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Abstract

Atomistic simulation of the electrochemical double layer is an ambitious undertak-

ing, requiring quantum mechanical description of electrons, phase space sampling of

liquid electrolytes, and equilibration of electrolytes over nanosecond timescales. All

models of electrochemistry make different trade-offs in the approximation of electrons

and atomic configurations, from the extremes of classical molecular dynamics of a com-

plete interface with point-charge atoms to correlated electronic structure methods of

a single electrode configuration with no dynamics or electrolyte. Here, we review the

spectrum of simulation techniques suitable for electrochemistry, focusing on the key

approximations and accuracy considerations for each technique. We discuss promis-

ing approaches, such as enhanced sampling techniques for atomic configurations and

computationally-efficient beyond density functional theory (DFT) electronic methods,

that will push electrochemical simulations beyond the present frontier.
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1 Introduction

Electrochemistry exploits the complex interface of two charge reservoirs – electrons and ions –

to facilitate chemical reactions involving electron transfers. Processes at the electrochemical

interface involve time and length scales substantially larger than the atomic scale,1 making

atomistic and first-principles modeling of electrochemistry particularly challenging.2

Further, accurate simulation of electrons and ions each introduce independent computa-

tional costs that necessitate trade-offs between accuracy in electronic structure and sampling

of atomic configurations. For example, the electronic charge distribution at a solid-liquid
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interface requires electronic structure methods that precisely account for the electronic level

alignment across the interface, while the most commonly-employed density-functional theory

(DFT) methods are not generally accurate for such interfacial alignments.3–7 Simultaneously,

the ionic charge distribution within the electrolyte equilibrates at nanosecond time scales,1,8,9

which would correspond to millions of time steps in molecular dynamics simulations.

This requires computational electrochemists to make a choice: allocate available resources

to adopt an accurate electronic structure method for a few atomic configurations, or sample

a large number of atomic configurations using a method with no or low-level electronic

structure, e.g., classical molecular dynamics (MD) or ab initio MD (AIMD).

This review aims to bring together computational electrochemical techniques ranging

from classical MD to first-principles reaction modeling within a unified perspective of improv-

ing accuracy of electrochemical simulations, from atomic-configuration sampling to electronic

structure. We identify key considerations for accuracy across different methods within this

spectrum, outline the choices currently made by typical approaches within computational

electrochemistry, and discuss promising techniques that may lead to improved choices in the

accuracy trade off.

Knowledge-based heuristics 
Data-driven geometry prediction 
Low-energy structure search

Energy, charge extrapolation
Grand-canonical electrons

Force-field improvements 
Fixed-potential metal 
Electron polarization

Corrections to DFT 
Ab-initio beyond-DFTCorrelated

methods

DFT

Classical
charges

Single configuration Ensemble of configurations Dynamics Atoms

Electrons Surface coverage of bound species 5.1

Electrolyte configurations 5.2

Electrode potential dependence 5.3

Charge transfer and vdW interactions 4.1 - 4.2

Unnecessarily approximate

Microsolvation
Continuum models
Combined methods

Ensembles: pressure,
concentration, time scales
2.2 - 2.4

Reactions, metal polarization,
capacitance 3.1 - 3.3

NPT for electrostriction 
Grand-canonical ions
Enhanced sampling

Figure 1: Approximations in computational electrochemistry organized by electronic struc-
ture accuracy (y axis) and degree of atomic-configuration sampling (x axis), consequent
considerations for accuracy (sticky notes with review section numbers), and typical solutions
(call-out boxes). The gradient across a sticky note indicates where each accuracy consider-
ation is most important. The gradient across a sticky note indicates where each accuracy
consideration is most important.

4



Figure 1 categorizes electrochemical simulations by the approaches used for describing

electronic structure (electron axis) and atomic-configuration sampling (atom axis). We re-

strict our focus to within the Born-Oppenheimer approximation, where these axes are inde-

pendent; see Ref. 10 for a discussion of effects beyond this approximation in electrochemistry.

The electron axis ranges from electron-less classical-charge methods to correlated wavefunc-

tion and many-body perturbation theory methods. Sampling of atomic configurations ranges

from single static configurations, through ensembles of few static configurations, to ensem-

bles sampled by full atomic dynamics (using e.g., an MD method). Computational cost

increases away from the origin along both the electron and atom axes, leading typically to a

few configurations for high-level electronic methods, and to a low-level electronic description

for large ensembles and dynamics methods.

We organize this review by the most important considerations for accuracy across multiple

techniques on this electron-atom trade-off spectrum (Figure 1). Specifically, we discuss

sampling the appropriate ensemble for the liquid and electrolyte (blue boxes), electronic

structure accuracy (green boxes), adequately sampling surface-bound species (yellow box),

and accounting for electrode potential effects (red box). We limit coverage to considerations

that require a trade off. For example, we focus on electrode potential effects in the single /

few configuration case rather than in the case of explicit configuration sampling using MD,

where established techniques exist to maintain the electrode potential7,11–15 and connect it

to experimental reference electrodes.7,13,14,16 We also exclude discussion of electrification and

solvation within first-principles electrochemical calculations covered extensively in previous

reviews by ourselves2 and others.17 Finally, each box in Figure 1 is graded in intensity to

indicate where each consideration is most important, and points to the sections that discuss

it.
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2 Computational setup for dynamics

The goals of electrochemical simulations span a wide range from predicting physical prop-

erties of the electrochemical interface, such as capacitance, to predicting mechanisms of

chemical reactions at the interface. Correspondingly, the computational setup of such sim-

ulations varies widely. At one extreme, reaction mechanism calculations may focus on the

energy landscape of molecules adsorbed at an electrode surface, eliminating the electrolyte

atoms entirely or replacing their effect with a continuum approximation (top left region

of Figure 1). Explicitly including the liquid/electrolyte structure in electrochemical simula-

tions requires techniques to sample the thermodynamic phase space of atomic configurations,

typically achieved with molecular dynamics (MD) simulations (right region of Figure 1).

We begin with common considerations for all MD methods that explicitly simulate atomic

motion using an approximation of the potential energy and forces for each atomic configu-

ration. These include lower-cost classical MD methods that employ empirical force fields,

approximated directly as a function of atomic positions (Section 3), and more expensive ab

initio MD (AIMD) methods that derive forces from electronic structure calculations (Sec-

tion 4) of each atomic configuration. Classical MD calculations for electrochemistry typically

simulate 103 − 104 atoms over few-to-tens of nanometer dimensions for 1− 10 nanoseconds,

while AIMD simulations typically simulate ∼ 100 atoms over few nanometer dimensions for

10 − 100 picoseconds. Within these computational constraints, MD simulations of electro-

chemical double layers must be sufficiently long to properly equilibrate and simultaneously

large enough to maintain a region with bulk electrolyte concentration and pressure, as we

discuss next.

2.1 Choice of simulation cell for molecular dynamics

Molecular dynamics simulation cells for electrochemistry can include two oppositely-charged

electrodes,18 or one or two half cells with a single electrode charge,19 as illustrated by Fig-
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ure 2. The full-cell approach (Figure 2(a)) is convenient for rapidly evaluating the dependence

of interface properties as a function of charge or potential, since it provides quantities for

both positive and negatively charged electrodes from each simulation. While this approach

is common in larger classical MD simulations, it requires care in smaller simulation cells with

few ions. Depending on the electrode charge, the expected equilibrium profile for a full-cell

simulation could necessitate fractional numbers of ions in each half cell, which would then

impractically require ions to diffuse between the two halves repeatedly within the time scale

of the simulation (Section 2.3). Additionally, these simulation cells involve a finite electric

field, which require careful treatment of polarization in AIMD simulations.20

(a)

(b)

(c)

ElectrolyteElectrode

Vacuum

Adsorbate (if any)

Figure 2: Electrochemical simulation cells can target (a) a full cell with oppositely-charged
electrodes, (b) a single half cell with a vacuum interface, or (c) back-to-back half-cells with
the same electrode charge. The electrode and adsorbate regions are typically modeled atom-
istically, while the electrolyte region could be described atomistically, as a continuum or
a combination thereof. Atomistic modeling could employ force fields or electronic struc-
ture methods, on a single atomic configuration or several configurations sampled by e.g.,
molecular dynamics.

Half-cell simulations are more typical for AIMD simulations, a consequence of their nec-

essarily smaller and shorter runs.19 Such calculations explicitly ensure a balance between

the electrode and ionic charges, avoiding the potential issue of requiring ions to straddle two

half cells discussed above. Further, half cell simulations could either employ a single half cell

combined with a electrolyte-vacuum interface (Figure 2(b)), or two back-to-back half cells

of the same electrode charge (Figure 2(c)).21 The first approach (Figure 2(b)) allows the

electrolyte density to equilibrate by moving the interface boundary, avoiding bulk-density

issues that can arise in approaches without a vacuum interface (see Section 2.2). How-
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ever, the atoms and simulation cell space expended for the electrolyte-vacuum interface is

not used effectively towards the electrochemical interface of interest. This can be partially

mitigated by replacing the vacuum region with a continuum electrolyte, as in the effective

screening medium (ESM) setup for AIMD simulations.12 In contrast, simulations with two

back-to-back half cells of the same charge provide statistics for two electrochemical interfaces

from each simulation,21,22 as in the full-cell approach. Additionally, they involve a nominally

inversion-symmetric overall simulation cell suitable for use with periodic boundary conditions

(typical in AIMD).

2.2 Choice of ensemble in molecular dynamics

The small system size of MD simulations relative to real electrochemical interfaces neces-

sitates special care to faithfully reproduce experimental conditions. The macroscopic bulk

electrolyte in experiment serves as a reservoir for solvent and ions at the interface, which

effectively sets the pressure and ion chemical potential in the interfacial region.2 In con-

trast, electrochemical simulations have a small bulk region that may be strongly affected

by the interface, depending on the ensemble employed in the MD simulation. Specifically,

simulation in a grand-canonical µPT ensemble, which maintains chemical potential of ions

µ and pressure P by varying the number of ions and volume, would most closely mimic

the experimental condition. However, MD simulations typically adopt NVT ensembles with

fixed number and volume or NPT ensembles with fixed number and pressure for practical

considerations, which may lead to deviations of pressure and ionic concentration in small

bulk regions as discussed next.

