels,
α is the physical size of a pixel, L is the camera length, and
k0 is the momentum of incident electron beam. This converted
distance could be directly used to match with reciprocal lattice
vectors of the reference structures, which helps to rule out the
phases on the surface. Starting from a raw RHEED image, it
takes less than 0.1 sec to run the entire analysis pipeline to
obtain the summarized periodicity and intensity data for the
main peaks making real-time processing feasible.

V. PHASE MAPPING BY REGION INTENSITY

The horizontal spacing information is sufficient for detect-
ing the presence of a given phase but not for quantifying its
abundance. We developed an algorithm (described in Supple-
mental Material Sec. B [24]) to compute the relative intensity
for each base peak distance, helping to quantify the phase
composition of a multiphase sample. The algorithm computes
the intensity relative to the total intensity for each identified
base distance for each RHEED image. However, different
RHEED images have different base distances; thus, a “unifica-
tion” step is required to express them as a fixed-length vector
for later pattern clustering. Here, the density-based spatial
clustering of applications with noise (DBSCAN) algorithm
[35] is used to group similar base distances into clusters. The
number of clusters, i.e., the overall number of distinct base
distances, determines the total number of base distances, thus
the size of the vector. Each vector provides a unique repre-
sentation of the RHEED image of a sample, with components
representing the relative intensity at a specific base distance,
as shown in Fig. 5. A human expert or machine could look for

phases that are continuous in parameter spaces to confirm the
analysis. Note the conceptual similarity of the process with the
phase mapping algorithms based on XRD data [10–15]. Fig-
ure 5(b) shows a growth parameter phase map with extracted
feature vectors for the iron oxide growth mapping experiment
which we can compare to a human-labeled XRD mapping
result in Fig. 5(c). Here, the sample synthesis in condition
(10−A Torr, B ◦C) is denoted as A−B (e.g., 10−5 Torr, 300 ◦C
is labeled as 5–300). This notation is applied to the rest of
the paper for ease of understanding. As can be seen there, re-
gions containing similar vectors generally match well with the
XRD measurement shown in Fig. 5(c). One notable deviation
is the clear difference between the two highest-temperature
samples, grouped based on XRD data. These samples show
quite distinct RHEED patterns.

VI. INTERPRETATION AND ANALYSIS
OF RHEED FEATURE MAPPING

We first present an analysis of just the RHEED features to
show that one can achieve a semiquantitative analysis of phase
mapping using RHEED data only. Phase compositions can be
inferred from the extracted phase map from RHEED patterns
when combined with knowledge of known materials phases
and their structures. The phase map predominately consists
of two distances: 13.83 and 20.38 nm–1. α-Fe2O3 is isostruc-
tural to sapphire thus epitaxial growth is expected. The first
distance, 13.83 nm–1, is in proximity to the α-Fe2O3 (101̄0)
plane, which is perpendicular to the (0001) substrate plane
with the beam incident in the [112̄0] direction. Thus, the first
distance shown as a green pie slice in the phase map represents
the epitaxially grown hematite (α-Fe2O3) phase. The second
distance, 20.38 nm–1, appears at both low and high tempera-
tures and suggests a different phase. Comparing the distance
with various lattice planes of high-symmetry FexOy phases,
we identify the distance to be the Fe3O4 (022̄) plane which
is perpendicular to the (111) plane. There are three samples
(2-524, 2-805, and 3-1048) that cannot be fully explained by
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FIG. 5. Phase mapping of iron oxide films: (a) Raw RHEED images recorded at the end of each deposition. (b) The extracted regions’
intensities of each base distance from the RHEED pattern form a feature vector. Each feature vector is represented by a pie chart where each
pie slice’s area shows the relative intensity of each base distance. The color encodes the base distance of the region intensity as shown in the
legend. The unit of the distance is nm–1. (c) The red and blue scatter points show the XRD phase map of the hematite (α-Fe2O3) and magnetite
(Fe3O4) phases, respectively. The presence of a phase is plotted as a circle. The size of the circle indicates if the phase is major or trace material
in a particular sample. Sample identifier notation: sample made at 10–A Torr at B °C is denoted as A-B. For instance, the sample 5-600 was
made at 10–5 Torr of PO2 at the substrate temperature of 600 °C.
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these two distances. The 38.46-nm–1 spacing, which appears
in 2-524 and 2-805, is close to the third-order diffraction pat-
tern of the α-Fe2O3 (101̄0) and the second-order diffraction
pattern of the Fe3O4 (022̄). The absolute intensity for sam-
ples in the low-temperature region (350–600 °C), including
2-524, is quite low, suggesting low crystallinity of Fe3O4 and
α-Fe2O3 due to kinetically limited growth. Similar reasoning
can also be applied to sample 2-805, where the appearance
of 38.46 nm–1 indicates that a trace amount of Fe3O4 coex-
ists with α-Fe2O3. The last sample, 3-1048, shows signs of
surface reconstruction where the two major distances, 7.23
and 9.81 nm–1, are approximately equal to one-half of the
α-Fe2O3 (101̄0) and Fe3O4 (022̄) planes, respectively. The
last distance, 17.62 nm–1, unexpectedly matches the Fe3O4

