
Thermodynamically Stable Colloidal Solids: Interfacial

Thermodynamics from the Particle Size Distribution

Andrew Nelsony� and Lawrence H. Friedmanz

Materials Measurement Science Division, National Institute of Standards and Technology

100 Bureau Drive, Gaithersburg, MD 20899

yORCID: 0000-0002-2635-8612

zORCID: 0000-0003-2416-9903

� Corresponding author. Email: nelson.andrew.wm@gmail.com

Abstract

True thermodynamic stability of a solid colloidal dispersion is generally unexpected, so much that
thorough experimental validation of proposed stable systems remains incomplete. Such dispersions are
underinvestigated and would be of interest due to their long-term stability and insensitivity to preparation
pathway. We apply classical nucleation theory (CNT) to such colloidal systems, providing a relationship
which links the size-dependent interfacial free energy density of the particles to their size distribution, and
use this expression in the �tting of previously reported size distributions for putatively thermodynami-
cally stable nanoparticles. Experimental data from a gold-thiol system exhibiting inverse coarsening or
�digestive ripening� can be well-described in terms of a power-law dependence of the interfacial free energy

 on radius based on capacitive charging of the nanoparticles, going as r�3, as suggested by prior authors.
Data from magnetite nanoparticles in highly basic solutions also can be well-�t using the CNT relation,
but with 
 going as r

�2. Slightly better �ts are possible if the power of the radius is non-integral, but
we stress that more complex models of 
 will require richer data sets to avoid the problem of over�tting.
Some parameters of the �ts are still robustly at odds with earlier models that implicitly assumed absolute

thermodynamic stability: �rst, the extrapolated free energy density of the �at surface in these systems
is small and positive, rather than strongly negative; second, the shape of the distributions indicates the
solution phase to be supersaturated in monomer relative to the bulk, and thus that these two systems
may only be metastable. For future work, we derive expressions for the important statistical thermody-
namic and chemical parameters of the interface energy in terms of 1) the surfactant concentration, 2) the
temperature dependence, and 3) the concentrations of particles in the tail of the distribution.
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1 Introduction

The physical chemistry of surfaces and interfaces is intimately bound up in the preparation and utilization
of colloidal materials. From a fundamental standpoint, characterization of the properties of the tiny regions
over which colloids are joined to the surrounding medium poses a major challenge, and the energetics of
their formation in complex chemical environments is a subject of great interest. Surface chemistry is also a
foundational axis along which the preparation of precise and useful nanostructures is accomplished: in this
regard, the synthesis of solid colloidal nanoparticles (or nanocrystals) has been a particularly intense area
of research for the past few decades,1, 2, 3, 4, 5, 6 with subsequent immense improvements in outcome qual-
ity measures such as throughput, functional properties, and product uniformity. Optimization of synthetic
processes has primarily proceeded along the lines of controlling the kinetics of nucleation and growth of the
particles,7, 8, 9, 10, 11 and equilibrium thermodynamics is generally invoked only in providing the driving force
for precipitation of the solid or for stabilizing speci�c crystalline surfaces.12, 13, 14 Underlying these priori-
ties is the unspoken assumption that colloidal nanoparticles fall into the class of lyophobic15 colloids�that
is, collections of nanoparticles are inherently unstable and inevitably will aggregate or coarsen to minimize
their total surface or interfacial area if they are allowed to exchange mass or contact each other. Such an
outcome is undesirable both for displacing distribution of particle sizes from its chosen mean and for broad-
ening that distribution, the latter of which especially con�icts with demands16, 17, 18, 19 on the narrowness
(monodispersity) of colloidal particle ensembles.

Syntheses in which this restriction is lifted, i.e., where nanoparticle solutions can be made thermodynam-
ically stable, would have obvious advantages, most especially in providing dispersions of inde�nite lifetime
on any scale with no regard to the path taken to the equilibrium state. The chemical theory involved with
the future designs of such a synthesis has a well-studied basis in the formalism of classical nucleation theory
(CNT). We will apply CNT, in its role of calculating the equilibrium population of particles of a given size,
to systems of solid colloidal particles with the goal of measuring interfacial thermodynamics through the
correspondence of a size-dependent interfacial free energy density (often called �surface energy�) to an exper-
imental particle size distribution. CNT provides an analytical form of the particle size distribution that can
be inverted to instead write the e�ective excess interfacial free energy, 
, as a function of nanoparticle radius
from a measured size distribution. Application of this expression to assumed size distributions illustrates the
e�ects most importantly, how the polydispersity of the size distribution depends on the mechanism underlying
the size dependence of 
. We will analyze experimentally measured size distributions reported in previous
works, speci�cally the organic-phase gold-thiol-toluene system (widely used in �digestive ripening�)20 and
the aqueous-phase magnetite-hydroxide system.21 In this analysis we ascertain the goodness of �t for the
CNT-motivated model and its assumed form, infer the chemical model giving rise to the size-dependent 

in colloidal systems, and, in fact, whether these experiments actually characterize thermodynamically stable
colloidal dispersions. Finally, from the analytical form of the particle size distribution we derive relation-
ships between the surfactant concentration or temperature and size distribution that are of use in measuring
physicochemical parameters of the system, and we provide special or limiting approximations of the size dis-
tribution that probe parameters that would otherwise need to be assumed, such as the statistical-mechanical
model of the so-called replacement free energy in CNT.

Many works�though far fewer than for kinetically controlled approaches, perhaps indicating the principal
di�culty is identifying such systems in the �rst place�have observed colloidal dispersions of nanometer-size
solid particles that meet some or all of the key criteria for thermodynamic stability: long or inde�nite system
life, spontaneous breakdown of larger particles and coalescence of smaller ones into a population of a single
mean size,22, 23, 24 and independence of preparation conditions.25 These phenomena have been observed, or
been proposed to appear, for a many kinds of solids (including metals20, 26, 27 and semiconductors28, 29, 30),
and the terms inverse Ostwald ripening or digestive ripening31, 32, 33, 34 occur frequently for systems which
especially satisfy the �rst (spontaneous breakup) criterion. A universal feature of these syntheses is the
presence of an excess of surface-binding molecules (surfactants). This is analogous to the extensively-studied
case of microemulsions, which consist of droplets of one liquid dispersed in another with the aid of one or more
surfactant(s): the surfactant lowers the interfacial free energy, 
, by the free energy of adsorption, to a point
where it becomes energetically favorable for small domains of one phase to be dispersed in the surrounding
medium through the entropic free energy of mixing of the particles with the medium.35, 36, 37 Likewise, a
colloidal solution with a distribution of particle sizes�a polydisperse colloid�is entropically preferred over a
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monodisperse (single-sized) colloid, by way of the mixing entropy.38

Thermodynamically stable colloidal dispersions are characterized by a mean radius in the nm range,
having a relatively narrow distribution about this mean with few very small or very large particles. In some
cases the distributions can be nearly monodisperse; from a perspective of nanoparticle synthesis, this criterion
is usually set as a standard deviation of the radius 5% or less of the mean.2 A sharply peaked distribution
with mean far from molecular size requires an intrinsically size- (curvature-) dependent value of the interfacial
free energy density, speci�cally one where 
 increases as the particles become smaller.36, 15, 39 It has been
understood for many years40 that 
 should in general be dependent on the curvature of the surface or interface,
i.e., the particle size r, though why 
 changes and what sign d
=dr takes will obviously be system-dependent.
In the cases of colloidal nanoparticles, microemulsions, and other dispersed nanostructures, several candidate
mechanisms for increasing 
 with decreasing r have been nominated. These include the energy needed to
form an electrical double layer in an electrolyte solution,36 to charge particles in a dielectric medium,41 to
bend organic monolayers coating the colloid or droplet,42, 39 or to polarize plate- or wire-like nanostructures
with polar crystal faces.24, 43

Although several systems have been proposed, one of the most salient observations upon a cursory overview
of previously published results in purportedly thermodynamically stable colloidal solids is the absence of
unambiguous tests of thermodynamic stability, that is, the ability to have the system return to its initial
state after the external variables are restored following large incursions in temperature, solid concentration,
pressure, and so on. True demonstrations of reversibility are not common24, 44 and have been to our knowledge
restricted to highly anisotropic samples for which our analysis will require further development. Our work
provides a route to answer the thorny question of whether true thermodynamic stability has been observed in
the experiments we analyze here, and sets forth �rm guidelines in the future for how such distributions should
behave. In these experiments, proper con�rmation of the domains of stability for such colloids will also inform
the development of synthetic procedures for dispersions that are reproducible and resistant to contamination
and degradation over time. The goal of such preparations will be not only to measure interfacial energetics
but to tailor the size-dependent behavior of 
 to make the limiting polydispersity as small as possible.

The basis of our description of the limiting polydispersity is classical nucleation theory, which gives the
size distribution of disperse systems according to the dynamic equilibrium of the coupled series of chemical
reactions for n ranging from 1 to 1,

Mn +M1 
Mn+1; (1)

where M1 is called a monomer and Mn is an aggregate of n monomers. In a typical colloid system, this
will represent the reaction of monomer complexes of the formula M1S��monomer solvated by � surface-active
molecules (surfactants, ligands, or adsorbates) S�with a colloidal nanoparticle MnS�n having n monomers
and �n surfactant molecules to form a larger nanoparticle Mn+1S�n+1 :

MnS�n +MS� + �n+1S 
Mn+1S�n+1 + (�+ �n)S: (2)

Any colloidal nanoparticle MnS�n corresponds to the following equilibrium:

nMS� + �nS 
MnS�n + n�S (3)

At the minimum of the Gibbs free energy of the system G given conserved amounts of monomer and surfactant
in the system, the chemical potential �n of a particle of size n with �n surfactant molecules depends only on
the chemical potentials of monomers and surfactants �1 and �s:

�n = n�1 + (�n � n�)�s: (4)

The chemical potential of any component i is of the form �i = �0i + kT ln ai, where �0i is a standard state
chemical potential, k is Boltzmann's constant, and ai is the thermodynamic activity. Because ai is directly
proportional to the number of colloidal particles Nn (in dilute solutions, as we consider here, the proportion
is the Henry's law constant),45 Equation 4 can be solved for Nn in terms of �1 and �s, which become
experimentally adjustable parameters that �x the size distribution. Hence, the absolute concentration of
particles of each size at equilibrium can be determined given knowledge of the form of �0i and ai from statistical
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mechanics, and each such relatively large nanoparticle might be termed a lyophilic colloid.46 The classical
theory of nucleation has been developed for this purpose over the past century47, 48, 49, 50, 51, 52, 53, 54, 55

explicitly to calculate the Nn of aggregates, droplets, or colloidal particles of a given number of monomers
n at equilibrium, and has reached a high level of technical sophistication. Although the theory of the
kinetics of nucleation has to some extent set aside the notion of an equilibrium size distribution providing the
nuclei for the growth of new phases, given the inherently non-equilibrium nature of nucleation,56, 57, 58, 59, 60

thermodynamically stable dispersions of solids and liquids proposed in other contexts should possess the
equilibrium character for which CNT would be a good statistical thermodynamic approach. It is important
to emphasize that this equilibrium part of CNT follows from very general thermodynamic principles, and
that the condition of thermodynamic stability avoids the need to make (very di�cult) predictions of process
rates. The most important conclusion of CNT for the equilibrium state is that Nn, for n signi�cantly larger
than 1, should be of the analytical form

Nn = �n� exp
h
� 


kT
r2
i
exp

�
��

kT
n

�
; (5)

where � and � are constants that depend on the statistical-mechanical model, 
 is again the excess interfacial
free energy density, r is a characteristic dimension proportional to n1=3 such as the radius of a sphere, and
�� is the di�erence in the chemical potentials of bulk versus solvated monomer (i.e., the degree of under- or
supersaturation). Various authors have derived values for � ranging from 0 to 4.49, 61, 62, 54 The sum of Nn

over all n parallels the partition function of a single aggregate, droplet, or particle at �xed chemical potential
(of monomer) and temperature (�T ensemble) as described by the thermodynamics of small systems.63, 64

Eq. 1 makes clear the exact correspondence between an observed equilibrium distribution (usually measured
as the probability distribution p (r), in terms of particle radius r) and the excess interfacial free energy given
knowledge of � and the di�erences in component chemical potentials. We propose to use this relationship to
derive 
 from the observed concentration of nanoparticles as a function of particle radius, Np (r) (N is the
total number of nanoparticles

P
nNn), in two proposed cases of thermodynamically stable solid nanoparticles.

