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Abstract

The 2D viscous Burgers equation is a system of two nonlinear equations
in two unknowns, u(x, y, t), v(x, y, t). This paper considers the data as-
similation problem of finding initial values [u(., 0), v(., 0)], that can evolve
into a close approximation to a desired target result [u∗(., T ), v∗(., T )],
at some realistic T > 0. Highly non smooth target data are considered,
that may not correspond to actual solutions at time T . Such an ill-posed
2D viscous Burgers problem has not previously been studied. An effec-
tive approach is discussed and demonstrated, based on recently developed
stabilized explicit finite difference schemes that can be run backward in
time. Successful data assimilation experiments are presented involving 8
bit, 256× 256 pixel gray-scale images, defined by non-differentiable inten-
sity data. An instructive example of failure is also included.

1 Introduction

The 2D viscous Burgers equation [1], is a coupled system of two nonlinear
equations in two unknowns, u(x, y, t), v(x, y, t). In a bounded domain Ω ⊂ R2,
with homogeneous boundary conditions on ∂Ω, and no forcing term, this paper
considers the following data assimilation/inverse design problem associated with
that system: Find initial values [u(., 0), v(., 0)] that can evolve into a close
approximation to a desired target result [u∗(., T ), v∗(., T )], at an appropriately
chosen T > 0. Here, highly non smooth target data are considered that may
not correspond to actual solutions at time T , and it may not be possible to find
such initial values. Such a 2D viscous Burgers problem has not previously been
studied. For the 1D Burgers equation, data assimilation is discussed in [2–8],
using various iterative methods. The significance of data assimilation in the
geosciences is emphasized in [9].
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Following [1], for flows with kinematic viscosity ν, in bounded domains Ω ⊂
R2 with area A, over a time interval [0, T ], we define the Reynolds number RE
as follows

Umax = maxΩ×[0,T ]

{

u2(x, y, t) + v2(x, y, t)
}1/2

,

RE = Umax

√
A/ν.

(1)

Using a direct non-iterative method based on marching backward in time
with a stabilized explicit finite-difference scheme [10–12], a large class of exam-
ples is presented where, with realistic values of T > 0, and Reynolds numbers
as high as 18000, useful initial values can be found that evolve into good ap-
proximations to the desired target data, with modestly small L1 relative errors.
Importantly, there are also unsuccessful examples.

In dissipative evolution equations wt = Lw, there is a fundamental differ-
ence between the present data assimilation/inverse design problem, which seeks
initial values leading to an arbitrary desired result w∗(., T ), and the more fa-
miliar ill-posed backward recovery problem. In the latter case, one starts with
relatively smooth data w∗(., T ) that are known to closely approximate an actual
solution w(., T ). Rigorous uncertainty estimates [13–19], generally require the
spatial derivatives of w to be sufficiently small on [0, T ], in addition to T itself,
in order to achieve useful reconstruction. For example, in the case of the 1D
Burgers equation,

wt = νwxx − wwx, 0 < x < 1, 0 < t ≤ T,

w(0, t) = w(1, t) = 0,
(2)

where ν > 0 is the kinematic viscosity, let D = [0, 1]× [0, T ]. With known small
δ > 0, let w1(x, t), w2(x, t), be two smooth solutions satisfying

max(x,t)∈D {|wi|, |wix|, |wit|} ≤ E, i = 1, 2,

‖ w1(., T )− w2(., T ) ‖2 ≤ δ.
(3)

Then, as shown in [19, Eq. (2.7)], with

K > 2 exp{E/ν + (E4T 2)/(64ν2)}, (4)

one has the following uncertainty estimate at t = T/2,

‖ w1(., T/2)− w2(., T/2) ‖2≤ K
√
Eδ. (5)

Clearly, for small ν > 0, and with typical values of δ found in practice, both
E and (E4T 2/ν2) would need to be sufficiently small for useful recovery. A
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similarly restrictive exponential factor K† occurs in the estimate found in [18,
Eq. (2.9)].