(12̄1) plane suggesting that the Fe3O4 layer is in-plane ro-
tated by 30 ° from the original direction. The appearance of
13.83 nm–1 in sample 5-1048 might be due to the substrate
and not the α-Fe2O3 phase because of the 3D island growth of
Fe3O4 that leaves some part of the substrate surface exposed.

Combinations of extracted features from RHEED with
XRD patterns and AFM images provide more in-depth in-
formation regarding the phase distribution. The analysis of
XRD patterns is detailed in Supplemental Material Sec. D
[24]. The majority of XRD phase mapping for α-Fe2O3 and
Fe3O4 matches the mapping from RHEED (Fig. 5). There
are some samples where only a trace amount of material is
present, and they are only discernible in the XRD patterns.
The absence of certain phases in RHEED of these samples
could suggest the trace phase is covered under the surface.
For growth experiments performed at high ambient pressures
in the 100-mTorr range, weaker diffraction features may be-
come invisible due to the lower signal-to-noise ratio when
strong electron scattering from the ambient gas increases the
background intensity. From AFM images, the Fe3O4 phase
formed truncated triangular prism nanostructures in the high-
temperature region (>900 ◦C) but transformed into a flat
surface in the low-temperature region. Due to the kinetic lim-
itation of Fe3O4 film growth in the low-temperature regime,
these films have relatively low crystallinity, which leads to low
feature intensities in both XRD and RHEED measurements.
The RHEED data suggest that there is an α-Fe2O3 layer on
the surfaces of samples 2-927, 3-927, and 5-1048, but the
thickness is only a few unit cells, which makes it hard to detect
by XRD. The thickness of the α-Fe2O3 component around
those 3D Fe3O4 structures is at most 2–3 nm, as measured
by AFM.

The thin-film phase diagram of iron oxides obtained in this
work shows agreement with the calculated bulk phase diagram
[36] at high temperatures while deviating at low temperatures.
The gradual transition in phase composition around 800 °C
shows that the Fe3O4 phase is stabilized at high temperature
and low oxygen partial pressure regions. The formation of
the α-Fe2O3 and Fe3O4 mixture could possibly be due to
the nonequilibrium nature of the thin-film deposition process.
The realization of Fe3O4 on Al2O3 (0001) in films grown by
PLD from an α-Fe2O3 target has been reported previously
when the substrate temperature was 450 °C at an oxygen
partial pressure of 10−6 Torr [37]. One possible explanation
is the high-energy plasma of the PLD process enables the
formation of Fe3O4 at the surface, and subsequent surface-