To this end, we demonstrate in Section 3 how the di�erent forms of Eq. 5 and models for size-dependent

 will be re�ected in experimental data, and give for future exploration equations that can make use of
higher-precision data on nanoparticle size distributions.

The combination of these thermodynamic expressions with existing data on molecular solubility and
measurements or theoretical calculations of interface energies will provide a sounder basis for targeted design
of thermodynamically stable solid dispersions. Finally, application of Eq. 5 to some experimental data on
solid dispersions in the colloidal nanocrystal literature makes clear that, although good �ts to the apparent
r�
 relation can be made with few parameters, at present the resolution of those measurements (particle-
size histograms) is lacking in its ability to discriminate between di�erent statistical-mechanical assumptions
underlying CNT. Nonetheless, the agreement of the size-distribution data from gold-thiol and magnetite-
hydroxide systems with the CNT-derived expressions is excellent. With some auxiliary assumptions, they
could indicate a power-law dependence of 
 on r with a non-integer exponent, which is not anticipated
by some simple models for 
,41, 32 but descriptions with an integer exponent are also semiquantitatively
reasonable. Future work, at least for the systems considered here, must still assure that the necessary criteria
for these assumptions are satis�ed in order to make mechanistic judgments such as establishing the existence
of a spontaneous curvature of the solid-solution interface.

2 Theory

First, we will recapitulate the relevant arguments of CNT and adapt them to our systems. According to Eq.
4 the chemical potential of any aggregate or nanoparticle size, �n, can be speci�ed precisely in terms of the
chemical potentials of the smallest components, monomer and surfactant. We will henceforth refer strictly to
(nano)particles, treating them as single (very large) molecules. The statistical-mechanical de�nition of the
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chemical potential is

�n =

�
@A

@Nn

�
T;V;Nx

= kT

"
ln
Nn

qn
+
X
x

Nx

�
@ ln qx
@Nn

�
T;V;Nx

#
; (6)

where A is the Helmholtz free energy of the system and qn is the canonical partition function of the particle
of size n. The variable x indicates a component other than nanoparticles (solvent, surfactant, etc.). In ideal
gases or in dilute solutions where the energy of solvent-nanoparticle interactions can be assigned solely to the
interfacial energy 
 due to the absence of inter-particle collisions, the second term in the sum is zero, but qn
is an e�ective partition function which includes the averaged interactions with the exterior liquid phase of
solvent, surfactant, and monomer (giving rise, e.g., to the Henry's law constant).45 Substituting Eq. 6 into
Eq. 4 and rearranging terms gives the size distribution:

Nn = qne
n�1
kT e

(�n�n�)�s
kT : (7)

This expression is similar in form of a partition function in the fully open (�1; �s; T or �1; �s; p; T ) ensembles,
as described by the thermodynamics of small systems.63 In e�ect, an ensemble of single particles is placed
in contact with reservoirs of monomer and surfactant, and the value of Nn re�ects the probability a particle
will have a particular size. Although nonzero values of @ ln qx=@Nn in Eq. 6 spoil this de�nition, we estimate
their e�ects for the case of interparticle interactions where the chemical potential has an ideal component,
�
(id)
n , and an excess component, �(ex)n , in Section 2.3.
Note that here we will use Nn interchangeably with the concentration of nanoparticles in one cubic meter

(that is, the volume of the system V = 1 m3).

2.1 Choice of prefactor in the nanoparticle partition function

The partition function qn in Eq. 7 is formulated as the product of external and internal partition functions,
respectively q

(ext)
n and q

(int)
n :

qn = q(ext)n q(int)n ;

where the internal partition function is de�ned with respect to the Gibbs free energy of a stationary nanopar-
ticle, G(int)

n ,

q(int)n = exp

 
�G

(int)
n

kT

!
; (8)

which is, including a term for the surfactant molecules,

G(int)
n = n�b + �n�

�
s + 4�r2
 (9)

where �b is the chemical potential of a monomer in the bulk phase, ��s is the chemical potential of a surfactant
molecule bound to a �at interface at a certain reference chemical potential of the surfactant, �s, in the solution
phase, and r is the particle (core) radius (3n=4��b)

1=3, with �b being the molecular density of monomers in
the bulk. Two notes are warranted. Because this work deals with solids, it is important brie�y to distinguish
between the surface free energy or surface tension and the surface stress, which are non-equivalent in solids.65

Here we speci�cally refer to the surface free energy, or the work of formation of new surface, which the
appropriate parameter determing the change of the chemical potential of the single component inside the
nanoparticle core.66 Second, q(int)n should be a function of the Helmholtz free energy of the nanoparticle, rather
than the Gibbs free energy, the di�erence being the pressure-volume product �pVn where Vn is the particle
volume. An assumption common to CNT regarding G

(int)
n is that the colloid is e�ectively incompressible,

regardless of the Laplace pressure from the surface tension or free energy, so that the Helmholtz and Gibbs
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free energies are equal. A qualitative estimate is provided in Section S2 of the Supporting Information of the
work done in compressing an Au particle core from its undilated state, with energy due to the pressure-volume
product pVn, to a compressed state with product p0nV

0
n, with the assumption of a small deformation elasticity,

for conservative (large) values67 of 
. The correction due to the �nite compressibility of the core is found to
be negligible, with a correction to 
 of order 10�3 or less, even though the value of 
 used is for a clean solid
surface rather than a surfactant-protected one. Thus, we apply in Eq. 6 what is essentially the capillarity
approximation,50 with the exception that 
 is now a �tting parameter that only has as a component the
interfacial free energy density of a �at surface.

With the internal part de�ned, the external part q
(ext)
n accounts for the motion of the nanoparticle

throughout the medium (vapor or liquid), which is not possible when its components are embedded in the
bulk. Since G

(int)
n includes contributions from all degrees of freedom of the constituent molecules of the

nanoparticle, q(ext)n consists of a partition function describing the extracted degrees of freedom associated
with free particle motion, q�(ext)n , which is canceled by dividing by a replacement partition function, q(rep)n :

q(ext)n =
q
�(ext)
n

q
(rep)
n

: (10)

Combining Eqs. 7�10 obtains

Nn = q(ext)n e�
G
(s)
n
kT e

n�1
kT e

(�n�n�)�s
kT

= q(ext)n exp

�
n (�1 � �b � ��s) + �n (�s � ��s)� 4�r2


kT

�
: (11)

The argument of the exponent is understood in CNT to be the reversible work of formation of a stationary
nanoparticle from its component monomers and surfactant molecules. The term �s � ��s in Eq. 11 is
recognizable from the Gibbs adsorption equation. We will assume throughout this work that the maximum
surfactant binding density �0 is independent of particle size. �n = 4�r2�0 when the surface is saturated with
surfactant, so 
 can be written as an e�ective interfacial free energy density 
� = 
 + �0 (�s � ��s). Where
particles with unsaturated surfactant shells must be considered, Nn is a function Nij of both the number of
monomers i and surfactant molecules j, but such cases are unlikely to be relevant for our purposes. i and
j (and so on) may also be any other quantities related to size and composition, for example the length and
diameter of a rod-shaped particle or the number of monomers along with the number of elementary charges.
Here, we will retain our assumption of spherical shape and consider only a constant site density �0. This,
along with de�ning �� = �1 � �b � ��s, gives us the size distribution expression that we will use in our
analysis of experimental data:

Nn = q(ext)n exp

�
n��� 4�r2
�

kT

�
: (12)

In applying this equation to our data, we will need to choose a form for the size dependence of 
�, so that
there are at least three undetermined parameters in the exponent, plus a choice that needs to be made for
q
(ext)
n . Of interest is that the identity of the monomer is irrelevant, with the chemical potentials of all products
and reactants except the particle buried in ��. At equilibrium between monomer and bulk solid, so that
�b+��s = �1, this also disappears. In the case of nucleation from vapors, this corresponds to the state at the
boiling point; in the case of microemulsions, this corresponds to the Winsor I or II states in which a globular
dispersion exists in equilibrium with a bulk phase of the dispersed component.68 As indicated previously,
however, in the experiments we consider here this equilibrium cannot be assumed.

We delimit a number of approaches for writing down the prefactor, q�(ext)n =q
(rep)
n , which produce very

di�erent dependences on n and overall magnitude. A notable one from Lothe and Pound49 is to write
the partition function of the particle as the product of translational, rotational, and vibrational partition
functions, here identi�ed by superscripts (t), (r), and (v), respectively:

qn = q(t)n q(r)n q(v)n
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The translational and rotational partition functions are given by their ideal-gas forms in the semiclassical
approximation: the rotational and translational partition functions for �nearly� spherical particles (symmetry
number of unity, but with all moments of inertia equal) moving freely throughout the system are45

q(t)n = V

�
2�mnkT

h2

�3=2
(13)

q(r)n = 8�2
�
2�InkT

h2

�3=2
; (14)

where mn is the mass of a nanoparticle with n monomers and In is its principal moment of inertia. Here
we have assumed the particles are �nearly� spherical, having all three moments of inertia equal as well as
a symmetry number of unity. q

(v)
n is the product of the vibrational partition functions for the modes with

frequency � associated with the 3n� 6 degrees of freedom remaining to the particle:

q(v)n =

3n�6Y
i

kT

h�i

The replacement partition function, q(rep)n , is that which produces q(rep)n q
(v)
n = exp

h
�G(int)

n =kT
i
. That is,

q(ext)n =
q
(t)
n q

(r)
n

q
(rep)
n

: (15)

Eq. 15 is also called the Frenkel factor.54 Lothe and Pound estimated q
(rep)
n to correspond to the entropy

of one molecule of a bulk liquid phase, a value of about 5k, giving q(rep)n = e5. Although we consider solids
here rather than liquids, the value of q(rep)n does not matter much in this case, because q(t)n q

(r)
n is so large.

This quantity is dependent on n as n4, and for n � 100 (a particle radius of 5�10 Å), it is already in the
neighborhood of 1044�46, while for radii more typical of nanoparticles (� 3 nm, n � 5000) it is around
1050�52.

Reiss, Katz, and Cohen69 gave a di�erent treatment of the system by relating q(t)n instead to the probability
density of the center of mass of the stationary particle,

Pn (0) = (2�)
�3=2

��3n ; (16)

where the standard deviation of the �uctuations of the center of mass of the n-sized nanoparticle, �n, is in
the case of dense solids about

�n = 0:147n�1=2V 1=3
n : (17)

The factor of 0:147 is our estimate based on a �lling fraction 0:74 for dense solids. The origin of �n lies in the
fact that, in considering the translation of the particles in q

(t)
n , it is the center of the volume Vn that is being

moved, rather than the true center of mass, which can �uctuate around that point. The �nal expression for
q
(ext)
n is

q(R)n = V Pn (0) : (18)

q
(RKC)
n is smaller than q

(LP )
n by many orders of magnitude, being only around 1029�31, and it depends on

n only as approximately n1=2, a very di�erent exponent (if Vn is the sum of the monomer volumes, then �
above goes as n1=6). In relation to Eq. 12, the e�ect will be to, for the same observed Nn and ��, reduce
the corresponding magnitude of 
�.

An elaboration on q(RKC)
n was given by Kusaka;70 we use here a formula approximated by Vosel, Onischuk,

and Purtov.54 In e�ect, rotation is reintroduced by q(r)n , then partly canceled by a factor q(r;rep)n corresponding
to the rotational degrees of freedom for a particle with constrained coordinates. (The de�nition of q(ext)n in
this manner is based on a statistical-mechanical treatment of a process in which the particle of condensed
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phase is drawn out or extruded from the bulk phase; the reader should consult the appropriate references for
more details.) The new external partition function is

q(K)
n = V Pn (0)

q
(r)
n

q
(r;rep)
n

; (19)

where q(r;rep)n is assumed to be the partition functions of harmonic oscillators:

q(r;rep)n =
h
e
h�n
2kT

�
1� e�

h�n
kT

�i�3
: (20)

�n is an oscillator frequency which can be approximated by relating it to the Debye frequency of the nanopar-
ticle core, �D, such that �n =

p
3n�1=6�D as described by Lothe and Pound.71 In solids, �D = k�D=h, where

�D is the experimentally measured Debye temperature; alternatively, it may be estimated from simulations.
As a result, Eq. 19 has a slightly non-polynomial dependence on n. In the limit of high temperature, it would
depend as n5=2, but the Debye temperature is generally comparable to or greater than room temperature.
(This is the case for the experimental systems we consider below.72, 73) The magnitude of q(K)

n lies somewhere
between q

(RKC)
n and q

(LP )
n .

