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We present a method to estimate the amount of squeezing and temperature of a single-mode
Gaussian harmonic oscillator state based on the weighted least squares estimator applied to measured
Fock state populations. Squeezing and temperature, or equivalently the quadrature variances, are
essential parameters states used in various quantum communication and sensing protocols. They
are often measured with homodyne-style detection, which requires a phase reference such as a
local oscillator. Our method allows estimation without a phase reference, by using for example
a photon-number-resolving detector. To evaluate the performance of our estimator, we simulated
experiments with different values of squeezing and temperature. From 10,000 Fock measurement
events we produced estimates for states whose fidelities to the true state are greater than 99.99% for
small squeezing (r < 1.0), and for high squeezing (r = 2.5) we obtain fidelities greater than 99.9%.
We also report confidence intervals and their coverage probabilities.

I. INTRODUCTION

Estimating the state of a quantum system is an im-
portant tool for quantum information processing. It al-
lows one, for example, to quantify the accuracy of pre-
pared states, diagnose errors in the states, and estimate
properties such as entanglement measures. State recon-
struction is done in two steps: data extraction from the
experiment and statistical estimation. For continuous
variable systems, such as harmonic oscillators, the first
is usually accomplished by using balanced homodyne de-
tection to measure quadratures [1–3]. Sets of quadra-
tures measured at different phases can be used to re-
construct the system’s Wigner function by using a nu-
merical inverse Radon transform[4], or one may recon-
struct its Fock-basis density matrix by maximizing the
likelihood function[5] or by other techniques. Another
strategy for state estimation is to apply a displacement
operator followed by Fock-state parity measurement, as
done in Refs. [6, 7]. The homodyne-detection and the
displacement-and-Fock-parity strategies require a phase
reference to serve as a local oscillator and to apply the
displacement, respectively. However, in some systems
phase-sensitive detection is not easily available; examples
are integrated optical circuits that use photon-number re-
solving detectors[8, 9] and trapped ions whose motional
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Fock states are measured by coupling to the ions’ qubit
states [10, 11]. In such systems, one would still like to es-
timate those features of a quantum state that are phase-
independent.

We focus on single-mode, Gaussian states centered at
the origin of quadrature space, which we call “squeezed
thermal states”. Squeezed states have been studied for
applications such as measurement noise reduction[12, 13],
as generators of entanglement in continuous variable
quantum teleportation [14], and as resource states for
quantum computation[15]. We present here a method
for inferring a system’s squeezing and temperature based
on Fock state measurements, minimizing the weighted
squared errors between the probabilities of measuring
each Fock number and the frequency of observing that
Fock number. Because we measure only Fock popula-
tions, we do not have access to phase information. The
method can be applied to any type of quantum oscillator
such as superconducting resonators, single trapped ions,
and photons. From 10,000 measurement events, we ob-
tained fidelities between the true state and the estimated
state greater than 99.99% for small squeezing (r < 1.0).
Even for high squeezing (r = 2.5) the average of the
estimate’s fidelity with the true state was greater than
99.9%.

The paper is organized as follows: in Section II
we present the Fock probability distribution and the
weighted least squares estimator of squeezing and tem-
perature, including our use of Bayes rule to obtain the
weights. In Section III A we report fidelities of estimated
states obtained from simulated experiments, for differ-
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ent values of total number of measurements, tempera-
ture and squeezing. We discuss confidence intervals and
bias correction in Section III B, and make our concluding
remarks in Section IV.

II. FITTING MODEL

A. Fock State Probability Distribution

Squeezed thermal states can be obtained by different
processes. Thermal noise can be added to a squeezed
state, squeezing can be applied to a thermal state, or
both heating and squeezing can happen simultaneously.
All the resulting states are Gaussian and can be described
by the parameters n̄ (the mean thermal Fock number,
which quantifies the temperature) and r (the strength of
the squeezing)[16].

