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Abstract
Purpose: To assess the technical performance of the apparent diffusion coeffi-
cient (ADC) on a dedicated 3T radiotherapy scanner,using a standardized phan-
tom and sequences. Investigations into factors that could impact the technical
performance of ADC in the clinic were also completed, including changing the
slice-encoded imaging direction and the reference sample ADC value.
Methods: ADC acquisitions were performed monthly on an isotropic diffusion
phantom over 1 year. Measurements of ADC %bias, coefficients of variation for
short-/long-term repeatability and precision (CVST/CVLT and CVP), and b-value
dependency (Depb) were calculated. The measurements were then assessed
according to the Quantitative Imaging Biomarker Alliance (QIBA) Diffusion Pro-
file specifications.
Results: The average of all measurements over the year was within Pro-
file recommended ranges. This included when testing was performed in dif-
ferent imaging directions, and on samples that had different ADC reference
values (0.4–1.1 µm2/ms). Results in the axial plane for the central water
vial included a bias of +0.05%, CVST /CVLT/CVP = 0.1%/ 0.9%/0.4% and
Depb = 0.4%.
Conclusions: The technical performance of ADC on a radiotherapy dedicated
MRI scanner over the course of 12 months was considered conformant to the
QIBA Profile. Quantifying these metrics and factors that may affect the perfor-
mance is essential in progressing the use of ADC clinically: ensuring that the
observed change of ADC in a tissue is due to a physiological response and not
measurement variability.

KEYWORDS
apparent diffusion coefficient, diffusion-weighted imaging, quantitative imaging biomarker alliance,
quantitative magnetic resonance imaging, reproducibility

1 INTRODUCTION

Quantitative Magnetic Resonance Imaging (qMRI) is
increasingly used in radiation oncology. One tech-
nique involves Diffusion-Weighted Imaging (DWI),which
can be used to study a patient’s tissue cellularity via
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the water Apparent Diffusion Coefficient (ADC). This
has potential to aid in disease diagnosis and moni-
toring/predicting treatment responses.1,2 However, the
technical performance uncertainties associated with
measuring ADC are currently limiting the widespread
clinical implementation of this technique.3–6
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In 2019, the Quantitative Imaging Biomarker Alliance
(QIBA) released the QIBA Diffusion Profile.3,7 Specifi-
cally, the Profile lists precise methods and specifications
that need to be met for a site to ensure reproducible
ADC in multicenter trials. This incorporates recom-
mendations based on literature to use standardized
phantoms and sequences to establish a scanner’s
baseline performance levels (e.g., ADC %bias, repeata-
bility, precision, signal-to-noise ratio [SNR]).1,4,7,8 The
Profile requires testing to be performed on a pure water
ADC sample,7 and there are several phantoms available
for this purpose.6,9–11

The National Institute of Standards and Technology
(NIST), National Cancer Institute (NCI), and Radio-
logical Society of North America (RSNA) collabora-
tively developed a commercially available isotropic
diffusion phantom, with 13 vials embedded with well-
characterized reference ADC values.11,12 This phantom
provides the ability to assess a scanner’s technical per-
formance over a wide range of physiologically relevant
ADC values, which could affect ADC reliability.11,13,14

The NIST phantom has been used in the past to test
the accuracy and reproducibility of ADC on/or between
MRI scanners,11,15–17 MR-Linear accelerators,5,18 and
Diffusion Tensor Imaging (DTI) parameters on MRI
scanners.13

The literature is however lacking long-term and
frequent system stability measurements, essential
for simulating serial scanning in treatment response
monitoring.7 Further, most studies investigating ADC
reliability using the NIST phantom report only on using
coronal11,15,19 or axial5,6 slice-encoded image acquisi-
tions. Although the Profile requires only axial imaging
for conformance testing, multidirectional DWI imaging
is routinely performed in the clinic, depending on the
anatomical site.20–22 Thus, it is important to deter-
mine any imaging directional dependencies on ADC
reliability.7

The main aim of this study was to assess the
long-term technical performance of ADC on a 3T radio-
therapy dedicated MRI scanner. Factors important for
the clinical imaging of different anatomical sites with
uncertain effects on scanner performance, including
multidirectional imaging and ADC linearity, were also
investigated.