2.2 Alternative external partition function in the solution phase

Although Eqs. 15, 18, and 19 were proposed for vapor-to-liquid nucleation, CNT in solid-liquid or solid-
solution systems should (and has been assumed to) follow the same formalism since particles can still move
and rotate throughout the entire system on long enough timescales.35 Using a cell theory of liquids and liquid
mixtures,45 we suggest a fourth external partition function for a nanoparticle residing in an environment
in which its local motion is restricted due to the presence of neighboring molecules. The tendency of the
molecules to wander through the entire volume of the system over time is described combinatorically by the
number of ways to arrange the Nl + Ns +

P
nNn + : : : molecules in the system in energetically equivalent

con�gurations. In this way Eq. 12 becomes instead

Nn

Nl +Ns +
P

nNn + : : :
= q(ext)n exp

�
n��� 4�r2
�

kT

�
(21)

where the restricted motion of the nanoparticle within its solvent molecule cage de�nes the accessible phase
space volume for q(ext)n . Eq. 21 assumes that the molecules mix according to the ideal mixing law. This
strictly holds only in systems of one dimension or for mixtures of chemically identical molecules, but has
been observed to remain a reasonable approximation even for molecules of very unequal sizes as long as the
species are compact and rigid.74, 75, 76 This assumption of rigidity will obviously hold well for colloidal solids.

In de�ning this fourth external partition function it is important to reiterate that q
(rep)
n is formally

the product of the partition functions for the six (unknown) vibrational modes, which may be dependent
on n, that were removed in de�ning q

(t)
n q

(r)
n . When a particle is embedded in a medium, it experiences

hindered translation and rotation. Where the barriers for translation and rotation are large and the classical
approximation remains valid, the partition function of the ith mode is kT=h�i, where �i is its frequency.45

Then, q(ext)n becomes

q(ext)n = 8�2e

Q6
i=1 �

(rep)
niQ3

i=1 �
(t)
ni

Q3
i=1 �

(r)
ni

: (22)

�
(rep)
ni is the ith mode frequency corresponding to �translation� and �rotation� for the n-sized particle as
embedded in its parent condensed phase, while �(t)ni and �

(r)
ni are the translational and rotational frequencies

associated with the n-sized particle in its new medium. The factor of e is a so-called communal entropy45

re�ecting the energetic equivalence of di�erent arrangements of the molecules in the system, as in the case of
an ideal gas, and 8�2 is an analogous term from the rotational partition function. Thus, at high temperatures
it is the n�dependence of the frequencies in Eq. 22 that controls the n�dependence of the prefactor in the size
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distribution. Intuitively, q(ext)n =8�2e should be greater than one when the bulk solid is more rigid than the
embedding medium since, e.g., in solution a colloidal particle translates and rotates more freely than when
embedded in the bulk. Although it is unlikely that q(ext)n should be completely n�independent, taking the
product/quotient of the vibrational frequencies in Eq. 22 as a constant, q(0)n , is interesting in the context of
how 
 and Nn are related to each other, as will be detailed in Section 3. Where the solvent molecules greatly
outnumber surfactant molecules and colloidal particles, the total number of molecules is roughly the number
of solvent molecules Nl, which changes Eq. 21 to

Nn = Nlq
(0)
n exp

�
n��� 4�r2
�

kT

�
(23)

The large value of Nl in any dilute system makes the magnitude of Nlq
(0)
n more similar to the prefactors for

the models derived for vapor-liquid nucleation even if q(0)n is very small.
Because the prefactors delimited by Eqs. 15, 18, 19, and 23 span a wide range of values, the predicted

absolute concentration of particles in the dispersion can vary by many orders of magnitude depending on the
model chosen. If 
 is used as a �tting parameter, however, it is rather insensitive to the choice of q(ext)n since
it depends only logarithmically on Nn. As a result, uncertainty in the predicted value of 
 makes it much
more di�cult to determine the prefactor q(ext)n from a measured Nn. With some approximations, however,
information from the tails of the size distribution can indicate the n-dependence of q(ext)n : see Section 3.4.
Other pertinent details in calculating q(ext)n are given in section S3 of the Supporting Information.

2.3 Interparticle interactions

Colloidal particles interact with each other as well as with the solvent, in particular through excluded volume.
These interactions contribute an excess term, �(ex), to the chemical potential above that of an ideal gas or
solution, �(id):

�n = �(id)n + �(ex)n (24)

A simple model for interparticle interactions, which has been already been studied for the case of microemul-
sions, is the hard-sphere model in which the interaction potential is in�nite if two particles overlap and zero
if they do not. Accurate expressions for excess free energies of such systems are known and one commonly
used one, the Carnahan-Starling equation of state, gives the excess chemical potential per spherical particle
solely as a function of the volume fraction � of the colloid. The monodisperse case represents the �rst-order
correction to the free energy of the system, and the excess Gibbs free energy per colloidal particle �(ex) is
independent of particle size and equal to:77

�(ex)

kT
=

8�� 9�2 + 3�3

(1� �)
3 : (25)

However, the magnitude of this quantity is extremely small with values of � re�ecting the experiments
considered, which are of order 10�3 or less. This is orders of magnitude smaller than any expected contribution
from the interfacial free energy or the entropic motion of the particles, which are in of order 10kT (see below).
It might be expected to contribute meaningfully for very highly concentrated dispersions, but we are not aware
of any prior demonstration of such a concentrated thermodynamically stable suspension.

Furthermore, �(ex) should be expected technically to be a function of r. The extension of hard-sphere
equations of state to polydisperse systems has also been formulated.77 The resulting size-dependent excess
free energy was cast in terms of the raw moments of the size distribution Np (r),Mi = N

R1
0

rip (r) dr, where
i is the order of the moment. �(ex) is a function F of the particle size and the moments up to order three
(note that M0 = N and M3 =

3�
4� ),

�(ex) = F (r;M0;M1;M2;M3) ;

which in the monodisperse limit reduces to Eq. 25. Numerical examination, described in more detail in Section
S4.1 and Figure S1 of the Supporting Information for the exposition given by Salacuse and Stell,78 shows
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these second-order e�ects are even smaller than the �rst-order corrections from the monodisperse hard-sphere
model (a few percent; Figure S1a-b), although they nominally favor broadening of the distribution (Figure
S1c). Beyond hard-sphere models, the description of �(ex)n is, of course, more complicated. Interactions
between nanoparticles can be substantial and extend well beyond the nanoparticle surface.79, 80, 81 Previous
work on, for example, digestive ripening, has focused on surfactant-solid stoichiometry and not primarily the
overall concentration of these components in their solvent. Absent any intuition beyond the simplest models
on why certain particle sizes might be disfavored purely on the basis of their interactions with other particles,
and knowing for experimentally relevant cases that �rst, � is very small, and second, the distributions
concerned are relatively narrow (and the narrower the better), further work on how the shape of the size
distribution changes with interparticle interactions is left for future investigation. For the interested reader,
we have included in Section S4.2 an estimate, based on the magnitude of the second virial coe�cient, for
the strengths of interparticle interactions based on van der Waals attractions,82 steric repulsion between
surfactant shells,83, 81 and electrical double-layer repulsion from the Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory.84 These interactions were parameterized based on conservative values taken from systems
similar to those in Section 3. They show that, while nanoparticles may exclude a volume around them several
times that of their nominal hard-sphere size, the resulting increase in e�ective volume fraction should not
increase �(ex) to the point where it contributes signi�cantly to the size distribution.

Based on a worst-case scenario outlined in Section S4.1 of the Supporting Information of an e�ective
� = 0:1 (Figure S1a) we can say that even if the e�ective volume fraction in the experimental cases considered
in Section 3 were more than 10-100 times their values estimated by microscopy, the resulting contribution
from �(ex) would still be small (Figure S1c-d). That is, with � = 0:1, �(ex) � kT in the monodisperse case,
as compared to the ideal gas term �(id) � �33:7kT and/or the interfacial energy term �4�r2
 � �19kT , for
gold nanoparticles of radius r = 2:5 nm with a 
 of 1 mJ m�2. We thus neglect interparticle interactions in
our consideration of experimental data in Section 3.

2.4 Form of 


From Eq. 12, it is clear that, if the magnitude of 
� in the limit of �at surfaces is negative, the size distribution
expression converges only if �� < 0, i.e., the monomer phase is undersaturated relative to the bulk phase.
This indicates, moreover, that bulk and colloidal matter cannot coexist at equilibrium in systems with such
values of 
�. A value of �� signi�cantly less than zero was assumed in the models of Whetten and Gelbart85

and Manzanares et al.41. Technically, the supersaturation term can be absorbed into 
 if the geometry of
the nanoparticle is assumed (for example to be spherical):

4�r3�

3kT
�� = �4�r2

kT

�
����

3
r

�
: (26)

This term is linear in r. With the understanding that as discussed in Section 1 that the intrinsic size
dependence of 
 should follow a power law, we can condense the terms of the exponential in Eq. 12 to a
generic equation of the following form suitable for �tting to experimental data:


�� = arb + �r + 
0: (27)

The constants a, which has units of energy per length to the b � 2 power, and b, which is dimensionless,
are characteristic of a particular mechanism that a�ords a size-dependent excess free energy to a colloidal
particle, normalized by the particle surface area. �, which has units of energy per volume, is characteristic
of volume-proportional terms such as the degree of supersaturation �� per monomer in the nanoparticle.
Finally, 
0 corresponds to the limit of the interfacial energy density for very large particles or �at surfaces,
and includes the lowering of 
 for the clean surface by adsorbed molecules. Combining Eq. 12 with Eq. 27,
the particle size distribution can be written in its most general form (here as a function of r instead of n)

Np (r) = �r� exp

�
�4�r2

kT

�
arb + �r + 
0

��
; (28)

so there are four undetermined variables for use in nonlinear regression, and the constants � and � are �xed
by the choice of q(ext)n (note that for the same partition function � and � are di�erent when working in r
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or in n). Some general conclusions can be drawn from Eq. 27 with little reference to physical parameters.
Kegel and Reiss already showed39 that this expression cannot give rise to an equilibrium size distribution
with a signi�cant maximum radius (more than 1 nm) without invoking physically implausible values of � if
b and � are zero, i.e. the interfacial energy is constant. We complement this by showing in Section S5 of the
Supporting Information that size distributions cannot realistically be narrow if 
 is independent of radius.
Essentially, the polydispersity, like the mean radius, is a function only of � and not of 
0, and for the forms of
q
(ext)
n discussed previously it can be approximately 19% at best, compared to the criterion of �monodisperse�
taken to be 5%. The situation is less obvious where � 6= 0, since the integral of Eq. 28 can no longer be
represented in terms of standard functions, but we will �nd that, for physically reasonable systems, the value
of � has little e�ect on the polydispersity.

3 Results and Discussion

Eq. 28 can be inverted to give an e�ective size-dependent interfacial free energy, 
�� (Eq. 27), in terms
of the size distribution, subject to a choice of q(ext)n . Relevant parameters for our calculations are given in
Section S1 and Tables S1�S2 in the Supporting Information. Figure 1 illustrates the dependence of 
�� on
that choice for a hypothetical population of colloidal Au particles with dodecanethiol surfactant having a
normal distribution of radii with mean radius 3 nm and standard deviation 0:3 nm (polydispersity of 10%).
In Figure 1a are shown curves of the 
�� corresponding to a particular form of q(ext)n that would all give rise
to the same distribution shown in Figure 1b; Figure 1c shows the projections of Figure 1a on an expanded
scale. Full curves (and their extensions) correspond to the q(ext)n in Eqs. 15, 18, and 19, for which quantitative
estimates can be provided. With regards to q(0)n , we lack the ability to estimate quantitatively the frequencies
associated with constrained motion in the liquid or parent bulk phase as shown in Eq. 22. Therefore, we are
restricted to working with arbitrary quantities for illustrative purposes. Figure 1 shows with the dashed lines
instead the e�ects of changing only a constant prefactor arbitrarily or of dictating the relative frequencies of
the modes in the numerator and denominator in Eq. 22. We have set the numerator and denominator to
be functions of a single frequency � and �0 respectively, i.e.,

Q
�
(rep)
ni = �06 and

Q
�
(r)
ni

Q
�
(t)
ni = �6. From

a physical perspective, a solid colloidal particle in a less rigid environment is represented by the situation
�0=� > 1. The more compliant the environment, the softer the vibrational mode corresponding to the motion
of the particle in its cell becomes compared to the same mode for the particle in the bulk solid. The labels
of the broken curves labeled q

(0)
n in the �gure are given by the value of (�0=�)6 used for a particular curve.