Let us consider the case where squeezing is applied
to a thermal state. The thermal state has the density
operator

ρ̂ =
∑
n

n̄n

(n̄+ 1)n+1
|n〉 〈n| . (1)

The state is then squeezed, resulting in the new state

ρ̂s = Ŝ†ρ̂Ŝ, (2)

where Ŝ = exp
[
râ2

2 −
r(â†)2

2

]
is the squeezing operator,

with a squeezing parameter r, and â and â† are the har-
monic oscillator ladder operators. The quadrature oper-
ators are

q̂ =
(â+ â†)√

2
,

p̂ =
(â− â†)
i
√

2
.

(3)

Squeezed thermal states and coherent states are exam-
ples of Gaussian states, meaning that their Wigner distri-
butions are Gaussian functions. The most general form
for a single-mode Gaussian state is given by the two-
dimensional Wigner function:

W (q, p) =
1

2π|Σ|−1
exp

[
−1

2
(X −X0)TΣ−1(X −X0)

]
,

(4)

where X = (q̂, p̂)T is the quadrature vector, X0 = 〈X〉
is the displacement vector, and Σ is the 2× 2 covariance
matrix of the Gaussian state. The thermal and squeezing
information is encoded in the covariance matrix.

Fock state population measurements have no phase
dependence. Therefore we cannot obtain a full esti-
mate of Σ because all phase rotations of Σ give the
same Fock distribution. To remove this ambiguity, we

estimate a diagonal Σ with the quadrature variances
Vq = 〈q̂2〉 − 〈q̂〉2 ≤ Vp = 〈p̂2〉 − 〈p̂〉2:

Σ =

(
Vq 0
0 Vp

)
. (5)

For a squeezed thermal state, the variances are related
to the squeezing and temperature by

Vq =
1

2
(2n̄+ 1)e−2r,

Vp =
1

2
(2n̄+ 1)e2r.

(6)

The experiment provides a list with the number of oc-
currences of each Fock state obtained from N measure-
ments. The probability of finding the system in a specific
Fock number n is

P (n|Vq, Vp) = Tr{ρ̂ |n〉 〈n|}, (7)

where ρ̂ is the density operator of the state. This prob-
ability could be calculated by overlapping the unknown
state’s Wigner function W (q, p) and the nth Fock state’s
Wigner function Wn(q, p):

P (n|Vq, Vp) = 2π

∫∫ ∞
−∞

W (q, p)Wn(q, p)dq dp, (8)

where Wn(q, p) is

Wn(q, p) =
(−1)n

π
e−q

2−p2Ln(2q2, 2p2), (9)

and Ln(2q2, 2p2) are the Laguerre polynomials.
P (n|Vq, Vp) can also be obtained using the similar ap-

proach described in Ref. [17]: by calculating the diagonal
elements of the density matrix in the coherent state basis,
using the overlap relation

〈α| ρ̂ |β〉 =
1

2π

∫∫ ∞
−∞

W (q, p)Wβα(q, p)dq dp, (10)

where |α〉 and |β〉 are coherent states and Wβα is the
Wigner function of |β〉 〈α|.

The result of the integral for squeezed thermal states
is expressed, in terms of 2D Hermite polynomials

H
{R}
mn (0, 0), as:

〈α| ρ̂ |β〉 = P (0|Vq, Vp) exp

[
−(|α|2 + |β|2)

2

]
×

∞∑
m,n=0

αnβ∗m

m!n!
H{R}mn (0, 0),

(11)

where R is a symmetric 2× 2 matrix whose elements are

R11 = R22 =
2(Vp − Vq)

1 + 2(Vq + Vp) + 4(VqVp)

R12 = R21 =
1− 4VpVq

1 + 2(Vq + Vp) + 4(VqVp)
.

(12)
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One can also compute 〈α| ˆrho|β〉 by expanding each of
the coherent states in the Fock basis to obtain

〈α| ρ̂ |β〉 = exp

[
−(|α|2 + |β|2)

2

] ∞∑
m,n=0

αnβ∗m

(m!n!)
1
2

ρmn.