2 MATERIALS AND METHODS

2.1 NIST diffusion phantom

The design of the diffusion phantom, manufactured
by CaliberMRI (Colorado, USA), has been described
in previous literature.3,11,13 Figure 1 shows the phan-
tom’s inner- and outer-rings of vials surrounding the
central distilled-water vial. The surrounding vials con-

tained a range of concentrations (by mass fraction) of
polyvinylpyrrolidone (PVP) in aqueous solution includ-
ing (%): 0, 10, 20, 30, 40, and 50. Reference ADC values
of each of the vials (phantom serial#: DP128-A-03-
0113) are summarized in Table S1, covering a wide
range of physiologically relevant ADC values.14

2.2 Image acquisition and phantom
setup

The phantom was imaged at monthly intervals over 1
year (at a minimum of 2 weeks apart) using a 3T MRI
scanner (Siemens Healthineers, MAGNETOM Skyra,
Erlangen,Germany).The system-specific phantom scan
protocol and parameters used in this study are outlined
in the QIBA Profile.7 This included the use of a 2-D sin-
gle shot echo-planer imaging (SS-EPI) sequence (scan
time ≈ 2 min), with a 3-scan trace and four b-value
weightings (s/mm2): 0, 500, 900, and 2000. The echo-
time (TE) and repetition-time (TR) used for imaging were
10 000 ms and 106 ms, respectively.

Prior to scanning, the phantom was filled with an
ice-water bath and refrigerated for a minimum of 2 h
to achieve thermal equilibrium at 0◦C.7,14 Immediately
prior to scanning, the phantom was refilled with ice
and the temperature was measured using a NIST-
traceable thermometer (Traceable® Extreme Accuracy
Thermometer, 1227U09, Thomas Scientific, Swedes-
boro, USA). Temperature was measured again immedi-
ately after scanning.

For phantom alignment, the central water vial was
aligned to isocenter within a 20 channel Head/Neck coil
(Figure S1). The phantom was manually repositioned
from its axial orientation to coronal and then sagittal
within the Head/Neck coil (as described in the phantom
manual).14 Simultaneously to each physical rotation,
the slice-encoding (and phase-encoding for coronal)
direction was changed to match the respective phantom
orientation, maintaining Figure 1’s vial arrangement in
the generated ADC maps. Each long-term (LT) monthly
acquisition included repeating the SS-EPI sequence
four times to acquire the short-term (ST) measure-
ments in each phantom orientation, as per QIBA Profile
guidelines.

Both trace-DWI and scanner-generated (inline) ADC
maps were exported from the Siemens Syngo Worksta-
tion to preserve DICOM metadata.The inline maps were
calculated using a linear regression analysis by fitting
the signal for all b-values, S(b), to the monoexponential
model (Equation 1).23

S (b) = S0e−b⋅ADC (1)

Note S0 denotes the signal intensity when the b-
value = 0 s/mm2.
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TABLE 1 Overview of tests completed to assess conformance to the Profile7

Test Relevant Equations Definitions

A %bias =
(
𝜇 −DCT

DCT

)
× 100% DCT = True diffusion coefficient

µ = Mean of measurements

B/C RCST∕LT = 2.77 × SD RC = Repeatability coefficient

CVST∕LT = 100% ×
SD

𝜇
CV = Coefficient of variation

SD = Standard deviation

ST = Over 4 × short-term measurements

LT = Over 12 × long-term measurements

D R2 = 1 − RSS

TSS
AND
Y = 𝛽0 + 𝛽1 × DCT

R2 = Coefficient of determination

RSS = Sum of squares of residuals

TSS = Total Sum of Squares

Y = Measured ADC (all vials/months)

𝛽0 = Intercept

𝛽1 = Slope

E CVP = 100% ×
SDpix

𝜇ROI
ROI = Region of interest (isocenter vial)