The main reason for difficulties in maintaining appropriate bulk thermodynamic con-

ditions is that the electrolyte-surface interactions strongly modify the electrolyte structure

at the interface, especially at charged interfaces with strong electric fields at the electrode

surface. These fields lead to an increase in the average density near the interface by elec-

trostriction,23 thus reducing the molecules available for the bulk within a simulation in the
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canonical ensemble. Simulations of liquids with a fixed separation between two interfaces (in

the NVT ensemble) always require determination of the appropriate number of molecules to

target the bulk density. Electrostriction additionally makes the required number of molecules

dependent on the surface electric field, and hence on the electrode charge or potential. Elec-

trostriction can be a large effect, and is a significant factor in determining the differential

capacitance profile of ionic liquids.24,25 Similarly, the electric fields at the interface increase

the concentration of some ions while suppressing the concentration of oppositely-charged

ions, requiring corresponding opposite changes in the bulk region of MD simulations at

constant volume and ion number. Such changes in bulk density and concentration may

be insignificant in large-enough NVT simulations,26 but become increasingly important in

smaller simulation cells, such as those typical for AIMD.

Switching to constant-pressure (NPT) or grand-canonical ensembles for the solvent and

ions would resolve these issues by ensuring that densities and concentrations far from the

interface are in equilibrium with the bulk electrolyte, as we discuss below. Despite the

widespread availability of NPT, for computational convenience, a vast majority of MD simu-

lations of electrochemistry work in constant volume and number (NVT) ensembles. Chang-

ing volumes in NPT simulations would require electrodes whose relative spacing fluctuates

during the simulation, making it challenging to analyze electrolyte structure and electro-

static potential profiles relative to the electrode position. Instead, in NVT MD simulations,

one can adjust the electrode spacing to get the correct bulk densities in the setup of the

simulation, and not change the spacing dynamically during the simulation.21,27 Alternately,

as discussed above in Section 2.1, half-cell simulations with a vacuum interface avoid bulk

density issues.19

Changes in bulk electrolyte concentration in canonical ensemble simulations potentially

pose a more severe issue than density changes at fixed volume. For ionic liquids, concen-

tration and density effects are comparable because the concentration of each ionic species is

comparable to the overall number density of the liquid. However, in electrolytes with low

9



concentrations of ions in a solvent, concentration effects are more significant due to the low

overall numbers of ions in the bulk region.1 This can be addressed by switching to grand-

canonical simulations, such as by using grand-canonical Monte-Carlo (GCMC) methods that

include ion insertion and deletion moves with probabilities set by the chemical potential.28

The chemical potential of ions is, in turn, set to reproduce the target ionic concentration

in the bulk fluid.28 For electrochemical simulations, grand-canonical molecular dynamics

(GCMD) methods that incorporate such insertion/deletion moves within MD simulations

are more efficient than GCMC.29 Such insertion/deletion methods have primarily employed

classical force fields due to computational cost. Grand-canonical statistics can be realized in

a more limited context with AIMD simulations by combining results from simulations with

different ion numbers using weights based on the chemical potential, e.g., to control surface

proton concentrations at fixed pH (bulk proton concentrations).30 Beyond fixing the ionic

concentration, it is also important to ensure that the spatial distribution of ions equilibrates

within the time scale of the simulation, as we discuss next.

2.3 Time scales

The limited timescale of MD simulations, usually 10 − 100 ps in AIMD to 1 − 10 ns in

classical MD, necessitates care to ensure adequate sampling of atomic configurations of the

electrochemical interface. This is of course most important for the slowest processes, which

include rearrangement of strongly-adsorbed species at the electrode surface and ion diffusion

in the electrolyte.

Strong adsorption may favor specific low-energy atomic configurations, separated by en-

ergy barriers that slow down the dynamics of switching between these configurations and

reaching equilibrium. Such strongly-adsorbed species could include molecules undergoing

an electrochemical transformation, or even chemisorbed ions or solvent molecules from the

electrolyte. For instance, the rotational time scale of water adsorbed at the interface can be

much slower than in bulk water31 and can depend strongly on the electrode potential.32,33
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The equilibration time for chemisorbed water, e.g., on Pt surfaces, can even exceed 10 ns.34–36

We discuss approaches to sample such slow-to-equilibrate configurations in Section 2.4.

Additionally, the diffusion of ions in the electrolyte leads to a long time scale of double

layer formation.1,8,9 The electrochemical double layer includes an inner layer of ions within

a few Angstroms of the electrode, followed by a diffuse layer of ions that extends from a

few Angstroms at high electrolyte concentrations to several nanometers at lower electrolyte

concentrations.2 Consequently, the challenge of equilibrating the double layer increases in

severity with decreasing electrolyte concentration, with fewer ions required to diffuse greater

distances within the simulation time scales. This is particularly serious in AIMD simulations,

where computational costs limit calculations to 100 to 200 atoms, leading to very few ion

pairs (often just one) in the simulation cell.

To illustrate possible issues due to diffuse-layer time scales and small ion numbers, Fig-

ure 3 shows ion profiles of aqueous NaF electrolyte between electrified Ag(100) electrodes in

a typical AIMD-sized cell with 1 ion pair at 54 water molecules, but calculated using classical

MD to explicitly check the equilibration time scales. The simulations use SPC/E water37

and alkali-halide parameters from Ref. 38 in the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS)39 code in a canonical (NVT) ensemble at 300 K with a 1 fs

time step. The electrode is described with fixed atomic charges and interacts with the elec-

trolyte using Morse potentials parameterized to DFT calculations. (See Ref. 21 for details

on the force field parameters and potential calculation.) The left panels show the water O

and H densities and Na+ and F− ion profiles at upper-bound AIMD time scales of 100 ps,

averaged over 5 sequential 20 ps chunks. The colors/dashes range from lightest/sparsest to

darkest/solid with increasing time of simulation, starting from an initial configuration with

ions at the interfacial layer as often employed in AIMD. The water density profiles do not

seem to change significantly over this time scale, but the ions are confined to a few Angstrom

in z in each 20 ps chunk, and these chunks overall move around at the 100 ps time scale.

In contrast, the right panels show a simulation starting from exactly the same configuration
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Figure 3: Water and ion density profiles from classical MD simulation of an aqueous 1M
NaF electrolyte in a 10 × 10 × 20 Å simulation cell typical for AIMD (contains 54 water
molecules and 1 ion pair), between Ag(100) electrodes charged to ±10 µC/cm2 (full cell,
as in Figure 2(a)). Left panels show results averaged over five sequential 20 ps segments
typically feasible in AIMD, while the right panels show averages over 2 ns segments from
the same initial configuration (each averaged over 500 equally-spaced configurations). The
dotted lines at 1 correspond to bulk densities. Ion profiles do not spread out sufficiently to
form a diffuse layer even in such a small cell until nanosecond timescales.

extending out to 10 ns (impractical in AIMD, typical in classical MD). It is only at these

time scales that the ions are able to sample the spatial extent of the diffuse layer within the

simulation cell. Notice that the first 2 ns chunk differs significantly from the rest, not just

for the ion profiles, but also for the water profiles. This example illustrates that even if the

AIMD is first equilibrated using inexpensive methods such as classical MD, the time scales

of AIMD will not allow for equilibration of either the water34,35 or the ions. This is true

even if the sampled trajectory looks like it is unchanging over the (short) simulation time.

Consequently, to circumvent the diffusion time scale of ions, AIMD simulations with ex-

plicit ions typically focus on the ions in the inner (Stern) layer,22 thereby neglecting the

diffuse-layer ions. This approach works for potentials far from the potential of zero charge
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and at high ionic concentrations, where the Stern layer dominates. At the opposite extreme,

MD simulations of neutral electrodes (at the potential of zero charge) can avoid the ion

diffusion time scale by eliminating explicit ions entirely.16,40,41 However, at intermediate po-

tentials and concentrations, the full double layer may still be required to capture the electric

properties of the interface. This requires techniques that can capture slow dynamics and

rare configurations more efficiently than MD simulations, such as using enhanced sampling

methods, as we discuss next.

2.4 Enhanced sampling

Time scales of dynamics of both adsorbates and the electrolyte at electrochemical interfaces

can exceed the capabilities of direct MD simulations, as discussed above. Enhanced sampling

techniques broadly address such time scale limits by making rare processes more probable

than in an MD simulation, thereby capturing rare configurations within a fewer total number

of evaluated configurations. These techniques span a wide range of complexity, starting from

targeting a specific reaction with a known reaction coordinate, which could be suitable for

slow adsorbate dynamics at the electrochemical interface. At the opposite extreme, all-atom

enhanced sampling methods attempt to explore relevant rare processes automatically, which

would be necessary for dynamics without a known reaction coordinate, such as double layer

formation.

The simplest class of enhanced sampling methods follow an explicitly known reaction

coordinate, e.g. the adsorption/desorption of a species on an electrode surface with distance

from the surface serving as a reaction coordinate.42 In such cases, MD simulations can be

performed starting from several initial values of the reaction coordinate to ensure coverage

of all relevant values of that coordinate. The trajectories of these MD simulations are then

re-weighted to calculate the potential of mean force (PMF), the derivative of free energy with

respect to reaction coordinate, at several values of the reaction coordinate. Approaches like

the Blue Moon ensemble can prescribe ideal choices for the set of initial reaction coordinates
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such that the re-weighted PMF estimates are accurate for the desired range of reaction

coordinates.43 Most importantly, by integrating over the PMF, these calculations estimate

reaction free energies including entropy.44 In contrast, conventional MD simulations typically

only estimate energy and enthalpy, requiring additional approximations for the entropy, such

as the two-phase 2PT method that interpolates the entropy between two bulk phases.45,46

Figure 4: Enhanced sampling allows mapping the free-energy landscape of proton transfer
at an aqueous TiO2 interface as a function of collective variables based on O-O and O-H
distances.47 The predicted barrier of 25 kJ/mol would make proton transfer too rare to
capture in conventional MD simulations. (Adapted from Ref. 47. Copyright 2020 Royal
Society of Chemistry under (CC BY-NC 3.0).)