(13)
By comparing Eq. (11) and Eq. (13), ref. [17] derives
the expression for the diagonal density matrix elements
ρnn = P (n|Vq, Vp):

P (n|Vq, Vp) = P (0|Vq, Vp)
H
{R}
nn (0, 0)

n!
, (14)

where

P (0|Vq, Vp) = [0.25 + VpVq + 0.5 (Vp + Vq)]
−1/2, (15)

H{R}nn (0, 0) = n!

(
[0.5 + 2VpVq − (Vp + Vq)]

[0.5 + 2VpVq + (Vp + Vq)]

)n/2
Qn(f),

(16)

Qn(f) is the Legendre polynomial of order n, and

f =
−(1− 4VqVp)

[(4VqVp + 1)2 − 4(Vq + V p)2]1/2
. (17)

The function P (n|Vq, Vp) obtained by the method of
Ref. [17] was faster to calculate than using Eq. (8),
though the two methods give equal probabilities. There-
fore, we use the probability distribution obtained by
Eq. (14) in our code.

B. Fitting Method

The experiment measures the number kn of times each
Fock state n over a total of N measurements, and we
immediately obtain estimates of P (n|Vq, Vp) by calculat-
ing fn = kn/N . To estimate Vq and Vp we apply the
weighted least squares estimator. The weighted sum of
squared residuals is given by:

∆(Vq, Vp) =

nF∑
n=0

wn [P (n|Vq, Vp)− fn]
2
, (18)

where wn is the weight associated with the nth measure-
ment. Our estimates will be those values of Vq and Vp
that minimize ∆(Vq, Vp). However, not all pairs of vari-
ances are allowed because the Heisenberg restriction im-
poses Vq × Vp ≥ 0.25. We also impose the constraints
Vq ≤ Vp, Vq > 0, and Vp > 0.

The weights wn = 1/Var(fn) quantify the uncertainty
in the measurement fn, which we calculate as described
below. We model the event of obtaining a specific Fock
state n, kn times when we perform N experiments with
the binomial distribution. The binomial distribution has
success probability pn, fn is an estimate of pn, and

Var(kn) = Npn(1 − pn). A direct choice to estimate
Var(fn) would be to use the maximum likelihood strat-
egy. The maximum likelihood estimator for the binomial
success probability pn is p̂n = fn = kn/N . We can esti-
mate Var(fn) with

Var(fn) =
Var(kn)

N2
(19)

≈ Np̂n(1− p̂n)

N2
(20)

=
kn(N − kn)

N3
. (21)

With this estimate of Var(fn), the weight depends on
1/kn, and that will be a problem when kn = 0, which
will happen frequently with highly pure squeezed states.

To overcome this problem, we instead use Bayesian
inference [18] to estimate Var(fn). The posterior distri-
bution of pn is given by

P (pn|kn) = P (kn|pn)P (pn)/P (kn). (22)

The likelihood P (kn|pn) can be easily obtained by using
the binomial distribution:

P (kn|pn) =

(
N

kn

)
pn
kn (1− pn)N−kn .

We choose the prior distribution P (pn) to be a Beta dis-
tribution since it is a conjugate prior for binomial dis-
tributions, meaning that the posterior P (pn|kn) is also a
Beta distribution. The prior is given by

P (pn) =
pn
ν−1(1− pn)η−1

Beta(ν, η)
, (23)

where Beta(ν, η) is the Beta function:

Beta(ν, η) =

∫ 1

0

tν−1(1− t)η−1dt,

and ν and η are the “shape parameters”. For P (kn) we
get

P (kn) =

∫ 1

0

P (kn|pn)P (pn) dpn

=

(
N

kn

)∫ 1

0
pn
kn+ν−1 (1− pn)N−kn+η−1 dpn

Beta(ν, η)

=

(
N

kn

)
Beta(kn + ν,N + η − kn)

Beta(ν, η)
.