SDpix = Over ADC values within the ROI

F SNR =
𝜇ROI [Signal image]

𝜇ROI [Noise image]
SNR = Signal to noise ratio

Signal = Average of pixel values for each ROI over the 4 x ST repetitions

Noise = Average of pixel SD values for each ROI over the 4 x ST repetitions

G Depb = 100% ×
||||

ADCb0,bn+1−ADCb0,bn

ADCb0,bn

|||| Depb = b-Value dependence

ADCb0,bn+1 = ADC generated using b0 = 0 s/mm2 and bn+1, where bn+1 > bn

b1−3 = 500, 900, or 2000 s/mm2

Note: Excluding test D, Profile testing was only required to be performed on the central water vial (at isocenter) using axial acquisitions. Further, short-term (ST) refers
to the intraday measurements acquired, while long-term (LT) refers to the intramonth measurements acquired

2.3 Region of interest analysis

Using the first repetition ADC map measured for each
imaging direction, the central pixel location was manu-
ally identified for each of the vials using ImageJ v1.53c
(National Institutes of Health, Maryland, USA). These
locations along with all four repetitions of trace-DWI
and ADC maps were imported into an in-house devel-
oped Python analysis script. Circular regions of inter-
est (ROIs) of 1.2 cm diameter, covering approximately
109 pixels, were positioned over the center of each of
the 13 vials on three central phantom slices for sta-
tistical analysis (average pixel intensity calculated over
the volume of interest [VOI]). Phantom slices found to
have major artifacts occurring near any of the 13 vials
were excluded from analysis via shifting the entire VOI
selection.

2.4 QIBA Profile analysis

The Profile required the assessment of seven key mea-
surements, with calculations and definitions outlined in
Table 1 and tolerance limits in Table 2. Measures for

tests A–E were calculated using the inline derived ADC
maps, while tests F and G required trace-DWI images.
Further details on the methods used to complete this
testing can be found in the Profile documentation.7

2.5 Software validation and spatial
dependence

The QIBA Profile recommended investigating the anal-
ysis software used for testing Profile conformance. To
do this, computer-generated DICOM data sets known
as digital reference objects (DROs), with b-values of
0, 500, 800, and 2000 s/mm2 were imported into
the offline DWI-fit Python script.24 The offline fitting
method was alike that described for the inline ADC map
derivation.

Offline ADC maps of the DROs were produced to
estimate the %bias and standard deviation (SD) over
a range of phantom relevant SNRs (50–100) and ADC
values (0.1–1.1 µm2/ms).7,25 The same fit was used on
the first repetition of each monthly trace-DWI from the
axial phantom scans (data sets = 12), using the cen-
tral water vial ROI from tests A–E. R2 was used as a
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TABLE 2 Accuracy, repeatability, reproducibility, linearity, random error, SNR, and b-value dependence (tests A →G) tolerance limits and
mean value ± SD (where applicable), obtained from the 12 monthly measurements of the central water vial (as per Profile requirements)

Test Performance metric Profile tolerance Axial result Coronal result Sagittal result

A |bias (%)| ≤ 3.60 +0.05 ± 0.01 +0.83 ± 0.00 +0.29 ± 0.01

B RCST (µm2/ms) ≤ 0.015 0.003 ± 0.001 0.005 ± 0.002 0.003 ± 0.001

CVST (%) ≤0.5 0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.0

C RCLT (µm2/ms) ≤0.065 0.028 0.011 0.027

CVLT (%) ≤ 2.2 0.9 0.3 0.9

D R2 > 0.9 1.0 1.0 1.0

Slope (𝛽1) 0.95 ≤ 𝛽1 ≤ 1.05 1.00 1.02 1.02

E CVP (%) <2 0.38 ± 0.10 0.43 ± 0.04 0.38 ± 0.04

F SNRa
≥ 50 ± 5 332 ± 146 269 ± 93 356 ± 68

G Depb(%)a <2 0.4 ± 0.3 0.3 ± 0.2 1.4 ± 2.1
aCertain month’s data have been excluded from the presented results due to retrospective findings of signal saturation occurring within the data sets. For SNR, this
included excluding axial results acquired for months 1, 2, 6, and 9, and coronal and sagittal results for months 1 and 5, and 1 and 6, respectively. For Depb, results for
month 1 were excluded in calculations for all directions