For illustrative purposes, only the segments of 
�� lying in a radius range up to three standard deviations
from the mean are shown for the full lines in Figure 1a. Beyond this range, the concentration of particles will
be extremely small, so typical microscopy measurements which only count up to several hundred particles
will have few, if any, measurements in this range. As we discuss in Sections 3.1�3.2, the experiments we
consider here reported fat-tailed distributions skewed toward large r, and were not well-described by a
normal distribution, but even so less than 1% of the estimated measurements fell outside this three-standard-
deviation window. The truncated range available to microscopy measurements has rami�cations for the
conclusions that can be drawn regarding the form of 
��: the power-law forms of 
 mentioned previously
are monotonic in r if �� � 0, while the extrapolated curves of 
�� have an observable minimum for q(RKC)

n ,
q
(K)
n , and, depending on the exact value of the prefactor, q(0)n . This minimum falls outside the �observable�
range for nanoparticle size distributions if the prefactor is not small enough, as it is for q(K)

n . The existence of
non-monotonicity is important because, where 
�� increases for both small and large r, it is an unambiguous
indication that either the solution exists in a state undersaturated in monomer with respect to bulk solid
or, more interestingly, that the solid-solution interface has an intrinsically preferred curvature. Although
such a favored radius in the nanometric range has been discussed for microemulsions, on the basis of steric
constraints,86 it has not to our knowledge been considered for nanoparticles.

In addition to the choices of prefactors given by Eqs. 15, 18, 19, and 23, we have included a form of
Eq. 23 that drops the factor of Nl that arises from mixing of the colloidal particles throughout the solution.
(The other part of the prefactor, (�0=�)6 above, remains �xed at 106.) A loss of mixing entropy would
correspond to a situation in which the particles are no longer freely moving, as would be the case if they were
embedded in a solid medium or if thermal motion were insu�cient to suspend them against gravity. The
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Figure 1. Correspondence between size distribution and interfacial energy for a hypothetical gold-thiol
system for four di�erent statistical-mechanical models of the external partition function (a). The light line
(b) illustrates the Gaussian size distribution. For clarity, the r�
�� relationship is shown on a larger scale in

(c). (LP) Lothe and Pound, Eq. 15; (RKC) Reiss, Katz, and Cohen, Eq. 18; (K) Kusaka, Eq. 19; (0)
simple n-independent partition function (this work, Eq. 18). The broken segments of the curves

corresponding to q(LP )n , q(K)
n , and q

(RKC)
n show the extrapolated values of 
 more than three standard

deviations from the main radius, beyond which observing particles in microscopy experiments is unlikely.
Curves labeled q

(0)
n are shown with dashed lines labeled by the prefactor used (see main text). Included also

(dashed line) is q�(0)n , a modi�ed form of q(0)n in which the Nl term in Eq. 23 has been removed,
representing that the particles no longer move freely in the solution.

latter situation might be the case for previously reported experiments on semiconductor nanosheets24, 44 and
nanowires.43 This modi�ed external partition function q�(0)ext is interesting, because it shows more clearly that
Eq. 12 admits physical solutions in which the e�ective interfacial free energy in the dominant population of
nanoparticles is negative. The stability of such colloidal dispersions is predicated on the existence of some
�� that makes 
�� positive again for su�ciently large r, as seen in the right-hand edge of Figure 1c. It is
primarily the magnitude of the constant prefactor that determines the magnitude and sign of 
��, rather
than the n�dependence: the logarithm of q(ext)n contributes lnX+Y lnn, where X is a constant and Y is the
exponent of n. Since Y is probably somewhere from 0 to 4 and n is of order 102 � 105 for nanometer-sized
particles, Y lnn contributes relatively little compared to lnX for the system we have considered in Figure 1.
This is also apparent in the near indistinguishability of the dashed curve labeled 100, which is independent of
n, from that corresponding to q(RKC)

n . A negative value of 
 in the limit of zero curvature can be expected
to exist in the presence of strongly adsorbing molecules,87, so in attempting to isolate such systems we can
assert that a major part of their stability should be imposed by restricting their motion, thereby reducing
the value of the prefactor that arises from entropic considerations.

In Figure 2, we instead vary the shape of the test distribution by calculating the 
�� corresponding to
normal distributions of di�erent polydispersities, again in the Au-thiol system. At top are shown the 
��

curves, with the prefactor in the size distribution assumed to be from q
(LP )
ext , corresponding to distributions

(bottom) with polydispersities of 5%, 10%, and 20%. As in Figure 1, the full lines correspond to ranges of
r falling fewer than three standard deviations from the mean. We see immediately that the narrower size
distributions are associated with a greater concavity of the r�
�� relationship. Even though the �observability
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Figure 2. E�ects of distribution shape on the e�ective interfacial energy density 
�� (a) for a hypothetical
gold-thiol system having nanoparticle radii of mean 3 nm and di�erent polydispersities (b). The broken
lines indicate the extrapolated values of 
�� more than three standard deviations from the mean radius,

beyond which observing particles in microscopy experiments is unlikely.

restriction� means that the non-monotonicity of 
�� apparent in the broken lines will be missed in a microscopy
experiment, the greater curvature of the interfacial free energy is still apparent in the truncated size range.
Nonetheless, the sensitivity of the absolute concentration of colloidal particles to the magnitude of 
�� is also
apparent, as near the maximum in the size distribution the three curves are barely distinguishable from each
other, di�ering by less than 1%. Because the magnitude of the interface or surface energy in condensed phases
is di�cult to estimate theoretically, or even to measure to high precision for solids, we can expect from this
demonstration that searches for material systems with 
 amenable to the observation of thermodynamically
stable solid colloidal dispersions are likely to remain empirical for the time being.

In Figure 3 we take the system and distribution in Figure 1, return to the full expression for 
�� in
Eq. 12, and examine the e�ect of changing the value of ��. Additional details are provided in Section
S6 of the Supporting Information. Beginning with an assumed normal distribution of radii with �� = 0
(thick line in Figure 3a), a change in �� is equivalent to multiplying this distribution, Np (r), by a factor
expn��=kT , independent of q(ext)n . A negative �� (undersaturation with respect to bulk) is equivalent to
increasing 
��, while a positive �� (supersaturation) is equivalent to lowering 
��, as illustrated in Figure
3b. The values of �� are very small, re�ecting that colloidal solutions will contain experimentally meaningful
concentrations of nanoparticles only very close to the equilibrium between monomer and bulk as a simple
result of the law of mass action. This also indicates that the apparent �window of stability� for spontaneously
dispersed nanoparticles with regard to temperature is probably very narrow, as the monomeric solubility
will depend markedly on temperature; a change in � for one component of 0.001kT translates into a change
in concentration of less than 1%. In undersaturated conditions, the size distribution shifts to smaller mean
particle sizes (Figure 3a) while the overall particle concentration (Figure 3c) falls exponentially. Conversely,
in supersaturated conditions, while from Eq. 12 the number of colloidal particles is in�nite regardless of the
magnitude of the (nonzero) ��, a particle size distribution at a �nite radius remains metastable, as shown
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Figure 3. Modi�cation of the size distribution of hypothetical gold-thiol colloids by changing the chemical
potential of monomer relative to the bulk phase according to Eq. 21. The state of equilibrium between
monomer, colloid, and bulk (�� = 0) is given by the thick blue line (arrow in (a)). Paler colors indicate

increasing degrees of undersaturation; darker colors indicate increasing supersaturation. (a) Size
distributions scaled to show di�erences in mean radius and distribution shape. (b) the corresponding
e�ective interfacial free energy densities 
��, including the �size-dependent� contribution from ��. (c)
Logarithmic plot of the particle concentrations (not necessarily corresponding to physically possible

conditions: see Figure S2).

by the retention of peaks in the distribution in Figure 1a for 1000��=kT = +0:33 and +0:39. For su�ciently
large �� (+0:4 curve in Figure 1a), the expn��=kT term dominates the �size distribution.� The point at
which the size distribution is no longer peaked, i.e. becomes monotonically increasing, can also be taken as
an indication of the system's instability to homogeneous nucleation and growth. As �� increases, the �mean�
particle radius at the peak in the distribution increases accordingly, along with the particle concentration
(Figure 3c), although the situation in Figure 3 is not necessarily physical. The volume fraction of Au
calculated from the (truncated) integral of Np (r) exceeds the upper limit of what might be called reasonable
values (� = 0:1) for rather small values of ��, as illustrated in Figure S2a in the Supporting Information.
(In fact, even the curve for the least supersaturated solution in Figure 3, 1000��=kT = +0:33, does not
correspond to a physically reasonable situation.) Although the model demonstrates it should possible from
this model to �tune� the average particle size through dilution or concentration of the colloidal solution�
albeit requiring changes in concentration over many orders of magnitude�from an engineering perspective
this remains unexplored.

It is clear from Figures 3a and 3c that the shape of the distribution does not change markedly while ��
is not too positive. The polydispersity, indeed, is practically independent of the degree of saturation: Figure
S2b shows that, over a range of ten orders of magnitude in particle concentration, the polydispersity only
varies from 10% (its starting value) to less than 11%. The weak dependence of polydispersity on �� can
be understood qualitatively in view of the fact that, following from Figure 2, the width of the particle size
distribution closely follows the curvature of the r�
�� relationship. Since the �� term in 
�� goes as r1, it
does not contribute to d2
��=dr2. Although we mentioned in the previous section that the size distribution
can be made very narrow if both 
� < 0 and �� < 0, this case does not occur for the experimental systems
we subject to analysis in Section 3. Thus, engineering of particle size distributions probably must be made
by the choice of mechanism through which the excess interface energy changes, rather than by controlling
concentrations of reagents.

3.1 Experimental interpretation

We also test the statistical thermodynamic approach to nanoparticle size distributions summarized in Eq.
12 against experimental data. Nanoparticle size data has been almost universally reported in terms of a
histogram giving the number of particles having a size falling in a particular bin, the measurements being
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obtained by means of TEM or other microscopy techniques. This consists of a set of L bins evenly spaced by
2`, with the ith bin having bin center ri and number of counts ci. For both retro- and prospective analysis
of such size distributions, we now describe a method for estimating Np (r) from such a histogram as our
means of analyzing older experimental data. Brie�y, from a value of the volume fraction of solid � surmised
from the experimental procedure, we obtain an estimate for the total number of colloidal particles N in the
solution based on the histogram according to

N =
3�

4� hr3i ;

where the mean cubed radius


r3
�
is estimated by



r3
�
=

P
i riciP
i ci

:

We then approximate p (r) as a piecewise continuous uniform distribution. Within each bin,

p (ri) � ciP
i ci

1

2`
;

which is our estimate of Np (r) at the bin center. Where n is su�ciently large that it can be treated as a
continuous variable (a reasonable approximation for the large values of n for particles of radius in the nm
range), the size distribution in terms of r, following Eq. 12, is

Np (r) = 4�r2�bq
(ext)
n e

4�r3�b
3kT ��e�

4�r2
�

kT (29)

where n in q
(ext)
n depends implicitly on r. The exponent of r in r2q

(ext)
n derived from Eqs. 15�19 is thus

3� + 2 where � was the original exponent of n. (The Lothe-Pound49 case is notable in this regard, since
3� + 2 = 14, which was the exponent for r noted by Volmer in 1956.88) The estimate for the size-dependent
interfacial free energy is


�� (r) = � kT

4�r2
ln

4�r2�bq
(ext)
n

Np (r)
: (30)

More details on the �tting procedure, and the experiments examined here, are available in Sections S7�S8
of the Supporting Information. Our task then is to �t Eq. 29 or Eq. 30 having at most four undetermined
parameters to, at minimum, an experimentally known size distribution and solid concentration. Ideally, an
experiment would determine the function Nn for each directly measurable n, as in a mass spectrometric
measurement, or the continuous version of Np (r). Size distributions are much more frequently reported,
especially for nanoparticles, as combining a set of dimensional measurements made from microscopy images.
The r measurement so obtained is that of the high-contrast inorganic core, which we use here exclusively.
(Di�erent techniques, such as mass spectrometry, will return a size distribution that includes the surfactant
shell, and thus a slightly di�erent polydispersity.)