The data assimilation problem considered here is markedly different. The
target data w∗(x, T ) may not be smooth, and may not correspond to an actual
solution of Eq. (2) at time T > 0. With small ν, large E, and a possibly large
unknown δ > 0, finding useful initial values w(x, 0) that can evolve into a close
approximation to w∗(x, T ), may not be feasible in view of Eqs. (4, 5). The
rigorous uncertainty estimates given in [13–19], necessarily contemplate worse
case error amplification scenarios, and may be overly pessimistic in individual
cases. However, there are also examples of failure that tend to validate such
estimates.

2 Use of computational examples based on sharp

image data

As in [10–12], numerical experiments will be presented involving 8 bit, 256×256
pixel gray-scale images. As illustrated in Figure 1, many images of easily recog-
nizable objects are defined by non-smooth intensity data f(x, y), that would be
quite difficult to synthesize mathematically. These images are not of bounded
variation. Rather, as shown in [20], with 0 < α < 0.7, and |h| = (h2

1 + h2
2)

1/2,
they belong to the Lipschitz class Λ(α, 1,∞), of functions f(x, y) satisfing

∫

R2

|f(x+ h1, y + h2)− f(x, y)|dxdy ≤ Const. |h|α, |h| ↓ 0, (6)

while images of bounded variation require α = 1. Such non smooth images pose
significant challenges in ill-posed reconstruction, and they constitute an invalu-
able tool for exploring the possibility of computing a wide variety of dissipative
evolution equations backward in time.

The approach to be used is based on marching backward in time from the
given target data at time T , using an O(∆t) explicit finite difference scheme. As
is well-known [21, p. 59], for ill-posed initial value problems, every consistent
stepwise marching scheme, whether explicit or implicit, is necessarily uncon-
ditionally unstable. However, as shown in [10–12], it is possible to stabilize
explicit marching schemes by applying an appropriate compensating smoothing
operator at each time step to quench the instability. This renders the scheme
unconditionally stable, but slightly inconsistent. In backward reconstructions
from relatively smooth data known to closely approximate the exact solutions
at time T , the cumulative error caused by such smoothing is sufficiently small to
allow for useful results. Unexpectedly, such stabilized schemes may sometimes
be useful in data assimilation with non smooth targets at time T , by using more
aggressive smoothing at each time step.

Below, we review the error bounds obtained in the recently developed schemes
in [10–12]. Using a simplified linear analysis in Sections 4 and 5 below, it is
shown how data assimilation may be feasible in some cases, with a proper choice
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MANY NATURAL IMAGES ARE DEFINED BY HIGHLY NON SMOOTH 
        INTENSITY DATA, AND ARE NOT OF BOUNDED VARIATION

PEPPERS   IMAGE                     PLOT OF INTENSITY  VALUES

SAGITTAL BRAIN  MRI                 PLOT OF INTENSITY  VALUES                    CONTOUR   PLOT

CONTOUR PLOT

   DORIS   DAY                          PLOT OF INTENSITY  VALUES CONTOUR  PLOT

Figure 1: Many images of easily recognizable objects are defined by non-smooth
intensity data, and are not of bounded variation, [20]. Such images pose signif-
icant computational challenges and provide instructive examples for exploring
data assimilation.
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of parameters in the smoothing operator. That simplified analysis is found help-
ful in Section 6, where nonlinear computational experiments are discussed.