measure of goodness-of -fit in both cases,and inline ver-
sus offline ADC values were compared to assess %bias.
The offline script was also designed to identify ROIs in
the trace-DWI images that had experienced signal sat-
uration. Signal saturation, also known as data clipping,
occurs when the signal received is outside of the sys-
tem’s detectable range. In addition, the same SNR code
as used in test F was used on the four repetition DROs
available.24

Following personal communication with QIBA,an esti-
mate of spatial dependence (DepS) was completed
using the diffusion phantom. Specifically, the %bias
deviations along the lengths of the central water vial
(axially), outer-ring water vial (axially), and central water
vial (coronally) were respectively used to assess supe-
rior to inferior (SI), right to left (RL), and anterior to pos-
terior (AP) spatial dependencies at approximately 4 cm
from isocenter.A Profile tolerance of ±4% was stipulated
for each individual direction.7

3 RESULTS

The phantom was imaged 12 times over a 1-year period,
with an average four-week interval between imaging
sessions.Average pre- and postscan temperatures were
–0.1 ± 0.1◦C and 0.0 ± 0.2◦C, respectively. For any
monthly imaging session, the maximum (absolute) tem-
perature changes pre- and postscanning was 0.4◦C.

Typical DWI-trace and inline ADC maps (and respec-
tive ROIs) are shown in Figure S2. Susceptibility-
induced distortions in the ADC maps were primarily
observed in outer ring 40% and 30% PVP vials for axial
and sagittal acquisitions, respectively (Figure S3). Con-
sequently, central VOIs were selected to mitigate the
observed distortions. A summary of the Profile test tol-
erances and acquired results for the central water vial
are listed in Table 2.

3.1 ADC accuracy (A), repeatability(B),
reproducibility (C), linearity (D), and
precision (E)

Figure 1 highlights that Profile tolerance limits for
repeatability, reproducibility (excluding the axial CVLT of
the outer-ring 10% PVP vial), and precision were met
for all vials (1–8) with concentrations 0–30% PVP (ADC
range: 0.4–1.1 µm2/ms). The average ADC calculated
for all directions/vials can be found in Table S1 and
Figure S4.In general,vials with lower diffusivities (higher
concentrations of PVP) had inferior performance met-
rics, and even the sign of the %bias measurement var-
ied for different imaging directions. The inner-ring 50%
PVP vial (Figure 1) had an axial bias up to +13.61%
and CVLT = 5.8%, and sagittal bias of –21.82% and
CVLT = 7.4%.

An overview of monthly %bias results for the cen-
tral water vial are presented in Figure 2 for all repeti-
tions and each imaging direction. It can be observed
that the %bias was well within Profile tolerance range
(±3.60%). From this figure, it is also evident that all
within-session repetitions generated similar magnitude
ADC values, whereas monthly repetitions fluctuated
(around 0% bias). Specifically, no monotonic trends in
ADC variability with time were found over the four within-
session repetitions, nor were any changes in artifacts
observed.

Using all 13 vials average ADC over the duration
of the 12-month study, a strong, positive, and linear
correlation was found (Figure 3) between measured
and reference ADC values for all directional acquisi-
tions (R2 > 0.99). Similarly, the slopes (𝛽1) in Figure 3
were all within the Profile tolerance range. It can be
observed that all inner- and outer-ring vials of the
phantom performed similarly, excluding 40% and 50%
PVP vials (lowest ADC), which also had the largest
SDs.
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F IGURE 1 Repeatability coefficient of variation (CVST), precision (CVP) and reproducibility (CVLT) derived for each vial for axial
acquisitions, calculated as an average over the 12-month study. A vial arrangement diagram has been included in the top left for positional
reference for all 13 vials. PVP concentrations (conc.) are shown (by mass fraction (%)) for inner- and outer-ring vials. Note that the central vial is
to be positioned at isocenter and contains distilled water