When the processes of interest have more complex or several reaction coordinates, start-

ing from several initial values of the reaction coordinate can become impractical. Instead,

enhanced sampling approaches such as umbrella sampling and metadynamics48,49 apply bias

potentials that make the lowest energy configurations less probable, thereby increasing the

relative probability of rare configurations. The bias potentials are typically a function of

collective variables that change between the low and high-energy configurations,50 serving

as generalized reaction coordinates. For example, combinations of distances between sur-

face/water oxygen atoms and hydrogen atoms succeed as collective variables to map the free

energy of proton transfer at the water-TiO2 interface using umbrella sampling (Fig. 4).47 A
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more complex case of sampling the reaction of alumina with water with metadynamics re-

quires multiple collective variables, such as the coordination numbers of aluminum atoms by

oxygen from the alumina and by those from the water.51 See Ref. 52 for a detailed review of

such enhanced sampling techniques applied to AIMD simulations of reactions at solid-liquid

interfaces.

Finally, enhanced sampling techniques can also be applied beyond specific chemical re-

actions to capture more general processes without known reaction coordinates / collective

variables,53 such as ion diffusion and reorganization of strongly adsorbed species at elec-

trochemical interfaces (Section 2.3). A number of general techniques have been developed

to simulate slow processes ranging from diffusion and phase transformation in solids,54,55 to

biomolecular processes including protein folding.56,57 These techniques adopt different strate-

gies to push the simulation out of a local minimum in energy towards less-probable configu-

rations, ranging from generalized bias potentials in the Adaptive Biasing Force method58 to

increased effective temperatures in simulated annealing, temperature-accelerated dynamics

and replica-exchange MD. See Ref. 53 for a review spanning this entire range of enhanced

sampling methods. The general enhanced sampling methods for complex processes without

known reaction coordinates or collective variables require a much larger number of configu-

rations (� 106) than practical for AIMD,55 and have typically been restricted to classical

MD. Recent developments in machine-learned force fields bridging classical MD and AIMD

(Section 3.1), combined with such collective-variable-free enhanced sampling methods, will

make it possible to simulate double layer formation and other dynamical electrochemical

processes beyond the reach of current MD simulations.

3 Classical molecular dynamics accuracy

We next turn to the approximations for the energy and charge density employed by simu-

lations of electrochemical interfaces, starting with classical MD simulations. At the bottom
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right of Figure 1, classical MD prioritizes ionic dynamics to extensively sample atomic con-

figurations. The resulting extensive approximations to account for the electrolyte, metallic

electrode, and electronic charge density (if included at all), necessitate care to accurately

predict the charge density and electrostatic potential profiles of electrochemical interfaces

using classical MD.

3.1 Force fields

The central approximation in classical MD is the use of force fields to describe all interatomic

interactions. The accuracy of force fields depends both on the range of physical effects that

they can account for, and on the data used to parameterize their empirical parameters. Most

importantly, force fields for classical MD simulations of electrochemical interfaces must be

simultaneously accurate for the electrode, electrolyte and electrode-electrolyte interactions.

The simplest force fields for atomistic simulations typically combine Coulomb interactions

between fixed charges on each atom type, and pair potentials such as Lennard-Jones or

Morse potentials to account for short-ranged repulsion and intermediate-range attractions,

including dispersion interactions.59,60 The parameters of such force fields for liquids are

usually fit to reproduce the structure and thermodynamic properties of bulk liquids, based on

experimental measurements or ab initio simulations.61 These force fields are computationally

efficient and allow simulations to access larger length and time scales, but they cannot capture

variations of the interatomic interactions from bulk materials to interfaces. Additionally, for

electrolytes, the parameterization of such force fields may also need to be modified when

ionic concentration increases from the dilute limit towards the solubility limit.62,63

Polarizable force fields introduce induced dipoles in addition to fixed charges at each

atom, allowing treatment of electronic polarizability.64,65 This partially captures variations

of the effective interatomic interactions with the local atomic environment, as reviewed by

Ref. 66 for electrolytes. Charge equilibration (QEq) in force fields allows for even more

flexibility by adjusting atomic charges based on their environment, frequently using elec-
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tronegativity of atoms compared to their neighbors to determine the equilibrium charges.67

QEq is often combined with reactive force fields that adjust short-ranged bonding and dis-

persion interactions based on an empirical bond order, in turn determined from the atoms

surrounding each atom.68,69 Reactive force fields have been successfully applied for reaction

modeling at electrochemical interfaces,28,29 but require careful parameterization for specific

combinations of materials at the interface using extensive ab initio simulations to determine

their large number of parameters.

Figure 5: Recent neural network (NN) potentials predict atomic charges, including long-
range rearrangements, in excellent agreement with DFT calculations.70 This is necessary for
including electrode potential effects in electrochemical MD simulations with NN potentials.
(Adapted from Ref. 70. Copyright 2021 Springer Nature under (CC 4.0).)

All the above force field models employ specific functional forms for each of the phys-

ical effects that they empirically approximate. In contrast, machine-learned (ML) force

fields use highly flexible functional forms that can capture virtually any form of interatomic

interactions,71 provided enough data from ab initio calculations.72 In particular, neural

network (NN) models are highly versatile for predicting forces and energies as a general

function of the local environment of each atom.73 Most NN force fields include the forces

due to Coulomb interactions implicitly, and have been shown to predict atomic structures of

electrode-electrolyte interfaces with sufficient accuracy.74,75 However, without explicit atomic

charges, such models cannot account for long range electrostatics and electrode potential ef-

fects important for electrochemistry.74,76 Classical MD simulations for electrochemical inter-

faces should therefore take advantage of recent NN force-field developments that explicitly
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model global rearrangements of atomic charges (Figure 5) depending on the atomic envi-

ronment,70,76–80 using a generalization of the QEq method.67 Finally, ML force fields can

be learned on-the-fly during the course of AIMD simulations.81–83 This facilitates skipping

the electronic structure calculation automatically when the ML force predictions are suffi-

ciently accurate, potentially bridging the time scales accessible by AIMD and classical MD

simulations.

3.2 Fixed-potential treatment of metal electrodes

Classical MD approximations of interatomic interactions must account for the redistribution

of charges over long distances by metallic electrodes. The electrode potential fixes the elec-

tron chemical potential, allowing the number of electrons at the surface to freely equilibrate

as the charge of the electrode reaches its equilibrium value.2 Fixing the charge at this equi-

librium value and letting the potential fluctuate around its equilibrium value instead will

yield equivalent thermodynamic averages between these two ensembles. This is the case for

first-principles calculations where fixed-potential and fixed-charge calculations are equivalent

for averages (but differ in fluctuations) as long as they describe a charged interface with the

same equilibrium charge and potential.84

However, ‘fixed-charge’ classical MD simulations conventionally refer to fixed atomic

charges, rather than fixed total charge.86 They describe the electrode as a slab where the net

surface charge is distributed among the surface atoms, and this charge stays fixed throughout

the simulation. In a real metal (and in all AIMD and in some classical MD85–88 calculations),

the charge distribution of a metal electrode will respond automatically to make its surface

equipotential. (This assumes an ideal metal with a high electronic density of states, where

the electrostatic potential is screened within a fraction of atomic dimensions; we discuss

finite Thomas-Fermi screening length effects in Section 3.3.) This rearrangement leads to

an attraction between charges in the electrolyte and the induced charge distribution in the

metal (Fig. 6(a)). Charges on a typical classical MD slab do not respond to the electrostatic
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Figure 6: (a) Fixed-potential MD simulations capture localized induced-charge response of
the metal electrode,85 causing (b) an increased effective attraction of charged electrolyte
species to the electrode leading to substantial differences in ion distributions next to the
electrode.86 ((a) Reprinted from [J. Chem. Phys. 141, 184102 (2014)], with the permission
of AIP Publishing. (b) Adapted with permission from [J. Phys. Chem. Lett. 2013, 4, 2,
264–268]. Copyright 2013 American Chemical Society.)

environment and miss this charge to induced-charge attraction with the electrode. Fixed-

potential MD simulations capture this interaction, making them physically distinct from

fixed-charge MD simulations.85,87–90

Simulating a metal surface in MD and correctly describing the fixed, constant potential

requires specialized techniques beyond application of standard force fields with fixed pair in-

teractions.37,91–93 The localized dipole response of polarizable force fields (Section 3.1) may

approximate the induced charge distributions of metal surfaces for large enough polarizabil-

ities,64 but cannot capture the complete charge rearrangement that makes a metal surface

equipotential in general. The global reassignment of charge in reactive force fields67–69 are de-

signed to capture charge transfer between adjacent atoms in different chemical environments,

but cannot reliably capture a metallic response. Similarly, the nonlocal charge transfer in

recent NN force fields (Section 3.1) has so far focused on molecular and non-metallic sys-

tems,70 and may require further development to achieve reliable treatment of the metallic

response.

Initial treatment of fixed potential in MD relied on image-charge methods: the electro-

static potential near an ideally planar metallic electrode can be computed as the combined
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potential from all the charges in the electrolyte and their reflection (with negated charge)

about the electrode plane.94–96 This technique does not require adjustment of charges to

capture the equipotential and can capture the attraction of the charged liquid species to the

metal as their attraction to their own image charges. However, this only works for a single

ideally flat electrode surface, and does not easily generalize to other geometries.