(24)

The posterior distribution is then given by

P (pn|kn) =
pn
kn+ν−1 (1− pn)N−kn+η−1

Beta(kn + ν,N + η − kn)
, (25)

which is a Beta distribution with new shape parameters
ν′ = kn + ν and η′ = N + η − kn and variance

Var(pn|kn) =
(kn + ν)(N + η − kn)

(ν +N + η)2(ν +N + η + 1)
. (26)
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FIG. 1. Graphs showing the logarithm log10 wn of the weights
used in the least-squares fit versus n for measurements of the
quantum state with squeezing r = 2.5 and thermal average
Fock number n̄ = 0.01 for three different numbers N of mea-
surements and for different values of the prior distribution’s
shape parameters ν and η. We see that the weights are not
very sensitive to the prior distribution’s shape parameters µ
and ν, and the closeness increases for increasing N . We ob-
served similar behavior for other choices of r and n̄.

We use this variance when computing the weights wn =
1/Var(pn|kn) in the weighted sum of squared residuals,
which ensures that the weights are finite when kn = 0.

Fig. 1 presents the behavior of weights calculated with
priors having different values of N and different shape
values. The graphs show that for N ≥ 100, which is
easily achievable in experiments, the weights are not very
sensitive to the choices for η and ν. Odd Fock numbers
have higher weights because we are testing a nearly pure
squeezed state, which has low probability for containing
odd Fock numbers.

III. TESTING

A. Simulated Experiments

To test our estimator we feed it with simulated data
from a known state and compare it with the output. We
also present estimates of bias, confidence intervals, and
their coverage probabilities. For various choices for n̄ and
r we simulated 100 experiments. For each experiment,
the Fock distribution is measured N times and an esti-
mate of n̄ and r is produced. From those experiments, we
calculated the mean fidelity and report its dependence on
N for n̄ = (0.001, 0.01, 0.1, 2) and r = (0, 1.0, 2.5). (Ref.
[11] reported squeezing of r = 2.26± 0.02.)

Of course only a finite number of Fock states can be
resolved in an experiment. Ref. [11] reported the resolu-
tion of 20 Fock states for ion motion, and ref. [19] and
ref. [20] resolve 29 and 16 photonic Fock states, respec-
tively, with transition edge sensors. In our simulations,
we assume that the detectors can resolve Fock numbers
0 through 20, but they cannot distinguish higher Fock
numbers. Thus we have 22 possible measurement results,
with the first 21 being Fock numbers 0 through 20 and
the last containing all events with Fock numbers ≥ 21.
This provides enough information for our tests, which
have r ≤ 2.5 and n̄ ≤ 2. During the simulated experi-
ment the probability of getting a set of counts for n = 0
to 21 over a total of N measurements can be calculated
by a multinomial distribution for P (n|Vq, Vp) and N total
measurements. We used Mathematica to generate sam-
ples from a multinomial distribution. Thus we simulate
all the data needed to evaluate our method.

Quantum state fidelity F measures the closeness of two
states ρ1 and ρ2:

F (ρ1, ρ2) =

[
Tr

(√√
ρ1ρ2
√
ρ1

)]2
. (27)

We use the quantum state fidelity between the true state
and our estimate to quantify the accuracy of our estima-
tor. Because we are estimating squeezed thermal states,
we rewrite the fidelity as [21]:

F (ρ1, ρ2) = (
√

Ξ + Λ +
√
λ)−1, (28)

where Ξ and Λ are given by

Ξ = det(Σ1 + Σ2),

Λ = 4 det

(
Σ1 +

i

2
J

)
det

(
Σ2 +

i

2
J

)
,

(29)

Σ1 and Σ2 are the single mode covariance matrices for
each mode, and J is

J =

(
0 1
−1 0

)
. (30)

Fig. 2 plots the mean infidelity, 1−〈Fidelity〉, averaged
over 100 simulated experiments using different shape pa-
rameters µ and ν (used for choosing the weights) on the
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FIG. 2. 1− 〈Fidelity〉, the mean infidelity averaged over 100
simulated experiments, and the standard deviation of the 100
infidelities as a function of the number N of measurements for
n̄ = 0.01, three values of squeezing, and different choices the
shape parameters ν and η that determine the weights used in
the weighted least squares estimator.

fidelities as a function of N for three different states. For
any N and the three states chosen, µ = ν = 1 (cor-
responding to the uniform prior distribution) performs
better than the other tested pairs of shape parameters.
For all following simulations we use µ = ν = 1. Fig. 2
also shows the importance of using weights, specially for
high squeezing states (r = 2.5).