3.2 SNR (F) and software dependence

On the axial b-value = 0 s/mm2 magnitude images,pixel
signal intensities in the ROI of the central water vial sat-
urated for months 1, 2, 6, and 9. This resulted in failed
SNR calculations (high signal and minimal noise), and
thus the SNR presented in Table 2 is an average over
only 8 months of repetitions. Similarly, the coronal and
sagittal acquisitions experienced saturation in the cen-
tral water vial for months 1 and 5 and months 1 and
6, respectively. Thus, the SNR was only calculated over
10 months in both cases.

In assessing the image analysis software, equiva-
lence (within SD) of inline versus offline axial central
water vial ADC values were found: 1.110 ± 0.010 and
1.112 ± 0.010 µm2/ms, respectively. A strong correla-
tion (R2 > 0.993) between the two methods’ measured
ADC values were found when including all vials,with the
inline method slightly underestimating the ADC on aver-
age by 0.2%. The offline derived ADC value fluctuations
is shown in Figure S5,highlighting signal saturation min-
imally affected the ADC (for months 2, 6, and 9). How-
ever, larger SDs were found for saturated fits, especially
for month 1.

For the DRO study, a goodness-of -fit of R2 = 0.995
was found with %bias±SD remaining within the ≤3.60%

tolerance for most ADC/SNR combinations in phan-
tom relevant ranges (Figure S6). For the DRO ROI of
ADC = 1.1 µm2/ms and SNR = 100, a slight overesti-
mation of SNR was found, 104.9 ± 4.5 (with 95% con-
fidence interval [CI]), using the SNR analysis method
implemented for test F.

3.3 b-Value (G) and spatial dependence

Note that month 1 results were excluded from this test
due to considerable signal saturation effects causing
axial b-value dependencies to be up to a maximum of
11.8% for pairs ADC0,500 and ADC0,900. When consid-
ering only the remainder 11 months of measurements,
axial b-value dependence was largest when calculated
for the ADC0,500 and ADC0,2000 pair: 0.6 ± 0.4% (mean
± SD). This was followed by respective dependencies
of 0.4 ± 0.2% for pairs ADC0,500 and ADC0,900 and
0.3 ± 0.1% for pairs ADC0,900 and ADC0,2000. Further
considering the later 11 months for both axial and
coronal plane measurements, all pair dependencies
stayed below 1.3% and were within a 0.4% difference
from the monthly average of all pairs. Sagittal b-value
dependence, however, performed outside of Profile
tolerance limits. This was largely due to month 6’s
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F IGURE 2 Bland–Altman plots for the central water vial (reference ADC = 1.109 µm2/ms) coronal (a), sagittal (b), and axial (c) acquisitions
show the difference (%bias) between measured and reference ADC values over the 12-month study. The average %bias (and 95% confidence
intervals) is displayed and includes +0.830% (+0.724 to +0.936),+0.288% (+0.042 to +0.534), and +0.053% (–0.204 to +0.309) for coronal,
sagittal, and axial acquisitions, respectively

sagittal measurements (affected by saturation), causing
high dependencies of up to 12.0% for pairs ADC0,500
and ADC0,2000.

For spatial dependence, AP bias on average over all
months was +0.71 ± 0.85%, followed by SI at ±0.43 ±

1.60% and RL of +0.34 ± 1.45%. All %bias stayed well
within the ±4% tolerance on average;however,SI varied
substantially for months 1 and 2.