A more general scheme of fixed potential in MD explicitly adjusts the charges of all metal

atoms in the simulation, solving a set of dense linear equations at each time step to ensure

that the electrostatic potential on each metal atom equals the electrode potential.87–89 This is

more computationally demanding, requiring multiple evaluations of the long-range Coulomb

interactions in reciprocal space,97 which is the most expensive component of classical MD

force fields, in addition to the dense linear solve. However, the generality of this approach

allows treatment of arbitrary electrode geometries and is increasingly available in classical

MD software.85,98

Several comparisons between fixed constant charge and fixed potential simulations have

demonstrated that fixed charge simulations may incorrectly model the charge response.99

Large charge localized on the surface means that fixed potential simulations can access

more favorable electrode-electrolyte interactions.85,86,100 Figure 6(b) shows that the increased

effective electrode-electrolyte attraction in the fixed potential method leads to larger peaks in

the electrolyte structure of an ionic liquid next to the electrode, compared to a fixed charge

simulation at the same net surface charge density.86 This difference in the ion distributions

of ionic liquids next to the electrode further increases with increasing electrode potential.85

The ion distribution differences also impact the electrochemical capacitance of the interface,

causing a reduction of the characteristic double hump behavior in fixed potential calculations

compared to fixed charge calculations.100

To examine the conditions under which the metal induced charge interactions captured

by the fixed potential methods are important, Figure 7 compares fixed charge and fixed

potential methods for molten NaCl next to weakly and strongly attractive walls. Specifically,
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Figure 7: Comparison of charge density (top panels) and electrostatic potential (bottom pan-
els) between fixed-potential (solid lines) and fixed-charge (dotted lines) molecular dynamics
simulations of molten NaCl. The weakly-attractive electrode (left panels) shows noticeable
charge density and electrostatic potential differences between the two methods because the
fixed charge method misses an image charge interaction with the metal electrode. This
missed interaction is less significant for a strongly-attractive electrode (right panels).

we simulate 711 ion pairs in a 25 × 25 × 50 Å region between two Pt(001) electrodes using

LAMMPS39 with standard Fumi-Tosi parameters for NaCl.101 The strongly attractive wall

uses Cl parameters for the metal-ion interactions,88 and the weakly attractive wall uses the

same repulsion but scales down the attraction by a factor of 10. We perform simulations

with the constant potential method first,85 and then with the conventional fixed charge

method for the same net electrode charges. Notice that the difference between the fixed

charge and potential methods in Figure 7 is most significant for the weakly attractive wall,

where the image charge interaction of ions with the metal is relatively more important. The

differences in the potential profile and charge density are negligible for the strongly-attractive

wall. Consequently, while the fixed potential method is more natural to describe a metal

electrode, the more computationally efficient and widely-available fixed charge method may

suffice if the wall-ion attraction is sufficiently strong. Alternatively, one could parameterize
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the empirical wall-ion interaction potential to effectively include the image-charge attraction.

Figure 8: (a) Induced field in the electrolyte decays within picoseconds, but (b) the electrode
charge equilibration on change of potential requires hundreds of picoseconds for ion diffusion,
as revealed by fixed-potential molecular dynamics simulations.102 (Adapted with permission
from [J. Phys. Chem. B 2011, 115, 12, 3073–3084]. Copyright 2011 American Chemical
Society.)

This equivalence between fixed potential and fixed charge MD with a modified wall in-

teraction is however limited to equilibrium properties of the electrochemical interface. When

considering fluctuations of the electrode charge,103–105 or the dynamics of double layer forma-

tion, the differences between fixed charge and fixed potential are more fundamental.1,86,102

The double layer typically approaches its equilibrium structure much faster in a fixed charge

simulation, where the electrode always has the target charge density which sets up the electric

field that drives the ion distributions to their equilibrium values. However, in a fixed poten-

tial simulation (that matches the experimental scenario), the electrolyte near the interface is

initially not charged and will respond only over longer time scales of several nanoseconds.106

At these initial times, the capacitance of the interface is low since it is determined entirely

by the electronic response of the electrode. The corresponding small charge at the electrode

implies a low electric field and driving force towards equilibrium ion distributions. Therefore,

the rate at which ion distributions build up in the double layer are much slower in the fixed

potential method (Fig. 8), and are artificially too fast in the fixed charge method. Once the

double layer has formed, and electron transfer reactions are not present,107,108 the differences
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between the two methods reduce to the different effective electrode-electrolyte interaction

potentials as discussed above.

3.3 Electronic polarizability corrections

Fixed potential classical MD simulations discussed above capture the redistribution of charge

between metal atoms in the electrode, but the charge is still located on the metal atoms. In

contrast, the electron density determines the spatial extent of the charge response of elec-

trons, and typically extends past the atom positions by (0.5 to 1) Å.109 Not accounting for

electronic polarizability therefore increases the ‘gap’, d, between the induced charge locations

of the electrode and electrolyte by & 1 Å. This gap introduces an extra series capacitance

ε0/d . 10 µF/cm2, which is then the upper limit on the total capacitance of electrochemical

interfaces predicted by classical MD simulations. Consequently, classical MD simulations

that do not account for electronic polarizability grossly underestimate electrochemical ca-

pacitance,110 especially for metal electrodes with typical experimental capacitance ∼ (20 to

50) µF/cm2.

The missed contribution due to the electronic polarizability can be compensated by re-

placing the classical MD charge on the surface atoms with a charge density that extends

beyond the plane of the electrode, towards the electrolyte.21 The simplest version of this

amounts to shifting the plane of electrode charge in classical MD towards the electrolyte,

effectively reducing the gap and increasing the capacitance.111 This is equivalent to adding

a surface dipole potential (Figure 9(a)),110,112 whose magnitude is determined empirically

or from electronic DFT calculations of the electrode under an applied electric field.113,114

More generally, the classical MD charge density can be replaced by an electron density pro-

file calculated using DFT, thus including nonlinear changes of the electronic response with

electrode potential that can affect the shape of the capacitance curves (Figure 9(b)).21,115

Alternately, the mean electrostatic potential from classical MD of the electrolyte can be

incorporated into electronic DFT of the electrode to include a degree of self-consistency in
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Figure 9: The underestimation of electrochemical capacitance by classical MD can be fixed
by (a) a dipole correction that accounts for the electronic induced charge distribution,114

or equivalently, (b) a shift of the electrode charge density towards the electrolyte.21,115 (c)
Additionally, a semi-classical Thomas-Fermi model can approximately incorporate electronic
screening of the electrode to decrease the overall capacitance for electrodes that are not
perfect conductors.117 ((a) Adapted with permission from [J. Phys. Chem. C 2020, 124,
36, 19548–19555]. Copyright 2020 American Chemical Society. (b) Adapted from [J. Chem.
Phys. 156, 014705 (2022)], with the permission of AIP Publishing. (c) Adapted from [J.
Chem. Phys. 153, 174704 (2020)], with the permission of AIP Publishing.)

For electrodes that are not perfect conductors, efforts have been made to account for

both the electronic polarizability of the electrode and the electrode screening. In one such

approach based on the jellium model for metals, metal electrons described by a semi-classical

Thomas-Fermi model are directly included in the classical MD simulation.117 These metal

electrons are assumed to extend beyond the electrode surface by half the spacing between

layers. The Coulomb term of the classical MD is then modified to include electronic polar-

ization at the Thomas-Fermi level, with a screening length dependent on the electron density

of the electrode material, which effectively introduces a series capacitance at the surface of

each metal electrode (Fig. 9(c)). These two steps collectively amount to moving the elec-

tronic response nearer to the liquid compared to the surface atoms for high electron-density

materials like metals, but also allow for the response to move further from the liquid for low

electron-density materials, e.g., in graphitic electrodes.117

Electronic contributions in classical MD have been included for graphitic electrodes and

to a lesser extent, bare metallic electrodes.21,116 Extending this approach to more general
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electrodes, especially involving functional groups, ligands or adsorbates attached to metals

requires additional care. In such cases, the effective location of the induced charge density can

move from the surface of the metal to the tip of the surface-attached species.118 Such effects

are highly sensitive to the nature of bonding of the species at the surface and are challenging

to treat within classical MD, requiring an explicit electronic structure treatment.

4 Electronic structure accuracy

Electronic structure methods are necessary to capture changes in chemical bonding for re-

action modeling and to fully account for electronic polarization effects at the interface. In

principle, an electronic structure method could accurately describe the metallic electrode,

reacting species, solvent, and electrolyte on the same footing. Such electronic structure

methods could be used to evaluate configurations within an (AI)MD simulation, or specific

adsorbate configurations and reaction paths as discussed later in Section 5.

Kohn-Sham density-functional theory (DFT) is the most commonly employed electronic

structure method and has been highly successful at identifying reaction sites, structures,

and reaction mechanisms in catalysis.119–123 Briefly, DFT solves the Schrödinger equation for

independent single electrons in an effective potential that approximately captures electron-

electron interactions based on the electron density. Energy contributions beyond the aver-

age Coulomb interaction of electrons are captured by the exchange-correlation functional,

which is typically treated semi-locally as a function of only the local electron density and

its gradients. (See Ref. 124 for a detailed introduction.) However, the approximation of

the electron-electron interactions within DFT, which makes it computationally practicable,

can introduce significant errors in ab initio electrochemical simulations. DFT errors at the

electrode surface include inaccurate adsorbate binding energies on metal surfaces, regard-

less of exchange-correlation functional,5,125–128 interfacial band alignment,14,129 and surface

formation energies of oxides.130 Similarly, for the electrolyte, DFT underestimates the band
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gap of water, overestimating its polarizability,131 and hence its dielectric constant.132–134

Additionally, DFT errors in dispersion and many-body interactions in liquid water lead to

errors in liquid structure,135 while self-interaction errors limit accuracy of binding energies

between ions and solvent in aqueous electrolytes,136 and between ion pairs in ionic liquids.137

The inaccuracy of DFT has prompted empirical approaches to predict catalytic activity

by correlating electronic structure descriptors from DFT,138 such as d-band positions,139,140

with experimental activity. However, these approaches do not improve on the accuracy

of DFT in modeling electrochemical interfaces. We focus first on empirical corrections to

improve DFT energy predictions. We then discuss ab initio methods beyond DFT that can

simulate electrochemical interfaces with higher fidelity.

4.1 Empirical corrections to DFT predictions

Empirical approaches use data from experiments or higher-level computational methods to

compensate for the limited accuracy of DFT electronic structure predictions for specific

properties of a narrow range of systems.

4.1.1 Experiment-based corrections

Inaccuracies in gas phase energies of molecules frequently dominate adsorption energy errors

in semi-local DFT functionals. Rectifying the gas-phase energies of molecules involved in

adsorption energy calculations can substantially reduce overall errors. For example, empir-

ical gas-phase energy corrections derived from experimental formation energies reduce the

average error in onset potential of CO2 to CO reduction on 7 metal surfaces from 0.20 to

0.06 V.141 However, solvent-binding and electrification effects can also impact adsorption

energies (and hence onset potentials) by 0.1 – 0.2 eV,142 necessitating treatment beyond

gas-phase corrections for systematic modeling of electrochemical reactions.