Virtually all work on nanoparticle syntheses to date by methods of (ostensibly) thermodynamic stabi-
lization have quanti�ed the particle size distribution in terms of only two parameters, the number average
diameter and the standard deviation of the diameter about the mean. A frequent assumption for nanopar-
ticle sizing in general is that relatively monodisperse size distributions follow a simple normal or log-normal
distribution, both of which have only two arguments in p (r). However, in a quantitative estimate of 
, it
is necessary also to know the absolute concentration of solid matter in the colloidal solution, which adds a
third parameter to the size distribution. We can use these three-parameter normal or lognormal functions as
a benchmark against the physically-motivated expressions for the size distribution embodied by Eq. 12.

3.2 Fitting of experimental data

We consider data from two previously reported investigations in colloidal nanoparticle systems that are
proposed to be thermodynamically stable. First, Stoeva et al.20 gave an example from the frequently-
investigated class of nanoparticle syntheses known as digestive ripening, in which large metal nanoparticles
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are heated with an excess of surfactant in organic solvent, breaking apart into smaller particles with a narrow
size distribution. In their case gold (Au) nanoparticles were digested in toluene (C7H8) with dodecanethiol
ligand (called here C12SH), with a molar ratio of dodecanethiol to Au of 30:1. The resulting colloids had a
radius hri of � 2:3� 0:2 nm (the latter quantity being one sample standard deviation) and volume fraction
of � � 1:3 � 10�4. Second, Vayssières21, 22 suggested that magnetite (Fe3O4) nanoparticles in highly basic
(pH 12), high-ionic-strength (0.5 M) aqueous solutions adopted a thermodynamically stable size distribution
due to the enthalpies of adsorption of hydroxyl ions (OH�) and electrical double layer formation. In this
case, hri � 3:3� 0:8 nm and � � 4:0� 10�3. In Section S8 of the Supporting Information we reproduce the
estimates of the number of counts in each bin in Tables S3 and S4, along with particulars of how they and �
were determined.

In analyzing this data we have made several assumptions we feel are reasonable. First, we expect that
the values of � we have mentioned follow directly from the input mass or concentration of solid monomer
(Au atoms or Fe ions, respectively) and have been entirely converted to solid nanoparticles with negligible
dissolved monomer. In the case of magnetite, which is believed to dissolve as iron hydroxides Fe (OH)yx, the
solubility of the bulk phase has been measured and found to be extremely low (less than 1 �M) in basic
media.89 Thiol surfactants are known to corrode Au in speci�c environments, but in toluene the molecular
solubility (likely as an Au thiolate polymer or other compound) has been reported to be minimal.90 Although
with these assumptions we can disregard the identity of the monomer(s) and surfactants entirely, abstracting
their chemical potentials into 
� and ��, being able to provide estimates of their magnitude will be critical
to future models of the adsorption energies and the phase equilibrium in the system; without them it is, for
example, unknown at what temperatures spontaneous precipitation, dispersion, or dissolution will occur.

Second, we have assumed that bulk values of the formula unit density were applicable for nanoparticles
(both for solids and surfactants) and neglected temperature dependence of these parameters (except for the
solvents, because tabulated values were readily available, but this is unlikely to make any di�erence). Third,
we included the volume and mass of C12SH surfactant molecules in calculating q(ext)n for the Au/C12SH system
(estimates of surfactant densities are available for Au surfaces and nanoparticles91, 92), but calculated q

(ext)
n

based solely on the mass and radius of a Fe3O4 sphere for the Fe3O4/OH
�/H2O system because we could

not arrive at a conclusion as to how the adsorbed hydroxide �surfactant� shell, together with the electrical
double layer, should be represented in q

(ext)
n . Finally, the surfactant grafting density in the former case was

assumed to be independent of curvature. The reference values used the Au/C12SH and Fe3O4/OH
� systems

are given in the Supporting Information.
In a given �t, one of q(LP )n , q(RKC)

n , or q(K)
n is inserted into Eq. 11 along with Eq. 27, possibly with one

or more values restricted. We found it was sometimes not immediately obvious which model produces the
better �t or whether the �t was improved by using a full four parameters instead of three. It is necessary,
then, to use some kind of criterion to evaluate the usefulness of adding an extra �tting parameter and to
compare the goodness of �t using the physically motivated Eq. 12 to the qualitative normal or lognormal
distributions. For this we use the reduced chi-square test according to the ~�2 statistic,93 as described in
Section S9 of the Supporting Information. Between two �ts, the one with the smaller value of ~�2 is the better
one. The values of ~�2 for these �ts are given in Tables 1 and 2. Because the number of counts for large r in
both datasets is so small, we did test some �ts with the size distribution truncated to removed the rightmost
two bins (having one or two counts each), but found no real e�ect on the magnitude and standard error of
the relevant parameters (not shown). We stress here that future experiments wishing to use this analysis
should greatly increase the number of samples taken to mitigate over�tting of the data, or else use ensemble
techniques: here we are forced to use three or four parameters, plus a choice of q(ext)n ; to �t only 9-12 data
points.
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Table 1: Goodness-of-�t ~�2 values for each combination of q(ext)n and 
�� for Ref. 20, �gure 6.

Model q
(LP )
ext q

(RKC)
ext q

(K)
ext

arb + �r + 
0 0.0725 0.0815 0.0746
arb + 
0 0.1028 0.0780 0.0973

ar�3 + �r + 
0 0.0742 0.1294 0.0914

Normal 0.1413
Lognormal 0.0720

Table 2: Goodness-of-�t ~�2 values for combinations of q(ext)n and 
�� for Ref. 21, �gure 11d.

Model q
(LP )
ext q

(RKC)
ext q

(K)
ext

arb + �r + 
0 0.0115 0.0102 0.0112
arb + 
0 0.3570 0.3431 0.3623

ar�2 + �r + 
0 0.0424 0.5568 0.3517

Normal 0.4676
Lognormal 0.0654

3.3 Fitting results

A summary of the results of �tting the expression of Eq. 12 are shown in Figure 4. Superimposed in Figures
4a-b are the extracted piecewise uniform distribution functions (the experimental histograms, shaded area)
and the p (r) obtained by dividing the �tted Np (r) expression by the N estimated from the histogram (full
lines). The error bars have been drawn assuming Poisson statistics, i.e., for a value of p (r) at a size ri, p (ri),
the estimated standard error is p (ri) =

p
ci where ci is the number of counts in the bin. The choice of q(ext)n

does not meaningfully a�ect the �t when all four parameters of 
�� are free�the �tted size distributions will
overlap almost perfectly. The excess interfacial free energy densities of each system, as calculated using q(LP )n

and the form of 
�� for the �ts in Figure 4a-b, are shown in Figure 4c.
The values of the parameters from the �ts and their uncertainties for the models of 
�� are given in Tables

3�4. It is plain from Figure 4a�b that the �ts to Np (r), where all four of a, b, �, and 
0 are free, are quite
good. Also in evidence is a skew of both distributions to larger particle sizes: �ts to a normal distribution
are poor compared to the physically motivated form of Eq. 12 or a lognormal distribution, as shown by
Figure S3 in the Supporting Information. For the Au=C12SH system, a lognormal distribution describes the
data as well or better than Eq. 12, as measured by ~�2, but this distribution shape still falls short for the
Fe3O4/OH

� system, which is too right-skewed. When particle size distributions become less polydisperse,
as for the former system, better counting statistics and narrower bins will necessary to distinguish between
di�erent analytical forms used to �t them. Inspection of Tables 3�4 shows that the lowest ~�2 values are found
using q(LP )ext and q

(RKC)
ext for the Au=C12SH and Fe3O4/OH

� systems, respectively, but the di�erences in ~�2

values between models are not very large. We feel, in fact, that the di�erences are too small to prefer strongly
one form of q(ext)n over another based on these criteria alone. More detailed reporting of experimental data
would help here. For example, a list of measured sizes instead of binned histograms would improve con�dence
in statistical tests. In general, future data sets will need to make more than a few hundred measurements;
this number was otherwise suitable for reports of syntheses intending to give only estimates of the mean and
standard deviation.

The model of Eq. 12 is �exible enough to accomodate any choice of q(ext)n for both systems as measured
by the ~�2 metric, such that additional curves in Figure 4a-b would be practically indistinguishable from
that already plotted. Interestingly, for most choices of q(ext)n , the value of b was non-integral with the
nearest integer lying well outside the standard error of the parameter estimate. In the Au/C12SH system the
exponents covered a wide range from about �3:2 for q(LP )n to �4:5 for q(RKC)

n . On the other hand, b in the
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Figure 4. Application of Eq. 29 to experimental data. The Au=C12SH=C7H8 data were extracted from
Ref. 20; the Fe3O4=OH

�=H2O data, from Ref. 21. (a,b) The �tted particle size distributions according to a
power-law dependence of 
�� on radius (b) The estimated size-dependent interfacial free energies. The

approximate size dependence for small radii is indicated by the exponent of the radius next to each curve:
the exponents of r are, for Au=C12SH=C7H8, close to �3 (that for the electrostatic charging model) and, for
Fe3O4=OH

�=H2O, almost exactly �2 (that for the Helfrich model for Gaussian curvature bending energy).
(d) the estimated probability density functions for the size distributions based on (a); note that the

distributions diverge for larger particle radii.

Fe3O4/OH
� system occupied a much more restricted range: about �2 through �2:4. though we presently

cannot o�er suggestions as to how such an exponent, which might better be described as re�ecting a more
complex dependence of 
� on r, would arise. As noted for Figure 2, the smaller range of radii enclosed
by the less polydisperse (10%) Au/C12SH data set here (relative to Fe3O4/OH

�, polydispersity of about
20%) correspondingly reduces the span of 
��, with the result that for similar estimated errors in particle
concentrations in each bin the data will be more easily �t by a wide range of exponents. Di�erent mechanisms
for the size dependence of 
� appear to operate depending on the environment and solid material chosen for
the colloid, and it is plausible that these mechanisms may follow rules more complex than the power law in
Eq. 27.

Table 3: Extracted �t parameters for Ref. 20, �gure 6 using the four-parameter form of 
��.

Parameter q
(LP )
ext q

(RKC)
ext q

(K)
ext

a (J nm�2�b) 0:0422(1) 0:0351(2) 0:0383(1)
b �3:16(1) �4:47(1) �3:45(1)

� (J nm�3) �0:000548(9) �0:000135(4) �0:000432(7)

0 (J m�2) 0:00436(4) 0:00187(1) 0:00363(3)
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Table 4: Extracted �t parameters for Ref. 21, �gure 11d using the four-parameter form of 
��.

Parameter q
(LP )
ext q

(RKC)
ext q

(K)
ext

a (J nm�2�b) 0:02071(4) 0:01032(5) 0:01849(4)
b �1:997(4) �2:341(8) �2:058(4)

� (J nm�3) �0:0000249(8) �0:0000216(5) �0:0000249(7)

0 (J m�2) 0:000333(7) 0:000290(5) 0:000332(7)

In general, good �ts of the size distribution expression to the data of Figure 4a-b could only be achieved
with a value of � that was negative, that is, where �� > 0. This corresponds to a situation in which the
solution is supersaturated with monomer and where the nanoparticle size distribution is, in fact, metastable
or unstable. The curves in Figure 4d illustrate this tendency: at radii several nm larger than the mean, the
�size distributions� diverge. In the case of the Au/C12SH system, it is uncertain whether the �t is signi�cantly
improved by the addition of this parameter �. The best �ts overall are achieved using � 6= 0, but the values
of ~�2 depend markedly on the choice of q(ext)n , such that the three-parameter model with � = 0 can achieve
goodness-of-�t close to that of the four-parameter model. We therefore deem it ambiguous from the point of
view of Eq. 12 whether �� > 0 in this system, but note that previous work showed that prolonged treatment
of these colloids produced by digestive ripening at high temperatures led to their coarsening.94 It would seem
then that, if the Au/C12SH system is really stable (�� � 0) at lower temperatures, it must be close to
instability.