4 DISCUSSION

In this study, the ADC derived on a 3T dedicated
radiotherapy MRI scanner was found to be accurate,
repeatable, and reproducible using systematic image
acquisitions over 1 year. By using a standardized set
of testing procedures such as the QIBA Profile, the
ADC measured by the scanner in prospective single or

QIBA-certified multisite patient-based studies can be
said to be reliable, with negligible contributions to ADC
due to systematic errors.6,7

The average axial %bias (+0.05%) and repeatability
(CVST = 0.1%) for the central water vial (at isocenter)
were measured to be well within conformance limits
and were comparable to measurements reported in the
literature: %bias < ±4.3% and CVST < 3.2%.5,6,11,18

Long-term system stability of deriving the ADC (axial
CVLT = 0.9%) was also found in this study. All acqui-
sition parameters remained constant throughout the
study, and the PVP solutions embedded in the phantom
are known to be chemically stable.10 Previous stud-
ies using this phantom found similar results, with the
CVLT to be within ranges of <2.2% when acquiring 2
scans within 6 months on the same scanner,18,19 and
CV = 2.1% when comparing between multiple MRI
scanners.13
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F IGURE 3 Correlation plots for coronal (a), sagittal (b), and axial (c) acquisitions with measured ADC values compared to the NIST
reference ADC values for each vial. Note that all axes have employed a logarithmic scale and error bars are given as the standard deviation
found between all 12 months ADC values

Overall, this study showed there was minimal imag-
ing directional dependence on ADC performance—a
factor not investigated in previous studies using the
same phantom. The worst accuracy/reproducibility was
observed for vials with lower diffusivities (40% and
50% PVP), in agreement with the literature.4,11,13,17,18

Further in accordance with the literature,11,13 there were
no significant differences (p > 0.05) between inner- and
outer-ring vial ADC values measured.

The large deviations observed for the lower diffusivity
vials could be due to several factors including eddy
currents7; increased likelihood of susceptibility-induced
distortions occurring near the higher concentrated PVP
vials; gradient nonlinearities, which can impact the ADC
measured at farther distances from isocenter18; or from
insufficient contrast to noise ratio (CNR) or SNR to cor-
rectly assess the ADC in the highly concentrated vials.11

It is important to note that the 40% and 50% PVP vials
at 0◦C have ADC values below physiological range.17

The signal saturation observed in this study has
not been reported in patient-based imaging within the
department, nor in previous literature investigating ADC
variability. This effect is not easy to detect: in the offline
computed ADC maps, saturation was found to primarily
affect the SDs derived from the DWI-ADC fit, while min-
imally impacting the actual ADC value. Saturation was
mainly investigated due to past studies completed on the
same MRI scanner having identified similar effects when
undertaking phantom imaging.26 Further investigations,

out of the scope of this study, would be required to find
the cause and factors affecting the signal saturation.

The b-value is an important factor when considering
patient image protocol optimizations. Given the ideal
b-value selection is dependent on properties of the
anatomy, there is no simple way to determine the exact
b-value combinations that should be used.5,7 Instead,
there is often a compromise made between maintaining
adequate SNR, while minimizing perfusion attributes to
the acquired signal.7 b-value combination recommen-
dations for some anatomies, including for brain, liver,
prostate, and breast, is provided in the Profile.

The b-value dependency in this study for all b-value
pairs were within the 2% Profile tolerance (even when
including the saturated data in month 1). Pair ADC0,500
and ADC0,2000 had the largest b-value dependence.
However, there was no significant difference (p > 0.05)
between this pair and other combinations, including
when all four b-values were used for the offline fit.
Since the reference sample tested was distilled water
(known to demonstrate a monoexponential behavior),
this finding was expected and in agreement with the
literature.6,9,18

Adequate ADC fits and SNR calculations were found
in this study by using offline analysis methods to ana-
lyze the DRO data sets. With only slight differences
between inline and offline derived ADC values (corre-
lation R2 > 0.993), confidence was assured in utilizing
the inline generated ADC maps for majority of analysis
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as per departmental request, to use the same analysis
method as implemented for patient images acquired
on the same scanner. The underestimation of inline
derived ADC values compared to offline has been
noted to occur in past studies and is likely vendor-
specific.15 Offline methods would need to be used for
future multisite studies to ensure the occurrence of a
standardized analysis pathway.15

The potential of temperature changes affecting the
measured ADC, which can be up to 2.4%/◦C,1,3,6 was
removed using an ice-bath. However, preparing the
ice-bath requires considerable time and can increase
the occurrence of susceptibility-induced distortions
(which are known to commonly occur in EPI-DWI
acquisitions).10,17 Quantifying the impact of these
distortions on the ADC measurement would require
further investigation.27 With the recent release of room-
temperature diffusion phantom reference ADC values,
the need for ice-baths should be minimized in future
studies.14