Beyond gas-phase corrections, empirical corrections to DFT modeling of molecules ad-

sorbed on surfaces may adapt the DFT exchange-correlation for a specific reaction or class
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of systems. For example, specific reaction parameter (SRP) DFT linearly combines different

exchange-correlation functionals to cancel DFT errors optimally, originally demonstrated for

dissociative chemisorption of H2 on metal surfaces.143 The linear combination coefficients

are fit to experimental sticking curves from supersonic beam experiments and are typically

dependent on the reaction and specific metal surface.144–146 (See Ref. 147 for a review of SRP

methods.) Extending such techniques from surfaces in vacuum to electrochemical interfaces

will require comparably sensitive experimental probes of binding energies and reaction rates.

A further challenge in linear combinations to cancel DFT errors in surface adsorption and

reactions is that the optimum combination may depend on the nature of the binding in-

teraction. Adapting the linear combination to transition between different parameters for

covalent and vdW binding, for example, better fits a wider range of systems than a fixed lin-

ear combination of DFT methods.126 These methods are currently optimized for adsorption

of a single species, and hold promise as a tool for simplified calculations of electrochemical

environments (e.g., without co-adsorption of multiple species and solvents).

4.1.2 Delta-learning to beyond-DFT methods

Empirical corrections to DFT for more complex electrochemical interface structures are

challenging to achieve based on limited experimental measurements alone. Instead, ab initio

simulations beyond DFT can resolve many of the accuracy limitations of DFT as discussed

next in Section 4.2, and can be performed more readily for a specific atomic configuration

of the interface. While beyond-DFT approaches can also be used directly for predicting

electrochemical processes, albeit with high computational costs, they can also be useful to

generate data for empirical models that can make rapid predictions for a wider class of

systems.

At the simplest limit of such approaches, relatively few beyond-DFT calculations can be

used to fit a linear extrapolation of a specific property such as binding energy from DFT to

a higher-level electronic structure method.148 Machine-learning (ML) methods can capture
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more complex trends and increase the generality of such predictions. ML methods can be

used to bypass electronic structure calculations, both as force fields for specific systems

(Section 3) and for property predictions across classes of systems.149 However, this typically

requires a very large number (103 − 104) of calculations that is achievable at the DFT level,

but more challenging for beyond-DFT methods.

Figure 10: The mean absolute error (MAE) in atomization energies of molecules from ma-
chine learned (ML) models compared to a beyond-DFT method (G4MP2) as a function of
number of molecules, N , in the training set reduces drastically when the model is trained

to the difference ∆DFT
G4MP2 between DFT (either PBE or B3LYP) and the beyond-DFT

method.150 Such ∆-learning approaches allow beyond-DFT accuracy at DFT cost with far
fewer expensive beyond-DFT calculations. (Adapted with permission from [J. Chem. Theory
Comput. 2015, 11, 5, 2087–2096]. Copyright 2015 American Chemical Society.)

Delta learning, a general approach to learn the difference between a low and high-level

prediction, rather than learning the higher level prediction directly, provides a pathway to

significantly reduce the necessary number of beyond-DFT calculations. In this approach,

DFT is applied to a set of systems, a higher-level method is applied to a subset of those

systems, and an ML model is trained to the difference between the two methods, addition-

ally allowing properties from the lower-level DFT calculation as inputs to the model. For

example, an ML model using the DFT electron density can learn the difference in predicted

energies between DFT and quantum chemical methods (Section 4.2.3) for a wide range of

molecular geometries,151 with far fewer calculations in the training set compared to ML
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models trained to the higher-level method alone (Figure 10).150 Similarly, delta-learning be-

tween DFT and the random-phase approximation (Section 4.2.2) shows promising results for

solid-state systems152 and molecule adsorption on solid surfaces,153 requiring very few (tens)

of RPA calculations. Leveraging such approaches for electrochemical reaction modeling re-

quire accurate, beyond-DFT electronic structure methods that are tractable for modeling

electrochemical interfaces, as we discuss next.

4.2 Beyond-DFT methods

Empirical corrections to DFT properties can improve prediction accuracy without increasing

computational cost, but their utility is restricted to systems similar to those used to train

the model. Electrochemical interfaces for even a single reaction can vary substantially in

the electrode composition and surface structure, electrolyte species, surface coverage, and

co-adsorbates. Capturing this variety in data sets for empirical correction approaches is

challenging. Consequently, improving the electronic structure method itself would facilitate

detailed exploration of electrochemical processes more generally. In particular, an improved

electronic structure method would need to address: missing long-range correlations between

electrons that include dispersion interactions, unphysical self-interaction between electrons,

and a poor description of strong correlation among electrons, as discussed below. Here, we

outline the possible approaches starting with improved DFT functionals, followed by per-

turbative treatment of many-body effects missed by DFT, and fully many-body approaches.

We end with a discussion of quantum embedding approaches as a strategy for balancing

accuracy and computational cost.

4.2.1 DFT methods beyond semi-local functionals

We first discuss approaches to mitigate the above issues within the formalism of density

functional theory. For dispersion (van der Waals) interactions, approaches to correct for

the missed long-range correlations range from empirical pair-potential corrections,154–156

29



to non-local functionals that approximate the local electronic polarizability using density-

functional techniques.157,158 See Ref. 159 for a detailed review of van der Waals functionals

in DFT. Recent electronic vdW functionals capture dispersion interactions more generally

across material systems than empirical approaches, and compare better with experimental

binding energies than semi-local DFT. Figure 11(a) shows that a nonlocal vdW correction

(vdW-DF157) significantly improves the underestimated binding energy of graphite by local

(LDA) and semi-local (PBE) DFT. However, the vdW density functional results are still

inaccurate compared to experiment.160 This is observed more generally in other systems

and with other vdW functionals. For instance, the structure of liquid water predicted by

DFT is improved,161,162 but not fully corrected by vdW density functionals due to missing

beyond-two-body dispersion interactions.135,163 Consequently, approaches beyond both em-

pirical corrections and vdW density functionals are necessary for a more universally accurate

treatment of long-range correlations.

Improved electronic structure methods also need to correct the self-interaction error in

DFT. Specifically, the mean-field Hartree term (Coulomb interaction computed on the elec-

tron density) in DFT includes a spurious repulsion of each electron by itself, which is only

partially cancelled by semi-local exchange-correlation functionals. This spurious repulsion

leads to the general underestimation of DFT band gaps. For adsorbates on metal surfaces,

self-interaction errors lead to incorrect energy level alignment between the molecules and the

metal surface.5,164 This can lead to significant errors in the charge state and binding energy

of adsorbates,6,125,128 limiting the accuracy of semi-local DFT predictions for electrochemical

reactions. Direct subtraction of self-interaction errors for each single-electron wavefunction

improves electronic structure in certain cases,165 but depends on the choice of orbitals (not

invariant under unitary transformations of occupied orbitals),166 and has so far been limited

to molecules and finite clusters of atoms.

The most computationally-efficient semi-empirical approach to partially correct self-

interaction errors is DFT+U .167,168 This technique adds energy corrections for electronic
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states localized to each atom based on an empirical parameter U for each atomic species

with localized orbitals (such as d-orbitals). See Ref. 169 for a detailed overview of DFT+U

methods. DFT+U is useful as a quick fix for d-electron inaccuracies in electronic struc-

ture and energetics of transition metals and compounds. However, it performs less reliably

when moving from bulk to surface properties, such as surface formation energies, because

of varying electronic environments for the same atom type.170 Most importantly, DFT+U

introduces non-systematic errors in adsorption energies, activation barriers and reaction en-

ergies on transition-metal containing catalysts,171 making it unsuitable as a general-purpose

technique for first-principles electrochemistry.

Currently, hybrid functionals, which include a fraction of the exact exchange energy,

calculated from the electron wavefunctions rather than approximately from the electron

density, are the most widely applied approach to mitigate self-interaction errors in semi-

local DFT.172 Exact exchange cancels out the self interaction in the Hartree term exactly for

one-electron systems, but it overcorrects many-electron systems because it does not account

for screening of the exchange interaction by other electrons. Hybrid functionals address this

issue by using only a fraction of exact exchange,173,174 and in screened-exchange functionals,

by additionally using a short-ranged Coulomb operator in the exact exchange calculation.175

The partial cancellation of self-interaction errors in hybrid functionals leads to significant

improvements in both adsorption energies and reaction barriers for molecules on surfaces.164

In principle, the exchange fraction and screening length should depend on the dielectric

response of the material. General-purpose hybrid functionals use empirical values for these

parameters that work across a class of materials and properties of interest e.g., reaction bar-

riers in molecules or band gaps of solids, and have been highly successful for those materials

and properties. A non-empirical approach to hybrid functionals by setting exchange fraction

based on the dielectric constant works well for band gaps of semiconductors.176,177 In this

regard, the appropriate exchange fraction for metals with strong screening of the exchange

interaction is zero, and indeed hybrid functionals generally perform worse for metals than
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semi-local DFT.178,179 This poses a challenge for rigorously modeling electrochemical inter-

faces that combine metals,178,179 adsorbed molecules at the surface,180,181 and fluids with a

large band gap in a single calculation, each of which require a different exchange fraction for

accurate treatment using a hybrid functional.182

Figure 11: (a) Semi-local and nonlocal vdW-DF density functionals underestimate binding
energy of graphite, while RPA agrees closely with QMC simulations and experiment.160 (b)
DFT also underestimates surface energies of metals, while RPA agrees with experiment.183

((a) Adapted figure with permission from [Phys. Rev. B 87, 075111 (2013)]. Copyright
2013 by the American Physical Society. (b) Adapted with permission from [J. Phys. Chem.
C 2018, 122, 8, 4381–4390]. Copyright 2018 American Chemical Society.)

