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 We have demonstrated the centimeter-scale fabrication of monolayer epitaxial graphene p-

n junction devices using simple ultraviolet photolithography, thereby significantly reducing device 

processing time compared to that of electron beam lithography typically used for obtaining sharp 

junctions. This work presents measurements yielding nonconventional, fractional multiples of the 

typical quantized Hall resistance at ν = 2 (RH ≈ 12906 Ω) that take the form: a/b*RH. Here, a and 

b have been observed to take on values such 1, 2, 3, and 5 to form various coefficients of RH. 

Additionally, we provide a framework for exploring future device configurations using the 

LTspice circuit simulator as a guide to understand the abundance of available fractions one may 

be able to measure. These results support the potential for simplifying device processing time and 

may possibly be used for other two-dimensional materials. 

I. Introduction 

We demonstrate how standard ultraviolet photolithography (UVP) and the photoresist ZEP520A 

were used to build p-n junctions (pnJs) that have junction widths smaller than 200 nm on devices 

made from centimeter-scale epitaxial graphene (EG) growths [1-4]. Quantum Hall transport 

measurements were performed and simulated for various p-n-p devices to verify expected 

behaviors of the longitudinal resistances in a two-junction device despite junction roughness [5]. 

Furthermore, we use the LTspice current simulator [see notes] to examine the various 

rearrangements of the electric potential in the device when injecting current at up to three 

independent sites. We find that nonconventional fractions of the typical quantized Hall resistance, 

��, can be measured, thus validating the simulations. These results have strong importance in the 

field of resistance standards and general fabrication techniques for other two-dimensional 

materials [6-8]. 
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II. Device Fabrication 

The growth of high-quality epitaxial graphene can be found in Refs. [9-11]. EG is formed when 

Si atoms sublimate from the silicon face of SiC. Samples were grown on square SiC chips diced 

from on-axis 4H-SiC(0001) semi-insulating wafers (CREE) [see notes]. SiC chips were submerged 

in a 5:1 diluted solution of hydrofluoric acid and deionized water prior to the growth process. 

Chips were placed, silicon face down, on a polished graphite substrate (SPI Glas 22) [see notes] 

and processed with another photoresist (AZ5214E) to utilize polymer-assisted sublimation growth 

techniques. The face-down configuration promotes homogeneous growth, and the annealing 

process was performed with a graphite-lined resistive-element furnace (Materials Research 

Furnaces Inc.) [see notes]. The heating and cooling rates were about 1.5 °C/s, with the growth 

performed in an ambient argon environment at 1900 °C. 

The grown EG was evaluated with confocal laser scanning and optical microscopy as an efficient 

way to identify large areas of successful growth [13]. Protective layers of Pd and Au are deposited 

on the EG to prevent organic contamination. While protected, the EG is etched into the desired 

device shape, with the final step being the removal of the protective layers from the Hall bar using 

a solution of 1:1 aqua regia to deionized water. Some variants of this device included electrical 

contact pads made from NbTiN for lower contact resistances [14-15]. To fabricate the pnJs, 

completed Hall bars were functionalized with Cr(CO)3 to reduce the electron density to a value 

close to the Dirac point and on the order of 1010 cm-2 [16]. A S1813 photoresist spacer layer was 

then deposited on a region intended to be preserved as an n region. Finally, a 100 nm layer of 

polymethyl methacrylate (PMMA/MMA) and an approximately 350 nm layer of ZEP520A were 

deposited. The 100 nm layer was intended to be a mild protectant for EG since ZEP520A is very 

photoactive and known to reduce the mobility of EG when in direct contact with it (see Figure 1).  
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III. Characterization 

 

FIG. 1. (Color online) (a) The optical image of the device after processing is shown with labels 

indicating the intended charge polarity. A cross section of the device is also depicted for clarity. 

(b) An illustration of the Raman acquisition and a map-averaged 2D (G’) spectrum are shown for 

the n (red) and p (gray) regions. The transparent red and gray bands indicate the range (for the 

corresponding polarity) of 2D (G’) peak positions to within 1σ of the average. (c) An atomic force 

microscope image was acquired to gain some insight into how the boundary between the intended 

p and n regions formed. (d) An extracted profile prior to ZEP520A deposition is shown. 
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FIG. 2. (Color online) ((a) The longitudinal resistivity ρxx and electron density in EG �� are 

monitored as a function of time in the upper and lower panel, respectively, while the region is 

being exposed to 254 nm UV light. The Cr(CO)3 helps the carrier density transition from n-type 

to p-type despite an extensive time of transient lingering close to the Dirac point. The charge 

neutrality point (CNP) is marked by a gold dashed line. The cyan shading approximates a range 

where the electrical properties of the EG would not yield quantized plateaus. (b) The AFM profile 

and magnified image of the pnJ are shown after PMMA/MMA copolymer deposition (totaling 100 

nm). The green curve is taken along the white line in the inset. To validate the junction width, 

multiple devices with various thicknesses of S1813 were measured, as indicated by the orange and 

blue dot along the profile representing the two example thicknesses of 300 nm and 42.4 nm, 

respectively. The shaded blue region indicates the bounds within which the carrier density is 

expected to switch polarity. (c) The same profile and shaded region is projected onto the calculated 

charge transfer ∆� to the ZEP520A layer and profile of ��. 
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To assess device quality, the charge configuration of the device needed to be known and the 

width of the pnJs needed to be estimated. It is also important to approximate how the carrier 

densities in the regions change with exposure to 254 nm, 17 000 µWcm-2 UV light (distinct from 

the UV light used in photolithography), and this is primarily done by monitoring the longitudinal 

resistivity in all three regions of a p-n-p device during a room temperature exposure, with two 

polarities shown in the upper panel of Figure 2 (a). For the p region, the expected p-type doping 

mechanism resulting from the deposition of a ZEP520A layer on the whole device persists to the 

point where the carrier density crosses the Dirac point. This crossing is most evident during the 

room temperature UV exposure when the longitudinal resistivity of the device exhibits a similar 

value to when the exposure was started, but instead with a negative time derivative. The S1813 

successfully prevents the n region from becoming a p region, as exhibited by the flat resistivity 

(and electron density). Though the idea of using ZEP520A as a dopant for EG has been 

demonstrated [17], accessing the p region with that mechanism is challenging due to the intrinsic 

EG Fermi level pinning from the buffer layer below. However, the reduction of the electron density 

from the order of 1013 cm-2 to the order of 1010 cm-2 by the presence of Cr(CO)3 considerably 

assists the p region to undergo its transition.  

  

NOTES 

 Commercial equipment, instruments, and materials are identified in this paper in order to 

specify the experimental procedure adequately. Such identification is not intended to imply 

recommendation or endorsement by the National Institute of Standards and Technology or the 

United States government, nor is it intended to imply that the materials or equipment identified are 

necessarily the best available for the purpose. 
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