For spatial dependency, the average %bias over
the 12-month study measured in each direction from
isocenter was well within ±4% tolerance. It should be
noted that the spatial offsets examined for this test
were less than the offsets recommended by the Profile
(±10 cm from isocenter). Consequentially, complete
characterization of the spatial dependence could not
be achieved. Recommendations for future investiga-
tions would include the use of a large homogeneous
phantom for this assessment. Although this testing is
less important for small fields of view, diffusion studies
completed on relatively uniform anatomies like brain
have been shown to be significantly impacted by effects
such as gradient nonlinearities and thus should be
monitored.28

Additionally,patient ADC values can also be biased by
inadequate system SNR.6,7 In this study, all directional
SNRs were found to be sufficient and considerably
higher than that found in past studies, which failed to
meet conformance (however, such studies used 1.5 T
MRI-based systems).6,18 It should be recognized that
the results obtained in this study were for the assess-
ment of baseline scanner performance. Given that
phantoms lack tissue complexity, results presented in
this study such as the SNR are likely superior when
compared with patient-based imaging.29 For assessing
clinical conformance to anatomy-specific Profile claims,
in vivo test–retest assessments should be completed
(e.g., for brain and prostate).7

There were other limitations in this study, including
that imaging did not occur on days directly surrounding
two scanner upgrades involving the replacement of the
scanner’s Transmit-Box. Although no clear relationship
between ADC value fluctuations and the timing of
the upgrades were found, similar upgrades have been
found to affect patient-based ADC values in the past
and should be closely monitored.30 Future investiga-

tions will involve completing similar baseline testing
(although at less frequent intervals) in a multisite trial to
validate results found, including changing the imaging
direction and reference ADC values.

Findings from this study have led to department rec-
ommendations to conduct ADC QA testing annually,and
directly before and after commencing a multicenter trial.
This QA is in addition to performing the testing at times
surrounding any major scanner upgrades. Specifically,
completing this testing in only one imaging direction
(axial as per QIBA guidelines) and on a pure water
sample was considered sufficient following baseline
performance measurements.

This study extends knowledge in understanding
ADC long-term variability on clinical MRI scanners.
To the best of the authors’ knowledge, no prior study
has reported in detail testing all aspects of the QIBA
Diffusion Profile. Particularly, this study demonstrated
Profile conformance over a wide range of physiological
relevant ADC values and over three orthogonal imag-
ing directions using a novel diffusion phantom. These
are important findings for future clinical applications
whereby patient and consequently phantom QA imag-
ing is required in alternate directions and over different
ADC valued anatomies.1,20–22 Finding high reliability
in the ADC values derived promotes the use of ADC
in clinical trials to monitor and assess long-term treat-
ment responses, essential for progressing the clinical
implementation of qMRI technology.

5 CONCLUSION

In this study, the technical performance of a 3T ded-
icated radiotherapy MRI scanner was quantified over
a 12-month period. Specifically, QIBA Profile confor-
mance specifications were met, including adequate
axial imaging accuracy (bias = +0.05%), repeata-
bility (CVST = 0.1%) and long-term reproducibility
(CVLT = 0.9%). While phantom-based results can be
effectively used to assess baseline scanner perfor-
mance, test–retest patient-based studies would be
required to examine clinical conformance to anatomy-
specific Profile claims.Recommendations to the depart-
ment regarding future ADC QA included completing
conformance testing annually. This involves only axial
imaging on a highly purified water sample: independent
of the anatomical sites planned for prospective imaging.

6 DISCLAIMER

Certain commercial equipment, instruments, or mate-
rials are identified in this paper to foster understand-
ing. Such identification does not imply recommendation
or endorsement by the National Institute of Standards
and Technology, nor does it imply that the materials or
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equipment identified are necessarily the best available
for the purpose.
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