to-bulk diffusion is limited by the low substrate temperature
[38]. Generally, there can be a deviation in thin-film phase
formation from bulk phases due to the competition between
growth and oxidation: the reaction rate of oxidation can be
slower than the growth rate at low temperature [39], thereby
leading to the formation of the lower oxygen-content phase.
The region of Fe3O4 identified here is comparable with the
result from Tiwari et al. [37]. The lattice parameter of the
Fe3O4 is larger than the bulk value in their study due to the
8% lattice mismatch between Fe3O4 (111) and Al2O3 (0001).
However, our XRD patterns show the lattice parameter of
Fe3O4 or the inverse spinel structure shrinks as the oxygen
pressure increases. This may be due to Fe2+ ions in octahedral
sites being oxidized and transferred to the nearby tetrahedral
sites, thus creating vacancies in the material [40]. Thus, in
the region (600–800 °C) with higher temperatures, Fe3-δO4 or
even γ -Fe2O3 transforms into the thermodynamically stable
α-Fe2O3.

Similarly, at elevated temperatures, the reverse transition
can happen. In sample 3-1048, the two distances (7.23 and
9.81 nm–1) are most likely due to surface reconstruction of
α-Fe2O3 and Fe3O4. Although single-phase Fe3O4 (111) does
not reconstruct [41], there is a well-known “biphase” surface
structure on oxidized or mineral α-Fe2O3 (0001) surfaces
[42–44]. Based on the sample’s experimental condition and
the bulk phase diagram, it is unlikely for α-Fe2O3 and FeO do-
mains to coexist on the surface. However, the structure model
where a thin layer of Fe3O4 overlays on top of the α-Fe2O3

proposed by Lanier et al. agrees with our XRD measurement
[43]. The semicoherent hexagon-on-hexagon interface struc-
ture forms a hexagonal Moiré lattice (a = 4.36 nm) with a
30 ° in-plane rotation from the α-Fe2O3 (0001) direction. The
(11) diffraction of the Moiré lattice has a similar magnitude
(g(11) = 2.88 nm–1) as the spacing (2.60 nm–1) between each
small streak from the reconstruction pattern.

VII. FUTURE PERSPECTIVE

The use of an automated pattern feature and phase extrac-
tion pipeline opens the possibility of applying active learning
techniques for fully autonomous process control [45–49]. This
can be utilized for mapping growth parameters or optimizing
growth conditions of a particular phase without human inter-
vention or manual evaluation of RHEED patterns. Since the
pipeline operation is faster than the film growth experiment, it
is possible to fully utilize deposition instrument time, which
cannot be achieved if XRD (carried out post deposition) is
used as the source of process feedback information. We expect
the application of ML methods to electron diffraction patterns
to significantly speed up the development of new thin-film ma-
terials where metastable phases or structural phase boundaries
occur in the accessible process parameter space. Clearly, tem-
perature and gas pressure are not the only parameters that can
be varied. Equally accessible for the PLD process would be,
for example, deposition laser fluence, ablation area, growth
rate, and, of course, composition. While such mappings are
difficult to visualize and analyze by a human operator due
to the multidimensional nature of the parameter space, active
learning methods do not suffer from the same handicap. We
thus expect the combination of the RHEED image analysis
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pipeline described here with active learning process control to
revolutionize thin-film materials development.

VIII. CONCLUSIONS

We have developed an ML pipeline for automatically
distinguishing different structural phases in thin films from
RHEED images. We have applied the ML analysis to RHEED
images taken during the growth of a series of FexOy thin films
deposited by PLD over broad ranges of deposition tempera-
tures and oxygen pressures in order to obtain a process-phase
diagram. Microstructural data on materials phases present in
the thin-film samples were also characterized by XRD and
AFM. The pipeline produced a phase diagram with distinct re-
gions which are in good agreement with a phase map obtained
from XRD, validating the use of RHEED data for automati-
cally generating a structural phase map. The method based on
general features extracted from RHEED is thus sufficiently
versatile for analyzing the growth of any material and is not

specific to the iron oxides used in this demonstration and it
could run in parallel with the film deposition process. In the
future, the pipeline could be deployed onto optimizing film
surface structure or hunting for new metastable phases by
exploring the full PLD parameters space.
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