Fig. 3 presents 1 − 〈Fidelity〉 versus N for three dif-
ferent squeezing values and four values of n̄. States with
higher squeezing require larger N to obtain high fidelity
estimates, but the fidelities are less sensitive to n̄. For a
state with r = 2.5, n̄ = 0.1, after 10100 measurements,
from 100 simulated experiments, we obtain an average fi-
delity of 0.9991, and the standard deviation of the fidelity
estimates is 0.0011.
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FIG. 3. 1 − 〈Fidelity〉 and its the standard deviation of the
fidelity estimates as a function of the number of measurements
for different n̄’s.

B. Confidence Intervals

We characterize uncertainty in our estimates using con-
fidence intervals. A confidence interval (CI) of confidence
level (1− 2α) (with 0 ≤ α ≤ 1) for an estimated parame-
ter has the property that with probability (1− 2α) when
the experiment is performed and the CI calculated, the
CI will contain the true value of the parameter. Boot-
strap methods [22] provide a way to calculate CIs, based
on two steps: using simulations to build a set of estimates
and applying an algorithm to the simulated estimates to
produce the interval. For the first step, we use a “para-
metric bootstrap” in which estimates of Vq and Vp ob-
tained from the original experiment are used to simulate
experiments NB times according to the model described
by Eq. (14), producing NB pairs of simulated estimates
of Vq and Vp (or equivalently r and n̄).

We first tested the Percentile Method [22, 23] to calcu-

late our confidence. For an estimate θ̂ of some parameter
θ and an ordered set of simulated bootstrap estimates.
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BR = (θ̂1, θ̂2, ..., θ̂NB
), the (1− 2α) CI is [θ̂l, θ̂m], where

l = bNBαc
m = bNB(1− α)c.

(31)

We performed a test of the Percentile Method on three
different reference states given by fixed n̄ = 0.01 and
squeezing r = (0, 1.0, 2.5). For each state, we ran 100
simulated experiments with N = 104. For each we cal-
culated a 90% confidence interval (α = 0.05) and then
estimated the coverage probabilities by the fraction of
times that the confidence intervals contained the true
value, with Vq, Vp, r, and n̄ considered independently.
For comparison we tested both NB = 1, 000 and 2, 000.
Table I presents the results of the test. NB = 1, 000
gives good results for lower squeezing, but as squeez-
ing increases the coverage probabilities decrease for all
parameters but Vp. Doubling the number of bootstrap
simulations does not significantly improve the coverage
probabilities. For r = 2.5, the coverage probability for
n̄ is far from expected. Coverage probabilities of around
98% are obtained for estimates of r when r = 0 because
this is on the boundary of parameter space and no boot-
strap simulation can give estimates below 0.

To understand the low coverage probabilities we ex-
plore the ratio B/σ of bias (here denoted by B) to stan-
dard deviation for estimates of parameters of different
states, as shown in Table II. Bias is the difference between
the expectation value of an estimate of a parameter and
the true value of that parameter. We calculated B/σ for
both quadrature variances, r, and n̄ for several states.
We have previously seen that the highest squeezing con-
sidered, r = 2.5, presented the worst results of average fi-
delity, and we can see in Table II that high squeezing also
causes large B/σ ratios. Such large B/σ ratios, especially
for estimates of n̄ at high squeezing, could be the cause
of the low coverage probabilities obtained when using the
percentile method to construct confidence intervals.