4.2.2 Many-body perturbation theory

Accurate treatment of electronic structure across a large range of electronic environments,

e.g., metal to fluid in an electrochemical interface, generally requires many-body techniques

beyond DFT that explicitly account for electronic screening. Missing long-range correla-

tions and self-interaction errors in DFT discussed above all stem from the use of a single

non-interacting electronic wavefunction (Slater determinant of one-electron orbitals). Many-

body pertubation theory approaches start from this wavefunction and introduce electron

correlation effects perturbatively. The most common approaches to explicitly calculate cor-

relations are based on the electron Greens function G(r, r′, t′− t), which describes the expec-

tation of finding an electron at position r′ and time t′, after introducing one at r and earlier
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time t. The GW method approximates G starting from the corresponding non-interacting

Greens function G0 of DFT, and the (time/frequency-dependent) screened Coulomb poten-

tial W (r, r′, t′ − t) computed explicitly from DFT. GW leads to more accurate predictions

of electronic band structures that account for many-body electron effects (correlations).184

The corresponding calculation of the total energy of the electronic system corresponds to

the random-phase approximation (RPA) method. See Ref. 185 for a review of the RPA

approach to the electronic correlation energy.

Notably, the scaling and computational cost of GW and RPA are between that of DFT

and the potentially more accurate quantum-chemistry methods discussed in the next section,

and they are routinely applied to extended systems, including metals and metal surfaces.

These techniques explicitly account for the screening of the Coulomb and exchange interac-

tions by the electrons of the system, and are therefore applicable to electrochemical interfaces

combining metals, molecules and fluids. In particular, they predict the level alignment be-

tween molecules / molecular liquids and metals accurately,3,4 which is critical for capturing

the correct charge states of reacting species at an electrochemical interface within RPA total

energy calculations.

RPA directly includes long-range correlations and thereby captures dispersion (vdW) in-

teractions without additional corrections across diverse chemical environments. Figure 11(a)

shows that RPA predicts the binding energy and distance of graphite in excellent agreement

with experiment and quantum Monte Carlo simulations, in contrast to vdW DFT func-

tionals that underestimate the binding strength.160 It also predicts the formation energy

of metal surfaces – important for describing energetics at an electrochemical interface –

much more accurately compared to experiment than any semi-local or vdW DFT functional

(Figure 11(b)).183 However, traditional RPA without an exchange-correlation contribution

within the screened Coulomb potential W can be less accurate for covalent bonds than hybrid

functionals.160 Consequently, applications to electrocatalysis should employ recently modi-

fied RPA methods that include a renormalized DFT exchange-correlation screening kernel,
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which makes RPA more accurate for both covalent and vdW interactions.186

4.2.3 Wavefunction / quantum chemical methods

An alternative to capturing many-body effects perturbatively is to directly work with many-

body electronic wavefunctions. Quantum chemical / wavefunction methods typically solve

for the many-body electronic wavefunction as a linear combination of several non-interacting

wavefunctions. The most direct approach of considering all such linear combinations – the full

configuration-interaction (FCI) approach – scales exponentially with the number of electrons

and is practical only for atoms and very small molecules. In practice, quantum chemical

methods restrict the choice of non-interacting wavefunctions from this exponentially-scaling

set. For example, coupled-cluster techniques typically account for combinations of single and

double excitations relative to the ground-state wavefunction. See Ref. 187 for an introduction

to quantum chemical methods.

For molecular reactions, these coupled-cluster techniques are systematically improvable

and provide the best accuracy.187,188 Quantum chemistry methods implicitly account for elec-

tron correlations, including long-range vdW interactions, and therefore would be desirable

for accurately describing molecules on surfaces for electrochemistry. However, these methods

are restricted to finite molecular geometries due to their computational cost. Application to

heterogeneous catalysis typically involves replacement of solid surfaces by small atom-cluster

surface models.189 Alternately, a cluster of atoms treated with quantum chemistry may be

embedded within techniques suitable for solids, as discussed below in Section 4.2.5.

4.2.4 Quantum Monte Carlo simulations

An alternative class of techniques to account for many-body electronic effects are quan-

tum Monte Carlo (QMC) techniques, which use stochastic methods to solve the many-

body Schrodinger equation and find the ground state energy of an electronic system.190 The

domain of stochastic exploration in QMC may range from real space in diffusion Monte
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Carlo (DMC) to the space of non-interacting wavefunctions (Slater determinants) in full

configuration-interaction QMC (FCIQMC) methods. FCIQMC operates in a similar space

as quantum chemical methods, and is most developed for calculations of molecules and, to

a lesser extent, non-metallic solids.191 Out of the family of QMC methods, diffusion Monte

Carlo (DMC) is currently most suited to periodic calculations of electrochemical systems.

It has more favorable scaling (at worst, N4 in practice192) with system size than quantum

chemical methods. See Ref. 193 for a review of QMC methods.

Diffusion Monte Carlo (DMC) captures dispersion interactions, describes metals correctly,

and has been used to describe adsorption energies as well as reaction barriers for molecules on

transition metal surfaces.194–199 DMC can be very accurate, with the potential to have errors

smaller than ‘chemical accuracy’ of 1 kcal/mol. Recent advances to automate convergence

of statistical errors,192,200 and to mitigate finite size errors that are particularly important

for metallic systems,201,202 bring DMC closer to being a widespread option for chemistry

at metallic surfaces. Combined with the development of solvation models compatible with

quantum Monte Carlo methods,203 including techniques to deal with statistical errors in

the electron density204 and achieve self-consistent solvation by electrolytes,205 DMC is now

within reach for electrochemical simulations.

4.2.5 Quantum embedding methods

A remaining hurdle in widespread application of any of the above beyond-DFT methods

for electrochemistry is the significantly higher computational cost compared to DFT. This

could be mitigated by using quantum embedding techniques – applying higher-level electronic

structure to only a portion of the system, along with lower-level methods for the remainder of

the system.206 Embedding is particularly useful for simulating molecules adsorbed on metal

surfaces, with quantum chemical methods applied to the molecule and a cluster of metal

atoms closest to it, and methods more amenable to periodic systems such as DFT applied

to the metal surface slab.207 These techniques typically incorporate the potential from the
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lower-level DFT method into the localized quantum chemical simulation, and show great

promise for circumventing DFT errors in adsorbed molecules such as for the prototypical

example of CO on Cu(111).208

Figure 12: (a) Embedding coupled-cluster singles and doubles (CCSD) within random phase
approximation (RPA) calculations results in better convergence with size of fragment, com-
pared to equivalent embedding within DFT. Results shown here for the adsorption energy of
water on a TiO2(110) surface, with (b) showing the electron density from the occupied or-
bitals of the fragment treated using CCSD.209 (Adapted from [J. Chem. Phys. 154, 011101
(2021)], with the permission of AIP Publishing.)

Embedding techniques require care to ensure convergence with respect to fragment size:

the size of the subsystem treated at the higher level of theory. Recent advances on several

fronts show promise for maintaining accurate calculations with smaller fragments. First, the

interactions between the two levels of theory can be extended beyond traditional density-

functional embedding (i.e., using the electron potential) to Greens function- or density

matrix-based embedding: see Ref. 210 for a detailed comparative review of these embedding

formalisms. Next, improving the treatment of correlations in the lower-level method can im-

prove the matching between different levels of methods and reduce the needed fragment size,

as demonstrated for embedding coupled cluster theory within RPA for water on a titanium

dioxide surface (Figure 12).209 Finally, embedding techniques have also been demonstrated

for QMC as the higher-level method, including DMC in DFT to allow treatment of larger

fragments than quantum chemical methods,211 and FCIQMC in DFT to treat higher-level

correlations than coupled cluster techniques.212

The ability of quantum embedding techniques to combine different approaches for por-

tions of the system makes them promising for electrochemical calculations that bring to-
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gether metals, molecules and liquids with vastly different electronic structure. Further work

is now necessary to test embedded methods for charged electrochemical interfaces, including

electrolyte solvation, to make them widely applicable to computational electrochemistry.

5 Single configurations and their ensembles

In the previous sections, we discussed techniques of increasing accuracy along the electron

axis of Figure 1 from classical MD to beyond-DFT electronic structure. The corresponding

increase in computational cost typically makes dynamics intractable and necessitates a cor-

responding move to the left along the atom axis: towards single configurations and ensembles

of few static configurations.

In this final section, we discuss the challenges inherent in approximating electrochemical

interfaces by single or few structures. Specifically, selection of surface structures for ad-

sorbates becomes increasingly important when evaluating few atomic configurations. Note

that this consideration could be important for strongly-bound species at the surface even in

MD simulations, since the structure of such species may not equilibrate at MD-accessible

time scales. Beyond the surface-adsorbed species, weakly-interacting solvent and electrolyte

interact with the surface and must be included explicitly in the simulation, implicitly using

a solvation model, or a combination of such approaches. Finally, we discuss the effect of the

electrochemical potential on predictions from such calculations with single / few configura-

tions.

5.1 Surface coverage of bound species

We first discuss sampling atomic configurations for the electrode surface and its strongly-

bound adsorbates that adopt one or more well-defined structures (i.e., not a continuous en-

semble that necessitates dynamics). However, the coverage and site preference of adsorbed

species routinely change with electrochemical conditions including electrode potential and
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electrolyte composition. Further, the structure of the surface itself may change by recon-

structions, oxidation and dissolution depending on electrochemical conditions. Consequently,

selection of surface structures requires techniques to generate candidates and identify the

lowest-energy configurations as a function of conditions.

First-principles simulations of electrochemical reactions frequently employ knowledge-

based methods, starting from structures known from experiment and analogs to those struc-

tures. For single crystal electrodes, heuristics coupled with ab initio methods with limited

numbers of atoms may be sufficient to create initial structures.119 However, ensembles of

structures generated in this way may be biased towards extreme coverage and simple struc-

tures, because they are typically generated with simulation size as the primary concern.

Additionally, evaluation of a single structure implicitly assumes that the configurational

entropy does not significantly contribute to the surface free energy.213 Overall, heuristic ap-

proaches can be successful for systems with extensive prior experimental and computational

experience, but can be biased and essentially an uncontrolled extrapolation when applying

it to previously unexplored systems.

Data-driven and simulation-based approaches can provide a more systematic pathway

to identifying candidate structures. Such approaches have been developed recently for neu-

tral and unsolvated catalyst surfaces, and could be applied for electrochemical applications.