3 Stepwise explicit schemes for 2D viscous Burg-

ers’ equation, marched forward or backward

in time

Let Ω be the unit square in R2 with boundary ∂Ω. Let < , > and ‖ ‖2,
respectively denote the scalar product and norm on L2(Ω). With ν > 0 the
kinematic viscosity, consider the following 2D Burgers’ system for (x, y) ∈ Ω,

ut = L1u ≡ ν∆u − uux − vuy, 0 < t ≤ T,

vt = L2v ≡ ν∆v − uvx − vvy, 0 < t ≤ T,
(7)

together with homogeneous boundary conditions on ∂Ω, and the initial values

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), (x, y) ∈ Ω. (8)

The well-posed forward initial value problem in Eq. (7) becomes ill-posed
if the time direction is reversed. Such time-reversed computations are con-
templated by allowing for possible negative time steps ∆t in the explicit time-
marching finite difference scheme described below. With N a positive inte-
ger, let |∆t| = T/(N + 1) be the time step magnitude, and let ũn(x, y) ≡
ũ(x, y, n∆t), n = 0, 1, · · · , N+1, denote the intended approximation to u(x, y, n∆t),
and likewise for ṽn(x, y). It is helpful to consider Fourier series expansions for
ũn(x, y), ṽn(x, y), on the unit square Ω,

ũn(x, y) =

∞
∑

j,k=−∞

ũn
j,k exp{2πi(jx+ ky)}, (9)

with Fourier coefficients {ũn
j,k} given by

ũn
j,k =

∫

Ω

ũn(x, y) exp{−2πi(jx+ ky)}dxdy, (10)

and similarly for ṽn(x, y). With given fixed ω > 0 and p > 1, define λj,k, σj,k,
as follows

λj,k = 4π2ν(j2 + k2), σj,k = exp{−2ω|∆t|λp
j,k}. (11)

For any f(x, y) ∈ L2(Ω), let {fj,k} be its Fourier coefficients as in Eq (10).
Using Eq. (11), define the linear operators P and S as follows

Pf =
∑∞

j,k=−∞ λp
j,kfj,k exp{2πi(jx+ ky)}, ∀f ∈ L2(Ω),

Sf =
∑∞

j,k=−∞ σj,kfj,k exp{2πi(jx+ ky)}, ∀f ∈ L2(Ω).
(12)



DATA ASSIMILATION IN 2D VISCOUS BURGERS EQUATION 6

The operator S is used as a stabilizing smoothing operator at each time step,
in the following explicit time-marching finite difference scheme for the system
in Eq (7), in which only the time variable is discretized, with possibly negative
time steps ∆t, while the space variables remain continuous,

ũn+1 = Sũn +∆tSL1ũ
n,

ṽn+1 = Sṽn +∆tSL2ṽ
n, n = 0, 1, · · · , N.

(13)

The simplified linear analyses presented in Sections 4 and 5 below, are rele-
vant to the above semi-discrete problem. In Section 6, where actual nonlinear
computations are discussed, the space variables are also discretized, and FFT
algorithms are used to synthesize the smoothing operator S.

4 Fourier stability analysis in linearized prob-

lem

Useful insight into the behavior of the nonlinear scheme in Eq. (13), can be
gained by analyzing a related linear problem with constant coefficients. With
positive constants a, b, consider the initial value problem on the unit square Ω,

ut = Lu ≡ ν∆u − aux − buy, 0 < t ≤ T,

u(x, y, 0) = u0(x, y),
(14)

together with homogeneous boundary conditions on ∂Ω. Let |∆t| = T/(N +1).
Unlike the case in Eq. (13), the stabilized marching scheme

ũn+1 = Sũn +∆tSLũn, n = 0, 1, · · · , N, (15)

with the linear operator L, and possibly negative time steps ∆t, is susceptible to
Fourier analysis. If Lũn = fn(x, y), then the Fourier coefficients {fn

j,k} satisfy
fn
j,k = gj,kũ

n
j,k, where, with λj,k as in Eq. (11),

gj,k = −{λj,k + 2πi(aj + bk)}. (16)

Let R be the linear operator R = S +∆tSL. Then,

ũn+1 = Rũn ≡
∞
∑

j,k=−∞

ũn
j,k{1 + ∆tgj,k}σj,k,

‖ ũn+1 ‖22 = ‖ Rũn ‖22 ≤
∞
∑

j,k=−∞

|ũn
j,k|2{1 + |∆t||gj,k|}2σ2

j,k, (17)

on using Parseval’s formula.