The sign of �� was far less ambiguous in �tting the data for the Fe3O4/OH
� system, which is also

visually more fat-tailed at large r. If b were �xed at �2, only q
(LP )
n with � < 0, or the full four-parameter

model, produced a good �t to the data. If 
� in this case follows a power law, the fat tail of the size
distribution cannot be well-�t unless � < 0, as clearly shown by Table 2. That the Fe3O4/OH

� system is
more restrictive in terms of its �t to theory follows from the fact that, relative to the Au/C12SH system, the
size distribution of Figure 4b spans a larger range of particle radii (2�6.5 nm, versus 1.75�2.75 nm). Hence,
the curvature of 
� that follows from the power law is more tightly constrained. Vayssières noted that, in
bringing a Fe3O4 colloid from a region of thermodynamic instability to one of ostensible stability, although
a population of smaller nanoparticles was formed from a coarser dispersion, in line with the expectations
of a thermodynamically stable nanometric size, very large particles remained even after 30 days, leaving
a bidisperse distribution. They attributed this observation to the very slow kinetics of dissolution and re-
precipitation of nearly insoluble oxides, but it is equally well-explained if, in the initial preparation conditions,
�� began at a value less than 0, so that bulk Fe3O4 would precipitate until an equilibrium between the bulk
phase and colloidal solution was achieved, with �� = 0. Another possibility is that the experimental time
scale was too short to allow N to change signi�cantly, in which case the equilibrium condition of Eq. 12 does
not apply. In fact, the model laid out by Lee et al.32, which does work at �xed N , would account for such
a bidisperse distribution. Ultimately, we strongly suspect that, under the reported experimental conditions,
this Fe3O4/OH

� system does not represent a true thermodynamic minimum with respect to N , but is only
metastable.

We additionally �tted the size distributions using 1) a �xed value of b or 2) a �xed value of � = 0 in Eq.
27. The restriction of parameters tests the utility of more parsimonious (nested) models. In the �rst case the
known value for b corresponded to a speci�c mechanism of size-dependent 
: �3 for the Au/C12SH/C7H8

system, per the electrostatic charging model discussed by Lee et al.32 and Manzanares et al.; and, for the
Fe3O4/OH

�/H2O system, �2 per the Helfrich model of Gaussian curvature energy95 also considered by
Whetten and Gelbart for the Au/C12SH system.85 These values were suggested by the values of b from the
full four-parameter �ts. Despite the increase in the number of degrees of freedom, the goodness of �t statistic
was either unimproved or slightly worsened. Interestingly, however, b = �3 accounted for the data in Figure
4a just as well as any of the q(ext)n models in the more �exible four-parameter �t. At the current resolution
of this data, the model of electrostatic charging of nanoparticles in a dielectric medium provides a good
accounting for the data from the digestive ripening of gold nanoparticles provided the saturation parameter
���which is not at any rate currently known�is adjustable.

Conversion of the resulting values of a, �, and 
0 to the underlying physical parameters provided entirely
reasonable results (�t details also in Section S8.1�S8.2 of the Supporting Information). For Au/C12SH,
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the corresponding number of elementary charges per nanoparticle was about 3, similar to the value of 5
assumed by previous workers.32, 41 The value of the curvature or saddle-splay modulus, �, for the Fe3O4/OH

�

system is about 2 � 10�20 J, which is about an order of magnitude lower than the typical bending energy
of an organic monolayer.95, 42 Of course, there is no such surfactant monolayer in this system�only adsorbed
anions surrounded by an electrical double-layer�so a better explanation for such an r�2 dependence of 

for this aqueous system is probably needed. From the term � in 
�, the interfacial free energy densities at
zero curvature are estimated to be 3:7 mJ m�2 and 0:38 mJ m�2 for the the Au/C12SH and Fe3O4/OH

�

systems, respectively. The positive sign of 
0 for the former system is interesting in the context of prior
models of the Au-thiol system, where the binding energy of thiol per area was generally taken to be so
large (negative) compared to the surface energy of a clean Au surface that the e�ective interfacial energy,

� = 
 + �� (�s � ��s), was negative at large radii. In these models the convergence of the size distribution
in Eq. 12 is assured by having the solution be undersaturated in monomer with respect to the bulk, i.e.
a negative ��. Instead, we have shown here for these systems 
0 remains small and positive, and mean
nanoparticle size is inversely proportional to the magnitude of the interfacial free energy as in the case of
microemulsions68 or in earlier models of the spontaneous dispersion of solids.96, 37 We note as well that the
value of 
0 for the Au/C12SH system is of similar magnitude to solid-liquid interfacial free energies measured
for some small organic molecules,97 which makes some sense considering that the interfacial free energy of
a saturated Au-thiol monolayer should re�ect the interactions between the organic solvent (here, toluene)
and the ends of the surfactant molecules (here, dodecanethiol), rather than the inorganic nanoparticle core.
This suggests a potential avenue for engineering the properties of the size distribution by selecting molecular
characteristics of the surfactant that control the �at-surface limit of the solid-solution free energy, in addition
to the mechanism through which a power-law dependence of 
� appears.

3.4 Further consequences of the size distribution-interfacial energy correspon-

dence: Future avenues for quantifying system parameters

Quantitatively �tting experimental size distributions at a �xed temperature, pressure, concentration, and so
on is only one part of the characterization of the ternary solid-surfactant-solvent system. To close, we give
here elaborations on Eq. 12 that can be used to measure quantities like colloid-surfactant stoichiometry and
the exponent � from q

(ext)
n when future work permits the analysis of more complete data sets on particle

size distributions. Because the experimental data considered here are sparse, in that the dependence of the
size distribution on experimental variables for colloidal nanoparticles has not been adequately explored, we
cannot apply any of the analysis in this section to that data and leave such for future work on these systems.
Considering the expression for the chemical potential of component i, �i = �0i + kT ln ai, if we rewrite Eq. 7
as

Nn = q(ext)n exp

"
n
�
�01 + kT ln a1

�� n
�
�0b + kT ln ab

�� (n�� �n)
�
�0s + kT ln as

�
kT

#

� exp

"
�n
�
��0s + kT ln a�s

�� 4�r2


kT

#

= q(ext)n

an1
anb a

n�
s

(asa
�
s)
�n exp

�
n�01 � n�0b � (n�� �n)�

0
s + �n�

�0
s

kT

�
exp

�
�4�r2


kT

�
;

the quotient an1=a
n
b a

n�
s is recognizable as the experimentally measurable monomeric solubility product, Ksp.

Since activities of condensed phases are unity, Ksp = an1=a
n�
s . Di�erentiating lnNn with respect to a quantity

! other than n gives

d lnNn

d!
=

d

d!

�
ln q(ext)n + lnKsp (a

�
sas)

�n � 4�r2


kT

�
:

The most natural experimental parameters to vary are the concentrations of surfactant and the temperature.
For the former, assuming small changes in the composition of the solution phase do not a�ect 
 or �n, and
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thus a�s,

d lnNn

dNs
=

d�n ln as
dNs

;

and taking as = bsXs where bs is the activity coe�cient of the surfactant and Xs is its mole fraction
Ns= (Ns +Nl) (likely to be practically una�ected by Nn due to the small volume fraction of colloidal solid),
we obtain

d lnNn

dNs
= �n

�
1

Ns
� 1

Ns +Nl

�
: (31)

This gives the surfactant coverage density, possibly size-dependent, as a function of the concentration of
surfactant.

In the case of temperature, for small changes that do not appreciably a�ect the concentration of unbound
surfactant (re�ected in as) or the stoichiometry of the surfactant shell (re�ected in a�s),

d lnNn

dT
=

d ln q
(ext)
n

dT
+
d lnKsp

dT
+

4�r2


kT 2
:

Because by de�nition lnKsp = � (�hsp � T�ssp) =kT where �hsp and �ssp are the enthalpies and entropies
of the monomeric solubility equilibrium, we �nally obtain (assuming those energetic parameters are constant
with T )

d lnNn

dT
=

d ln q
(ext)
n

dT
+

4�r2
 ��hsp
k

1

T 2
: (32)

Deviations of d lnNn=dT from linearity in 1=T 2 arising from q
(ext)
n are to be expected, and provide a probe

of the size-dependent statistical thermodynamic properties associated with the motion of the nanoparticles
in the solvent.

Provided the appropriate experimental conditions are met, the limiting forms of the size distribution with
respect to r provide valuable information from the tails of the distribution. The logarithm of Eq. 12 indicates
a natural manner of graphically determining physicochemical parameters of the system,

lnNn = ln�r� � 4�r2

kT

�
ar�b + �r + 
0

�
lnNn � ln� = � ln r � 4�a

kT
r2�b � 4�

kT

�
�r3 + 
0r

2
�

(33)

In cases where b can be assured to be 2 by the appropriate choice of system, for small r the ar�b term
predominates and

lnNn +
4�a

kT
� ln� = � ln r: (34)

That is, the slope Y of lnNn versus ln r provides, for small r, a measurement of the entropic quantity �. If
�r� is assumed or known, taking the logarithm of 33 again yields

ln ln
�r�

Nn
= ln

�
4�

kT

�
ar2�b + �r3 + 
0r

2
��

: (35)

If B � 2, then for large r the ar�b term disappears, and the plot of ln ln�r�=Nn versus ln r at large r will
have slope 2 and intercept of ln 4�=DkT if � = 0 (colloidal solution at equilibrium with bulk solid), or slope
3 and intercept ln 4��=kT if � > 0 and 
0 < 0 (solution undersaturated relative to bulk, but with a negative
interfacial free energy). Conversely, for small r, the slope will approach 2� b and the intercept ln 4�a=kT .

Because the tails of the distribution necessarily have exponentially worse counting statistics, however, it
is unclear how achievable it is to obtain good data for which the approximations r ! 0 or r !1 are valid,
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especially in a microscopy experiment. For example, the limit of small r implies an approach to molecular
dimensions where the capillarity approximation required by Eq. 9 is invalid. For example with regards to
Eq. 34, in �tting the data of Vayssières (discussed in more detail in Section 3.4) with q

(LP )
ext (Eq. 15) to a 


of ar�2 + 
0, at r = 1 nm, d lnNn=d ln r is still only about 12.5, rather than 14, and this particle size lies
almost four standard deviations from the mean radius of the data set. Using q

(RKC)
ext (Eq. 18) instead, the

slope at r = 1 nm is about 4.2 as opposed to 3.5. In fact, estimating � from those experimental data here is
impossible, since there are no data points in this size range and the bin width is prohibitively large. If q(ext)n

cannot actually be written in the form �r� , as is true when, e.g., surfactant molecules contribute to the mass
and moment of inertia of the colloid in q

(LP )
n , the plot from Eq. 34 also will not be linear. Hence, although

Eqs. 34 and 35 are measurements of the statistical mechanical basis of CNT as well as the physicochemical
parameters of the system, it will be di�cult in future experiments to assure reasonable statistics, since the
necessary data comes from in a size range lying outside of nearly all samples that could be drawn from
the underlying distribution. Still, should these di�culties be overcome, combining the expressions given
in this section with the �tting of the distribution to Eq. 12 will provide a wealth of information on the
thermodynamics of the solid-solution interface in colloids.

4 Conclusions

In spite of the frequent assumption that nanometric colloids of solids are intrinsically thermodynamically
unstable (lyophobic), due to the tendency to minimize interfacial free energy, phenomenological and statistical
thermodynamic treatments show this is not necessarily the case. Classical nucleation theory (CNT) provides
the statistical thermodynamic basis for calculating the size distribution of colloids at equilibrium based on
physically motivated or measurable parameters. We examined previous statistical-mechanical models of the
work of cluster formation which provide di�erent, and contested, accountings of the total degrees of freedom
of an aggregate or colloidal particle separated from the bulk and allowed to move in a di�erent medium.
These give rise to di�erent dependences of the colloid concentration on particle size based purely on entropic
considerations, manifesting as a di�erent prefactors and polynomial exponents alongside the reversible work
of nanoparticle formation from the bulk phase. We also provided a simple, intuitive extension of the cell
model of liquid mixtures to describe the external partition function in terms of vibrational frequencies that
can be estimated theoretically. Based on these models, an exact relation exists between the excess free energy
per particle normalized by the interfacial area and the observed particle concentrations of all sizes.