To reduce the influence of bias we use the “BC” al-
gorithm from [24] to calculate the CIs. The results are
shown in Table III and were obtained using the same
data used for Table I. The bias correction provides con-
fidence intervals with coverage probabilities closer to the
specified confidence level of 90%, though the coverage
probability for n̄ is still low.

Figure 4 shows a set of 30 example 90% intervals for
n̄ calculated for the tests presented on Tables I and III.
After bias correction, far more of the confidence intervals
contain the true value of n̄. For example, for the state
with r = 2.5 and n̄ = 0.01, measured N = 1000 times,
when nominal 90% confidence intervals are calculated,
the coverage probability for n̄ has increased from 15% to
74% by using the bias correction. Because of the n̄ ≥ 0
boundary, we expect that it will be difficult to achieve
exact coverage probability for states with n̄ near 0 using
standard methods, but given the bootstrap estimates, the
bias correction is easy to apply and significantly improves
the coverage probability.
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FIG. 4. Example confidence intervals for n̄, computed with
the percentile method (upper panel) and the bias correcting
BC method (lower panel) arranged in arbitrary order along
the horizontal axis. The true parameters are r = 2.5 and n̄ =
0.01. The red dots show the point estimates for n̄, the gray
error bars show the confidence intervals with and without bias
correction, the blue lines show the true value of n̄, the red lines
show the mean of the point estimates, and the dashed lines
show the means of the upper and lower ends of the confidence
intervals.

IV. CONCLUSION

In this work we presented a method of inference for
any squeezed thermal state based on the weighted least-
squares estimator. The results of our tests using sim-
ulated data for a squeezed thermal state showed high
fidelity results. The use of bias-correcting confidence in-
tervals mitigates the bias present in the point estimates
from smaller data sets of highly-squeezed, low temper-
ature states. These tools allow one to learn key prop-
erties of squeezed thermal states without the need for a
phase reference (such as a local oscillator) in systems such
as trapped ions [11] or integrated quantum optics [8, 9],
where performing Fock measurements is convenient. An
open problem that we hope to address in future work is
the use of Fock populations to estimate the magnitude
of displacement (from the origin of quadrature space) in
addition to the squeezing and temperature of any single-
mode Gaussian state. We also would like to explore a
hypothesis test for a measured Fock distribution being
produced by a Gaussian state.
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State (r,n̄) Vp(1k) Vq(1k) r(1k) n̄(1k) Vp(2k) Vq(2k) r(2k) n̄(2k)
(0, 0.01) 83% 88% 98% 94% 84% 89% 98% 93%
(1.0, 0.01) 82% 88% 87% 56% 83% 88% 86% 57%
(2.5, 0.01) 86% 58% 70% 15% 87% 59% 73% 18%

TABLE I. Table of the coverage probabilities for nominal 90% confidence intervals using the percentile method. The coverage
probabilities were estimated from 100 simulated experiments using NB = 1000 (left) and NB = 2000 (right) bootstrap replicates.
The coverage probabilities significantly different from 90% motivate our use of bias correction, shown in Table III.

True r B/σ in r True Vp B/σ in Vp True Vq B/σ in Vq B/σ in n̄
0 0.69 0.51 0.68 0.51 -0.68 0.069
0.5 -0.16 1.39 -0.19 0.19 0.013 -0.25
1 -0.24 3.77 -0.32 0.069 0.16 -0.64
1.5 -0.020 10.24 -0.12 0.025 -0.085 -0.90
2 0.27 27.85 0.094 0.0093 -0.44 -1.098
2.5 0.45 75.69 0.15 0.0034 -0.72 -1.40

TABLE II. Estimates of bias B divided by standard deviation σ for estimates of parameters of states with various squeezing
parameters r and n̄ = 0.01. Each estimate was generated from 1000 simulated experiments, containing N = 10000 Fock
measurements each, so some statistical fluctuation is expected. Estimates for which |B/σ| > 1 indicate that the bias in the
estimate is significant when compared to the statistical uncertainty in the estimate, and so bias correction may be useful.
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