Data-driven approaches to structure generation are essentially a systematic big-data limit of

heuristic approaches: they use extensive databases of structures in previously studied sys-

tems to train models to generate candidate structures for new systems. While databases of

structures have been well-established for solids and molecules,214–216 the increased complexity

and degrees of freedom make this much more challenging for surfaces and adsorbates. Re-

cent databases of surface reactions for catalysis containing adsorption and reaction energies

from DFT calculations,217 and surface adsorption with both DFT and beyond-DFT meth-

ods,183 aim to bridge this gap for surface properties. Extending coverage of such databases

to additionally include electrochemical conditions of solvation and electrode potential will

38



be vital to apply machine learning and data-mining for reliably proposing candidate surface

structures for electrochemistry.

Figure 13: Determination of stable surface structures of IrO2 as a function of electrochem-
ical potential,218 combining heuristics to generate structures, with ab initio methods and
Gaussian process approximate models to evaluate energies of structures. The algorithm (left
panel) captures a large number of surface structures, as depicted in the Pourbaix diagram
(right panel). (Adapted with permission from [J. Phys. Chem. Lett. 2016, 7, 19, 3931–3935].
Copyright 2016 American Chemical Society.)

In addition to data-driven techniques that directly target structures, simulation-based

approaches involve performing global searches for the minima of an energy function. The

global search algorithms include Monte Carlo and evolutionary algorithms,219 while the en-

ergy functions could be obtained directly from electronic structure methods or a range of

approximations trained to such data. In the extreme limit of directly evaluating energies

using first-principles methods, the number of evaluated structures during the search is typi-

cally limited to a few thousands.220,221 This computationally-expensive direct approach has

been applied to surface structures in limited contexts, such as oxidation of metal surfaces220

and segregation of metals in alloy surfaces.221

More commonly, surface structure searches are performed using approximate models fit

to first-principles data. Early surface structure studies employed cluster expansion methods

to approximate interactions between adsorbates, and performed Monte Carlo simulations to

predict coverage of adsorbates at different conditions,222 including at electrochemical inter-

faces as a function of electrode potential.223 Cluster expansions and more recent lattice-based
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machine-learning models224 work best for identifying structures that involve occupation of

specific adsorption sites with different coverages, without significant additional degrees of

freedom. For more complex surface structures, machine-learned (ML) force fields trained to

ab initio data (Section 3.1) can be used to accelerate the structure search.225–227

Figure 13 showcases a combination of above approaches to predict stable electrochemi-

cal interface structures as a function of potential.218 Specifically, heuristics generate initial

candidate structures and new structures for energy evaluation using ab initio methods. The

lowest energy structures are used in determining new structures for evaluation, and Gaussian

Process ML models trained to the ab initio data are used to rapidly evaluate larger numbers

of structures than is practical with first-principles methods alone.218

5.2 Electrolyte configurations and solvation

The problem of sampling atomic configurations is not limited to the electrode surface and

adsorbates (discussed above in Section 5.1), and is in fact a key challenge in accounting for

solvation by the electrolyte. However, the considerations for configuration sampling differ

considerably for the solvent, electrolyte, and other weakly bound species that are not limited

to the surface of the electrode, and are not expected to be restricted to few well-defined

structures. Importantly, it is not straightforward to avoid the problem of configuration

sampling by resorting to AIMD simulations because of the time scale issues discussed in

Section 2.3. Consequently, treatment of electrolyte solvation in first-principles calculations

(without dynamics) falls into two categories: microsolvation, where few solvent / electrolyte

configurations are included explicitly in the ab initio calculation, and continuum methods

that directly approximate the statistically-averaged solvation effects.

Microsolvation includes solvent and electrolyte atoms directly within first-principles cal-

culations of electrochemical interfaces, and therefore naturally describe electronic interac-

tions between the electrolyte and the electrode. For electrodes in aqueous electrolyte, elec-

tronic interactions become increasingly important with increasing binding energy between
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the electrode and water.10,41,228 The increased binding strongly affects the electrostatic po-

tential in the electrochemical interface, leading to a difference, ∆Φ, between the potential of

zero charge (PZC) of the solvated electrode and its vacuum surface counterpart, the work

function.229 Figure 14 illustrates the correlation between ∆Φ and the adsorption energy of

water, calculated from AIMD simulations. Here, sp-metals have the weakest water bind-

ing and the smallest value of ∆Φ, while d-metals have the strongest water binding and the

largest value of ∆Φ. When the potential is away from the PZC, the interfacial electric field

also changes the electrode-electrolyte interaction, arising from changes in orientation and

polarizartion of the solvent molecules and ions in the electrolyte.

Figure 14: The difference between the PZC and work function (∆Φ) from experiment as a
function of the adsorption energy for water on metal surfaces calculated with AIMD. Surfaces
include sp (diamonds), sd (squares), d (circles) metals. (Adapted with permission from J.
Phys. Chem. Lett. 2021, 12, 30, 7299–7304]. Copyright 2021 American Chemical Society.)

While microsolvation naturally accounts for such interfacial interactions in principle, a

major challenge is that the electrode potential depends on the statistically-averaged electro-

static potential and is not well-defined from a single electrolyte configuration. Averaging over

several solvent configurations may partially mitigate this issue, but requires selection of spe-

41

https://doi.org/10.1021/acs.jpclett.1c02001
https://doi.org/10.1021/acs.jpclett.1c02001


cific configurations.230,231 This is more challenging in general than for the strongly-adsorbed

adsorbates discussed previously because liquid electrolytes adopt a continuously varying set

of structures, and are not limited to a few local minima in energy. Often, microsolvation

approaches adopt specific prescriptions for creating solvent structures for consistency,232 but

must be checked to ensure that an ensemble of such structures reproduce the bulk liquid envi-

ronment correctly. For molecules in bulk solvent, quasi-chemical theory provides connections

between microsolvation results and the thermodynamic ensemble average.233 Analogously,

2D lattices of solvent molecules can be grafted onto an electrode surface to generate static

interfacial solvent structures that resemble those in AIMD simulations.234 However, the lim-

ited number of configurations and their evaluation at zero temperature (at the local energy

minima) typically lead to overstructured solvent in microsolvation, compared to dynamics.234

At the opposite extreme, continuum solvation methods approximate the statistically-

averaged interaction of the solvent and electrolyte with the electrode surface.2 This elimi-

nates the configuration sampling problem of microsolvation and is a good approximation for

the bulk electrolyte as well as for electrolytes interacting weakly with an electrode (such as

hydrophobic surfaces with aqueous electrolytes). Most continuum solvation models describe

the solvent as a dielectric medium, and the effect of the electrolyte through dielectric screen-

ing. They thereby capture the dominant electrostatic interaction of the electrolyte with the

charged / polarizable species at the electrode surface. However, the continuum models do

not account for electronic interactions between the electrode and electrolyte, or for strong

interfacial modifications of electrolyte properties (including chemisorbed solvent molecules),

which affect charge distributions and adsorption energetics at strongly-interacting electrode-

electrolyte interfaces.

Additionally, continuum solvation models require empirical parameterization of the sol-

vent cavity: the boundary between the continuum and the explicit solute and surface atoms

in the simulation. These parameters are typically fit to solvation free energies of molecules

and ions, and require modifications for accurate prediction of interfacial properties, e.g.,
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electrochemical capacitance.235 More advanced solvation models reduce the empiricism of

cavity determination by incorporating atomic-scale distributions of the liquid with, for ex-

ample, joint density-functional theory (JDFT)236–240 or the reduced interaction-site models

(RISM).241–244 However these approaches still cannot accurately capture strong electrode-

electrolyte interactions. See Refs. 2 and 17 for detailed reviews of the hierarchy of ap-

proximations, parameterization strategies and physical effects included in different classes of

solvation models.

In summary, microsolvation captures local electronic structure effects at the interface,

but presents challenges for statistical sampling of weakly bound solvent molecules. In con-

trast, continuum models directly capture the statistical average interaction of the electrolyte,

but miss strong electronic structure effects at the interface. A common proposition to ad-

dress these limitations is a combination of microsolvation for the first solvation shell and

continuum models for the bulk liquid / electrolyte beyond it. Such hybrid methods are

commonplace in homogeneous solvent-phase reaction modeling,245,246 and are of increasing

interest in electrochemical simulations.247 However, such hybrid calculations require care to

ensure that the explicit layer is sufficiently strongly bound so as to not require dynamics. It

is therefore not straightforward to systematically converge these approaches with number of

explicit solvent molecules, as the dynamics issues of microsolvation become more important

with the addition of weakly-bound molecules. Further, simple parameterizations of solva-

tion model cavities may spuriously introduce continuum response within gaps in the explicit

solvent, necessitating nonlocal parameterizations that ensure that the continuum response

is only introduced where entire solvent molecules may fit.205,248,249 Finally, combining MD of

explicit solvent molecules with continuum solvation presents additional challenges in closely

matching the explicit and implicit solvation, analogous to force-field matching in hybrid

quantum mechanics / molecular mechanics QM/MM MD simulations.250,251 Similarly, mis-

match in the electrostatic response at the explicit - implicit interface will require care when

evaluating the charge distribution, electrostatic potential and capacitance of electrochemical
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interfaces.

5.3 Electrode potential effects

With candidate structures identified (Section 5.1) and simulated with solvation effects in-

cluded (Section 5.2), the final task is mapping the properties of these specific structures

and their thermodynamic average as a function of electrode potential. In principle, with re-

cent techniques such as grand-canonical DFT,84 it is possible to directly compute the grand

free energy of the electrochemical interface for several electrode potentials. However, this

involves additional computational cost from repeated electronic structure calculations for

several potentials at each surface configuration. Here, we discuss approaches to approximate

the electrode-potential dependence of the grand free energy and derived properties of surface

configurations, and when such simplifications are appropriate.

The grand free energy is most commonly approximated to be a linear function of the

electrode potential within the computational hydrogen electrode (CHE) approach often used

in electrochemical reaction modeling.13,252–255 The advantage of this approach is that it

requires only a single first-principles calculation for each surface configuration. However, the

linear free energy approximation amounts to neglecting the change in charge of the surface

+ adsorbate as a function of electrode potential, setting it equal to the charge state of the

single calculation performed.