For a narrow distribution of relatively large (nm-sized) particles to exist, 
 must be a function of radius
purely on statistical-mechanical grounds. The absolute value of 
 depends rather markedly on the model
used for the external and internal degrees of freedom, especially on the �xed prefactor rather than the n�
dependent polynomial term. Inspection of simulated distribution shapes shows that, owing to the exponential
dependence of particle concentration on 
, the range of values of r for which 
 can be estimated from
experiments such as particle counting may be restricted when using measurement techniques that rely on
counting particle sizes manually via microscopy. Even within the applicable range of particle sizes, great care
needs to be taken in experiments to minimize uncertainty in r, as in binned measurements. A well-executed
ensemble measurement, though, could measure the size-dependent thermodynamics of the system over a wide
range of particle sizes. Next, from an engineering perspective, factors such as under- or supersaturation, i.e.
controlling the dilution of the solution, as well as the zero-curvature interfacial free energy, are probably
not the principal contributors to the polydispersity of the colloid. The minimum achievable polydispersity
is mechanism-dependent and is proportional to the curvature of 
 in the vicinity of the distribution mean:
interfacial free energy densities that increase more rapidly with increasing interface curvature will lead to
narrower size distributions. This stands in contrast to kinetically controlled synthetic approaches that have
primarily focused on controlling the non-equilibrium supersaturation during particle nucleation and growth.

On a more empirical level, we adapted CNT to the �tting of experimentally reported size distributions in
both an organic and an aqueous solvent system. The �rst corresponded to a typical experimental case in the
relatively well-studied systems of digestive ripening of metals by strongly bonding surfactants,20 while the
second corresponded to a high-ionic-strength, high-pH oxide dispersion.21 CNT was used to analyze these
models by use of the physically motivated power-law dependence of 
 on particle size as a �tting parameter.
The resulting e�ective interfacial free energy 
�� depends on this mechanism-speci�c power law, the under-
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or supersaturation of monomer with respect to the bulk, and the interfacial free energy density in the limit
of �at interfaces. Fits of the experimental data based on the analytical size distribution, Eq. 12, proved to
be excellent; the best �ts could, interestingly, be made with a non-integer exponent of the particle curvature.
A non-integer exponent is not anticipated by simpler expressions for the excess interfacial energy based on,
e.g., capacitive charging or curvature moduli, and could indicate that a more complex model is needed to
explain the size dependence of the interfacial free energy. Still, in the gold-thiol-toluene system, the data
could still be well-modeled by the hypothesis that the energy of electrostatic charging of the metal colloid
in a dielectric medium, which is related to particle radius as r�3, accounts for the excess interfacial free
energy. In �tting, a fat tail at large particle sizes in the distributions strongly supports the hypothesis that
the solution is supersaturated, having monomer at a higher chemical potential than the bulk solid. This is
in contradiction to some previous thermodynamic modeling that required undersaturation of the solution to
assure the stability of the colloid. We suggest that although the two systems analyzed here are apparently
resistant to precipitation as a bulk solid, they nonetheless have only so far been observed in a metastable
state. This would account for the apparent failure to observe a bulk-to-colloid dispersion process in systems
such as digestive ripening.20 Before proceeding any further with size-distribution analysis, future workers
should decisively test whether these systems really occupy the global minimum of free energy relative to the
molecular solution and bulk phases. Given the low precision associated with measurements of distribution
tails due to counting statistics, it is clear better statistical tests and especially �ner-grained size distribution
measurements are desired to distinguish between competing models or expressions, especially with regards
to the supersaturation parameter. This must also be done to avoid the problem of over�tting, as so far these
data sets require �tting only 9-12 data points with four parameters. Finally, we have shown here several
relations between the size distribution and the external parameters of the system (surfactant concentration,
temperature) that will be useful for measuring interfacial properties over a broader composition space or for
checking the validity of our approximations. Limiting forms of the size distribution show that the tails of
those distributions, which have generally not been subjected to scrutiny due to the di�culty in obtaining good
measurement statistics far from the mean, could provide a way to directly measure the parameters linked
with the CNT description of the entropy of these large, rigid molecules in solution. The size distribution�
interfacial energy correspondence could thus provide a new method for testing statistical thermodynamic
models or simulations for macromolecular solutions and other mixtures of molecules of very di�erent sizes.
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Acknowledgments

A.N. is supported by the National Academies of Science, Engineering, and Medicine via an NRC Postdoctoral
Research Associateship. We thank John Pettibone (NIST, Materials Measurement Science Division) and
James Hickman and Yuri Mishin (NIST, Materials Science and Engineering Division) for helpful discussions.

Certain commercial equipment, instruments, and software are identi�ed in this paper in order to specify
the experimental procedure adequately. Such identi�cation is not intended to imply recommendation or
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the
equipment or software identi�ed is necessarily best available for the purpose.

References

[1] Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse
CdE (E = S, Se, Te) Semiconductor Nanocrystallites. Journal of the American Chemical Society 1993,
115, 8706�8715.

23



[2] Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and Characterization of Monodisperse Nanocrys-
tals and Close-Packed Nanocrystal Assemblies. Annual Review of Materials Science 2000, 30, 545�610.

[3] Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals.
Angewandte Chemie International Edition 2007, 46, 4630�60.

[4] Williamson, C. B.; Nevers, D. R.; Hanrath, T.; Robinson, R. D. Prodigious E�ects of Concentration
Intensi�cation on Nanoparticle Synthesis: A High-Quality, Scalable Approach. Journal of the American
Chemical Society 2015, 137, 15843�15851.

[5] Owen, J.; Brus, L. Chemical Synthesis and Luminescence Applications of Colloidal Semiconductor Quan-
tum Dots. Journal of the American Chemical Society 2017, 139, 10939�10943.

[6] Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal Halide Perovskite Nanocrystals:
Synthesis, Post-Synthesis Modi�cations, and Their Optical Properties. Chemical Reviews 2019, 119,
3296�3348.

[7] Yin, Y.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature
2005, 437, 664�670.

[8] Chen, Y.; Johnson, E.; Peng, X. Formation of Monodisperse and Shape-Controlled MnO Nanocrystals in
Non-Injection Synthesis: Self-Focusing via Ripening. Journal of the American Chemical Society 2007,
129, 10937�10947.

[9] Sugimoto, T. Underlying mechanisms in size control of uniform nanoparticles. Journal of colloid and
interface science 2007, 309, 106�18.

[10] Chu, D. B. K.; Owen, J. S.; Peters, B. Nucleation and Growth Kinetics from LaMer Burst Data. The
Journal of Physical Chemistry A 2017, 121, 7511�7517.

[11] Whitehead, C. B.; Watzky, M. A.; Finke, R. G. "Burst Nucleation" vs Autocatalytic, "Burst" Growth
in Near-Monodisperse Particle-Formation Reactions. The Journal of Physical Chemistry C 2020, 124,
24543�24554.

[12] Bealing, C. R.; Baumgardner, W. J.; Choi, J. J.; Hanrath, T.; Hennig, R. G. Predicting Nanocrystal
Shape through Consideration of Surface-Ligand Interactions. ACS Nano 2012, 6, 2118�2127.

[13] Barnard, A. S. Direct Comparison of Kinetic and Thermodynamic In�uences on Gold Nanomorphology.
Accounts of Chemical Research 2012, 45, 1688�1697.

[14] Xia, Y.; Xia, X.; Peng, H.-C. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermody-
namic versus Kinetic Products. Journal of the American Chemical Society 2015, 137, 7947�7966.

[15] Deryagin, B. V. The Stability of Colloid Systems (Theoretical Aspects). Russian Chemical Reviews
1979, 48, 363.

[16] Beverly, K. C.; Sampaio, J. F.; Heath, J. R. E�ects of Size Dispersion Disorder on the Charge Transport
in Self-Assembled 2-D Ag Nanoparticle Arrays. Journal of Physical Chemistry B 2002, 106, 2131�2135.

[17] Yang, J.; Wise, F. W. E�ects of Disorder on Electronic Properties of Nanocrystal Assemblies. The
Journal of Physical Chemistry C 2015, 119, 3338�3347.

[18] Savitzky, B. H.; Hovden, R.; Whitham, K.; Yang, J.; Wise, F.; Hanrath, T.; Kourkoutis, L. F. Propaga-
tion of Structural Disorder in Epitaxially Connected Quantum Dot Solids from Atomic to Micron Scale.
Nano Letters 2016, 16, 5714�5718.

[19] Reich, K. V. Conductivity of quantum dot arrays. Physics-Uspekhi 2020, 63, 994.

[20] Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I. Gram-Scale Synthesis of Monodisperse Gold
Colloids by the Solvated Metal Atom Dispersion Method and Digestive Ripening and Their Organization
into Two- and Three-Dimensional Structures. Journal of the American Chemical Society 2002, 124,
2305�2311.

24



[21] Vayssières, L. On the thermodynamic stability of metal oxide nanoparticles in aqueous solutions. Inter-
national Journal of Nanotechnology 2005, 2, 411.

[22] Vayssières, L.; Chanéac, C.; Tronc, E.; Jolivet, J. P. Size Tailoring of Magnetite Particles Formed by
Aqueous Precipitation: An Example of Thermodynamic Stability of Nanometric Oxide Particles. Journal
of Colloid and Interface Science 1998, 205, 205�212.

[23] Stoeva, S. I.; Zaikovski, V.; Prasad, B. L. V.; Stoimenov, P. K.; Sorensen, C. M.; Klabunde, K. J.
Reversible Transformations of Gold Nanoparticle Morphology. Langmuir 2005, 21, 10280�10283.

[24] Lin, Z.; Gilbert, B.; Liu, Q.; Ren, G.; Huang, F. A Thermodynamically Stable Nanophase Material.
Journal of the American Chemical Society 2006, 128, 6126�6131.

[25] Pavlova-Verevkina, O. B.; Pertsov, A. V. Possibility of the Existence of Equilibrium Oxide Hydrosols.
Colloid Journal 1995, 57, 869�870.

[26] Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M. Synthesis of spherical silver nanoparticles by digestive
ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. Journal of
Colloid and Interface Science 2005, 284, 521�526.

[27] Shaik, A. H.; Chakraborty, J. Synthesis of monodisperse copper nanoparticles using a modi�ed digestive
ripening technique and formation of superlattices. RSC Advances 2015, 5, 85974�85977.

[28] Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. Synthesis of CdSe Quantum Dots by Evapo-
ration of Bulk CdSe using SMAD and Digestive Ripening Processes. Chemistry of Materials 2009, 21,
1248�1252.

[29] Yoder, T. S.; Cloud, J. E.; Leong, G. J.; Molk, D. F.; Tussing, M.; Miorelli, J.; Ngo, C.; Kodambaka, S.;
Eberhart, M. E.; Richards, R. M.; Yang, Y. Iron Pyrite Nanocrystal Inks: Solvothermal Synthesis,
Digestive Ripening, and Reaction Mechanism. Chemistry of Materials 2014, 26, 6743�6751.

[30] Kim, M.-G.; Jeong, J.; Choi, Y.; Park, J.; Park, E.; Cheon, C.-H.; Kim, N.-K.; Min, B. K.; Kim, W.
Synthesis of V-doped In2O3 Nanocrystals via Digestive-Ripening Process and Their Electrocatalytic
Properties in CO2 Reduction Reaction. ACS Applied Materials & Interfaces 2020,

[31] Lin, X.; Sorensen, C.; Klabunde, K. Digestive Ripening, Nanophase Segregation and Superlattice For-
mation in Gold Nanocrystal Colloids. Journal of Nanoparticle Research 2000, 2, 157�164.

[32] Lee, D.-K.; Park, S.-I.; Lee, J. K.; Hwang, N.-M. A theoretical model for digestive ripening. Acta
Materialia 2007, 55, 5281�5288.

[33] Shimpi, J. R.; Sidhaye, D. S.; Prasad, B. L. V. Digestive Ripening: A Fine Chemical Machining Process
on the Nanoscale. Langmuir 2017, 33, 9491�9507.

[34] Thomas, T.; Sethuraman, S.; Satyam, D.; Kumar, D.; Kannadasan, B.; Anderson, A.; Prashant, S.;
Vijayakrishnan, R.; Khan, S.; Das, P.; Kumar, M.; Bisi, K.; Chinta, Y.; Talluri, B. Surface enthalpy
driven size focussing trends: Predictive modelling for digestive ripening of spherical particles. Applied
Surface Science 2018, 448, 248�253.

[35] Reiss, H. Entropy-induced dispersion of bulk liquids. Journal of Colloid and Interface Science 1975, 53,
61�70.

[36] Ruckenstein, E. The origin of thermodynamic stability of microemulsions. Chemical Physics Letters
1978, 57, 517�521.

[37] Stol, R. J.; De Bruyn, P. L. Thermodynamic stabilization of colloids. Journal of Colloid and Interface
Science 1980, 75, 185�198.

[38] Burlakov, V.; Goriely, A. Thermodynamic limit for particle monodispersity: How narrow can a particle
size distribution be? EPL (Europhysics Letters) 2017, 119, 50001.

25



[39] Kegel, W. K.; Reiss, H. Theory of Vesicles and Droplet Type Microemulsions: Con�gurational Entropy,
Size Distribution, and Measurable Properties. Berichte der Bunsengesellschaft für physikalische Chemie
1996, 100, 300�312.

[40] Tolman, R. C. The E�ect of Droplet Size on Surface Tension. The Journal of Chemical Physics 1949,
17, 333�337.

[41] Manzanares, J. A.; Peljo, P.; Girault, H. H. Understanding Digestive Ripening of Ligand-Stabilized,
Charged Metal Nanoparticles. The Journal of Physical Chemistry C 2017, 121, 13405�13411.

[42] Le�, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. Thermodynamic Control of Gold Nanocrystal
Size: Experiment and Theory. The Journal of Physical Chemistry 1995, 99, 7036�7041.

[43] Zhuang, Z.; Peng, Q.; Zhuang, J.; Wang, X.; Li, Y. Controlled Hydrothermal Synthesis and Structural
Characterization of a Nickel Selenide Series. Chemistry � A European Journal 2006, 12, 211�217.

[44] Zheng, J.; Xue, X.; Li, D.; Zhao, Y. New evidence of a thermodynamically stable nanophase: CdS in 4
M KOH-tert-butanol solution. CrystEngComm 2015, 17, 1509�1512.

[45] Hill, T. L. An Introduction to Statistical Thermodynamics; Addison-Wesley: Reading, Massachusetts,
1960.

[46] Volmer, M. Zur Theorie der lyophilen Kolloide. Zeitschrift für Physikalische Chemie 1927, 125U, 151�
157.

[47] Farkas, L. Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Zeitschrift für Physikalische Chemie
1927, 125U, 236�242.

[48] Avrami, M. Kinetics of phase change. I. General theory. The Journal of Chemical Physics 1939, 7,
1103�1112.

[49] Lothe, J.; Pound, G. M. Reconsiderations of Nucleation Theory. The Journal of Chemical Physics 1962,
36, 2080�2085.

[50] Nishioka, K.; Pound, G. M. Statistical mechanics of homogeneous nucleation in vapor. Advances in
Colloid and Interface Science 1977, 7, 205�278.

[51] Kelton, K. F. In Solid State Physics; Ehrenreich, H., Turnbull, D., Eds.; Academic Press, 1991; Vol. 45;
pp 75�177.

[52] Oxtoby, D. W. Homogeneous nucleation: theory and experiment. Journal of Physics: Condensed Matter
1992, 4, 7627�7650.

[53] Reiss, H.; Kegel, W. K.; Katz, J. L. Resolution of the Problems of Replacement Free Energy, 1/S, and
Internal Consistency in Nucleation Theory by Consideration of the Length Scale for Mixing Entropy.
Physical Review Letters 1997, 78, 4506�4509.

[54] Vosel, S. V.; Onischuk, A. A.; Purtov, P. A. Translation-rotation correction factor in the theory of
homogeneous nucleation. The Journal of Chemical Physics 2009, 131, 204508.

[55] Lutsko, J. F. How crystals form: A theory of nucleation pathways. Science Advances 2019, 5, eaav7399.

[56] Gebauer, D.; Cölfen, H. Prenucleation clusters and non-classical nucleation. Nano Today 2011, 6, 564�
584.

[57] Lee, J.; Yang, J.; Kwon, S. G.; Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles.
Nature Reviews Materials 2016, 1, 16034�16034.

[58] Jehannin, M.; Rao, A.; Cölfen, H. New Horizons of Nonclassical Crystallization. Journal of the American
Chemical Society 2019, 141, 10120�10136.

26



[59] Whitehead, C. B.; Özkar, S.; Finke, R. G. LaMer's 1950 Model for Particle Formation of Instantaneous
Nucleation and Di�usion-Controlled Growth: A Historical Look at the Model's Origins, Assumptions,
Equations, and Underlying Sulfur Sol Formation Kinetics Data. Chemistry of Materials 2019, 31, 7116�
7132.

[60] Whitehead, C. B.; Özkar, S.; Finke, R. G. LaMer's 1950 Model of Particle Formation: a Review and
Critical Analysis of Its Classical Nucleation and Fluctuation Theory Basis, of Competing Models and
Mechanisms for Phase-Changes and Particle Formation, and Then of Its Application to Silver Halide,
Semiconductor, Metal, and Metal-Oxide Nanoparticles. Materials Advances 2021, 2, 186�235.

[61] Reiss, H.; Katz, J. L. Resolution of the Translation-Rotation Paradox in the Theory of Irreversible
Condensation. The Journal of Chemical Physics 1967, 46, 2496�2499.

[62] Reiss, H.; Kegel, W. K. Replacement Free Energy and the 1/S Factor in Nucleation Theory as a Conse-
quence of Mixing Entropy. The Journal of Physical Chemistry 1996, 100, 10428�10432.

[63] Hill, T. L. Thermodynamics of Small Systems; Dover: Mineola, New York, 1994.

[64] Hill, T. L.; Chamberlin, R. V. Extension of the thermodynamics of small systems to open metastable
states: An example. Proceedings of the National Academy of Sciences 1998, 95, 12779�12782.

[65] Rusanov, A. I. Thermodynamics of solid surfaces. Surface Science Reports 1996, 23, 173�247.

[66] Kramer, D.; Weissmüller, J. A note on surface stress and surface tension and their interrelation via
Shuttleworth's equation and the Lippmann equation. Surface Science 2007, 601, 3042�3051.

[67] Nanda, K. K.; Maisels, A.; Kruis, F. E. Surface Tension and Sintering of Free Gold Nanoparticles. The
Journal of Physical Chemistry C 2008, 112, 13488�13491.

[68] Nagarajan, R.; Ruckenstein, E. Molecular Theory of Microemulsions. Langmuir 2000, 16, 6400�6415.

[69] Reiss, H.; Katz, J. L.; Cohen, E. R. Translation�Rotation Paradox in the Theory of Nucleation. The
Journal of Chemical Physics 1968, 48, 5553�5560.

[70] Kusaka, I. Statistical mechanics of nucleation: Incorporating translational and rotational free energy
into thermodynamics of a microdroplet. Physical Review E 2006, 73, 031607.

[71] Lothe, J.; Pound, G. M. On the Statistical Mechanics of Nucleation Theory. The Journal of Chemical
Physics 1966, 45, 630�634.

[72] Syne£ek, V.; Chessin, H.; Simerska, M. The temperature dependence of lattice vibrations in gold from X-
ray di�raction measurements. Acta Crystallographica Section A: Crystal Physics, Di�raction, Theoretical
and General Crystallography 1970, 26, 108�113.

[73] Koenitzer, J. W.; Keesom, P. H.; Honig, J. M. Heat capacity of magnetite in the range 0.3 to 10 K.
Physical Review B 1989, 39, 6231�6233.

[74] Meroni, A.; Pimpinelli, A.; Reatto, L. On the entropy of mixing of a binary mixture of hard spheres.
The Journal of Chemical Physics 1987, 87, 3644�3646.

[75] Lichtenthaler, R. N.; Abrams, D. S.; Prausnitz, J. M. Combinatorial Entropy of Mixing for Molecules
Di�ering in Size and Shape. Canadian Journal of Chemistry 2011,

[76] Sirota, E. B.; Rangwalla, H.; Peczak, P. Entropy of Mixing: Rigid vs Flexible Molecules: E�ect of
Varying Solvent on Dissolution Temperature. Macromolecules 2012, 45, 5281�5295.

[77] Mansoori, G. A.; Carnahan, N. F.; Starling, K. E.; Leland, T. W. Equilibrium Thermodynamic Proper-
ties of the Mixture of Hard Spheres. The Journal of Chemical Physics 1971, 54, 1523�1525.

[78] Salacuse, J. J.; Stell, G. Polydisperse systems: Statistical thermodynamics, with applications to several
models including hard and permeable spheres. The Journal of Chemical Physics 1982, 77, 3714�3725.

27



[79] Lin, X. M.; Wang, G. M.; Sorensen, C. M.; Klabunde, K. J. Formation and Dissolution of Gold Nanocrys-
tal Superlattices in a Colloidal Solution. The Journal of Physical Chemistry B 1999, 103, 5488�5492.

[80] Kamysbayev, V.; Srivastava, V.; Ludwig, N. B.; Borkiewicz, O. J.; Zhang, H.; Ilavsky, J.; Lee, B.;
Chapman, K. W.; Vaikuntanathan, S.; Talapin, D. V. Nanocrystals in Molten Salts and Ionic Liquids:
Experimental Observation of Ionic Correlations Extending beyond the Debye Length. ACS Nano 2019,
13, 5760�5770.

[81] Monego, D.; Kister, T.; Kirkwood, N.; Doblas, D.; Mulvaney, P.; Kraus, T.; Widmer-Cooper, A. When
Like Destabilizes Like: Inverted Solvent E�ects in Apolar Nanoparticle Dispersions. ACS Nano 2020,
14, 5278�5287.

[82] Israelachvili, J. N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: Waltham, MA, 2011.

[83] Schapotschnikow, P.; Pool, R.; Vlugt, T. J. H. Molecular Simulations of Interacting Nanocrystals. Nano
Letters 2008, 8, 2930�2934.

[84] Bocquet, L.; Trizac, E.; Aubouy, M. E�ective Charge Saturation in Colloidal Suspensions. The Journal
of Chemical Physics 2011, 117, 8659�8664.

[85] Whetten, R. L.; Gelbart, W. M. Nanocrystal Microemulsions: Surfactant-Stabilized Size and Shape.
The Journal of Physical Chemistry 1994, 98, 3544�3549.

[86] De Gennes, P. G.; Taupin, C. Microemulsions and the �exibility of oil/water interfaces. The Journal of
Physical Chemistry 1982, 86, 2294�2304.

[87] �odziana, Z.; Topsøe, N.-Y.; Nørskov, J. K. A negative surface energy for alumina. Nature Materials
2004, 3, 289�293.

[88] Volmer, M. Die kolloidale Natur von Flüssigkeitsgemischen in der Umgebung des kritischen Lösungspunk-
tes I. Zeitschrift für Physikalische Chemie 1956, 206O, 181�193.

[89] Tremaine, P. R.; LeBlanc, J. C. The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in
water to 300°C. Journal of Solution Chemistry 1980, 9, 415�442.

[90] Dreier, T. A.; Ackerson, C. J. Radicals Are Required for Thiol Etching of Gold Particles. Angewandte
Chemie International Edition 2015, 54, 9249�9252.

[91] Sellers, H.; Ulman, A.; Shnidman, Y.; Eilers, J. E. Structure and binding of alkanethiolates on gold and
silver surfaces: implications for self-assembled monolayers. Journal of the American Chemical Society
1993, 115, 9389�9401.

[92] Smith, A. M.; Johnston, K.; Crawford, S.; Marbella, L.; Millstone, J. Ligand density quanti�cation on
colloidal inorganic nanoparticles. Analyst 2017, 142, 11�29.

[93] Barlow, R. J. Statistics: a guide to the use of statistical methods in the physical sciences; John Wiley &
Sons: New York, 1989.

[94] Sahu, P.; Prasad, B. L. V. Time and Temperature E�ects on the Digestive Ripening of Gold Nanopar-
ticles: Is There a Crossover from Digestive Ripening to Ostwald Ripening? Langmuir 2014, 30, 10143�
10150.

[95] Helfrich, W. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Zeitschrift für
Naturforschung C 1973, 28, 693�703.

[96] Shchukin, E. D.; Rebinder, P. A. Formation of New Surfaces in the Deformation and Destruction of a
Solid in a Surface-Active Medium. Colloid Journal of the USSR 1958, 20, 601�609.

[97] Wen, Z.; Zhao, M.; Jiang, Q. Size Range of Solid-Liquid Interface Energy of Organic Crystals. The
Journal of Physical Chemistry B 2002, 106, 4266�4268.

28


	Introduction
	Theory
	Choice of prefactor in the nanoparticle partition function
	Alternative external partition function in the solution phase
	Interparticle interactions
	Form of 

	Results and Discussion
	Experimental interpretation
	Fitting of experimental data
	Fitting results
	Further consequences of the size distribution-interfacial energy correspondence: Future avenues for quantifying system parameters 

	Conclusions