The linearized free energy CHE approach is the first term in a Taylor expansion of the

grand free energy with respect to either the electrode potential or the surface charge. As a

function of surface charge, the linear coefficient of the grand free energy is the work function

of the performed calculation. This expansion can be carried to higher orders to mitigate the

constant-charge approximation discussed above.17,256–260 The next lowest-order correction

captures the linear change in potential with charge and corresponds to a constant (inverse)

capacitance. This corresponds to a quadratic energy term accounting for the capacitive

energy of changing the charge of the electrochemical double layer.
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Figure 15: (a) Hydrogen binding on Pt(111), with hydrogen coverage of 1/4 monolayer(red)
and 1 monolayer(blue). Full grand canonical (FGC) and second order models produce hydro-
gen binding curves as a function of pH that are similar to those measured from experiment
(b), whereas the computational hydrogen electrode results do not vary with pH. (Adapted
from Ref. 256. Copyright 2020 Springer Nature under (CC 4.0).)

Using this Taylor expansion, Ref. 256 analyzes proton adsorption at metal surfaces as a

function of potential using the computational hydrogen electrode (first order), a constant in-

verse capacitance (second order), and the full grand canonical free energy, shown in Figure 15.

The CHE approximation will predict a constant potential of H adsorption with respect to

the reversible hydrogen electrode (RHE), independent of pH, essentially not distinguishing

between adsorption and electrosorption. Second order and grand-canonical models predict

adsorption variation with potential, which appear to qualitatively reproduce experimental

trends for H on Pt(111).

While the perturbative approach can improve on the CHE approximation, the accuracy

of using single DFT calculations to predict electrochemical properties can be limited by the

electrolyte description (such as using a continuum solvation model) and the effects of surface

charging. Explicitly including electrolyte species and searching the space of surface struc-

tures, as discussed in the previous section, may be necessary in many cases. For instance,

unlike the good agreement for Pt(111) shown in Figure 15, Ref. 256 finds poor agreement

with experimental trends for Pt(100) bridge site H-adsorption even for the explicit potential-

dependent calculations. In fact, the variation of H adsorption on Pt step edges is caused not

by charging the H, which would be captured by the potential-dependent DFT calculations,
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but rather by the displacement of coadsorbing cations, OH, and water from the step edge.261

Such effects require the explicit inclusion of these co-adsorbed species in the electronic struc-

ture calculation, introducing the challenges of determining surface-bound and electrolyte

structures discussed previously in Sections 5.1 and 5.2.
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Figure 16: a) The experimental capacitance of Ag(100) in aqueous solution of 0.1 mol/L
KPF6 (solid red), from Ref. 262, with the capacitance maximum (green dots) and the value
at the PZC (blue dashes) marked. b) Surface charge evaluated using the capacitance from
experiment (solid red), the maximum (green dots) and the PZC (blue dashes). c) the change
in surface free energy relative to the PZC using the three capacitances defined above.

Similarly, the effects of surface charging depend on several factors that are challenging

to predict. First, perturbative approaches reduce in accuracy when moving away from the

potential or charge of the reference calculation because they rely on the capacitance re-

maining constant over a wide potential range. To illustrate this, Figure 16 compares the

variation of surface charge and energy of an Ag(100) surface with potential predicted from

the experimental capacitance, using a constant equal to the PZC local-minimum value and

using a constant equal to the maximum capacitance. As expected, the error in the surface

energy caused by estimating the capacitance is small near the PZC and increases away from
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it, bounded by the minimum and the maximum capacitance approximations. Note that the

energy errors can approach a kcal/mol/nm2 over a potential difference of just 0.5 eV, which

could be significant for predictions for reaction kinetics at the surface. A further complica-

tion is that the potential difference relative to the PZC, and hence, the severity of the above

approximation, may be unknown. Specifically, the PZC is close to the work function for

weak electrode-electrolyte interactions, but may be strongly offset from the work function

for strong interactions and difficult to identify in both theory and experiment.41

The capacitance variations discussed so far are only because of the electrolyte contri-

butions; changes in surface coverage can lead to even more drastic changes in capacitance.

For example, the capacitance of Pt surface can experimentally change by a factor of two

to three upon coverage by CO due to a change in hydrophobicity of the surface;118 this is

not captured by any of the standard electrochemical continuum solvation models automat-

ically.248,263 See Ref. 2 for further details on the variation of differential capacitance with

potential and adsorbates.

Finally, changes in the surface geometry can also be important in certain potential ranges.

As a concrete example, consider two metal electrodes with adsorbates that are similar under

vacuum conditions: Pt(111) saturated with CO, and Cu(100) with c(2x2) Cl. These two sur-

face configurations have work functions of 5.6 eV264 and 5.7 eV respectively,265,266 are both

hydrophobic in aqueous electrolytes,267 and have similar capacitance values of 11 µF/cm2

at 0.4 V SHE118,268 and 16 µF/cm2 near 0 V vs SHE228 respectively. However, under the

same, near 0 V SHE electrochemical conditions, the two surfaces display very different be-

havior. The CO is nearly neutral, and does not significantly change bond length relative

to vacuum, as demonstrated from Stark effect experiments. In contrast, the Cu-Cl bond

increases 0.3 Å relative to vacuum conditions, and the Cl becomes highly charged. The key

difference is that the Cu-Cl bond is very polar, so when the surface is charged, the bond

lengthens, producing a larger surface dipole.228 This example demonstrates that even when

the work function, hydrophobicity, and capacitance of surfaces are very similar, their prop-
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erties under electrochemical conditions can differ drastically. Such subtle effects underscore

the need to carefully analyze the interplay of electronic structure and atomic geometry at

the electrochemical interface.

6 Outlook

Computational electrochemistry using atomistic and electronic methods has rapidly pro-

gressed over the last few decades towards accurate and realistic simulations of complex

charged interfaces. However, a compromise must still be made between the accuracy of sim-

ulations along the electron and atom-configuration axes of Figure 1. Future methodological

advances should lessen the severity of this compromise by increasing accuracy achievable at

fixed computational cost.

Along the electron axis, machine-learned force fields and empirical corrections allow low-

cost energy evaluations for each configuration without sacrificing accuracy, which facilitates

better structure searches and reaction energy predictions. Additionally, higher levels of ab

initio theory such as RPA and QMC that increase the accuracy of electronic structure cal-

culations are becoming less computationally expensive. These strategies can be combined

together to achieve higher accuracy simulations for nearly equivalent computational cost.

For example, RPA simulations of select systems can be used to develop machine-learned cor-

rections to DFT predictions. Alternately, embedding methods can focus the computational

expense of a higher-level method on a relevant subsystem, another promising direction for

future electrochemical simulations.

Along the atomic axis, enhanced sampling methods reduce the number of energy evalu-

ations required to capture long time-scale processes. Machine learning techniques can play

a key role in further short-circuiting energy evaluations and MD time evolution to reach

longer simulated times.269,270 Recent machine-learned potentials that additionally predict

charge distributions accounting for nonlocal charge transfers will be particularly important
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for electrochemical simulations including electrode potential effects. Coupled with increased

computational power and the accuracy advances along the electron axis, this can lead to

electrochemical simulations that approach realistic time and length scales.

Lastly, with the improved accuracy and efficiency of electronic structure and molecu-

lar dynamics methods, new opportunities exist to combine these tools with one another.

Systematic integration of these tools will lead to further improved accuracy of atomistic

simulations of the electrochemical interface.
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Tkatchenko, A.; Müller, K.-R. Machine Learning Force Fields. Chemical Reviews

2021, 121, 10142–10186.

(73) Behler, J. Four Generations of High-Dimensional Neural Network Potentials. Chem.

Rev. 2021, 121, 10037–10072.

58



(74) Staacke, C. G.; Heenen, H. H.; Scheurer, C.; Csányi, G.; Reuter, K.; Margraf, J. T.
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ness of the Double Layer in Ionic Liquids. Phys. Chem. Chem. Phys. 2018, 20, 10275–

10285.

(113) Paek, E.; Pak, A. J.; Hwang, G. S. A Computational Study of the Interfacial Structure

and Capacitance of Graphene in [BMIM][PF6] Ionic Liquid. J. Electrochem. Soc. 2013,

160, A1–A10.
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(194) Pozzo, M.; Alfè, D. Hydrogen Dissociation on Mg(0001) Studied via Quantum Monte

Carlo Calculations. Phys. Rev. B 2008, 78, 245313.

(195) Doblhoff-Dier, K.; Meyer, J.; Hoggan, P. E.; Kroes, G.-J. Quantum Monte Carlo

Calculations on a Benchmark Molecule–Metal Surface Reaction: H2 + Cu(111). J.

Chem. Theory Comput. 2017, 13, 3208–3219.

(196) Powell, A. D.; Kroes, G.-J.; Doblhoff-Diera, K. Quantum Monte Carlo Calculations

on Dissociative Chemisorption of H2 + Al(110): Minimum Barrier Heights and Their

Comparison to DFT Values. J. Chem. Phys. 2020, 153, 224701.

(197) Sharma, R. O.; Rantala, T. T.; Hoggan, P. E. Quantum Monte Carlo Approach for

Determining the Activation Barrier of Water Addition to Carbon Monoxide Adsorbed

on Pt(111) within 1 kJ/mol. J. Phys. Chem. C 2020, 124, 26232–26240.

(198) Hsing, C.-R.; Chang, C.-M.; Cheng, C.; Wei, C.-M. Quantum Monte Carlo Stud-

ies of CO Adsorption on Transition Metal Surfaces. J. Phys. Chem. C 2019, 123,

15659–15664.

73



(199) Sharma, R. O.; Rantala, T. T.; Hoggan, P. E. Selective Hydrogen Production at

Pt(111) Investigated by Quantum Monte Carlo Methods for Metal Catalysis. Int. J.

Quantum Chem. 2020, 120 .

(200) Kent, P. R. C.; Annaberdiyev, A.; Benali, A.; Bennett, M. C.; Borda, E. J. L.; Doak, P.;

Hao, H.; Jordan, K. D.; Krogel, J. T.; Kylänpää, I. et al. QMCPACK: Advances
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