In [10], detailed proofs are given for Lemma 1 and Theorems 1 and 2 stated
below.
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Lemma 1 Let λj,k, σj,k, be as in Eq. (11), and let gj,k be as in Eq. (16).
Choose a positive integer J such that if λJ = 4π2νJ , we have

max(j2+k2)≤J {|gj,k|} ≤ 2λJ , |gj,k| ≤ 2λj,k, ∀ (j2 + k2) > J. (18)

With p > 1, choose ω ≥ (λJ )
1−p in Eq. (11). Then,

σj,k (1 + |∆t||gj,k|) ≤ 1 + 2|∆t|λJ . (19)

Hence, from Eq. (17), ‖ R ‖2≤ 1 + 2|∆t|λJ , and

‖ ũn ‖2=‖ Rnu0 ‖2≤ exp{2n|∆t|λJ} ‖ u0 ‖2, n = 1, 2, · · · , N + 1. (20)

Therefore, with this choice of (ω, p), the explicit linear scheme in Eq. (15) is
stable, marching forward or backward in time.

For functions v(x, y, t) on Ω× [0, T ], define the norm |||v|||2,∞ as follows

|||v|||2,∞ ≡ Sup0≤t≤T{‖ v(·, t) ‖2}. (21)

In Lemma 1, the finite difference approximation ũn(x, y) ≡ ũ(x, y, n∆t) sat-
isfies Eq. (15), whereas the exact solution un(x, y) ≡ u(x, y, n∆t) in Eq. (14),
satisfies un+1 = un + ∆tLun + τn, where τn is the truncation error. We need
to estimate the error hn(x, y) = un(x, y)− ũn(x, y), n = 0, 1, · · · , N + 1.

Theorem 1 With ∆t > 0, let un(x, y) be the unique solution of Eq. (14) at t =
n∆t. Let ũn(x, y) be the corresponding solution of the forward explicit scheme
in Eq. (15), let p, λJ , ω, be as in Lemma 1, and let P be as in Eq. (12). If
hn(x, y) = un(x, y)−ũn(x, y), denotes the error at t = n∆t, n = 1, 2, · · · , N+1,
we have

‖ hn ‖2≤ e2tλJ ‖ h0 ‖2 +
{

ω(e2tλJ − 1)/λJ

}

|||Pu|||2,∞
+

{

(e2tλJ − 1)/2λJ

}{

2ω∆t |||PLu|||2,∞ + (∆t/2) |||L2u|||2,∞
}

.(22)

Define the constants K1, K2, K3, K4, K5, as follows

K1 = e2TλJ , K2 = {ω(e2TλJ − 1)/λJ}, K3 = |∆t|K2, K4 = K3/(4ω),

K5 = K2 |||Pu|||2,∞ +K3 |||PLu|||2,∞ +K4 |||L2u|||2,∞.

(23)
It follows from Eq. (22) in Theorem 1 that in the forward problem, the error

hN+1(x, y) at time T = (N + 1)∆t satisfies

‖ hN+1 ‖2≤ K1 ‖ h0 ‖2 +K5 (24)
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In Eq. (24), the error h0(x, y) 6= 0, if the initial values ũ0(x, y) used in Eq. (15)
differ from u0(x, y) in Eq. (14). In Eq. (23), the term K2 |||Pu|||2,∞ is the
stabilization penalty, and the constants K3 and K4 vanish as |∆t| ↓ 0. The
entries in Table 1 below will be found useful in the sequel.

TABLE 1

Values of constants K1 through K4 in Eq. (23), with following parameter
choices:

T = 2.0×10−4, |∆t| = 1.25×10−8, p = 3.25, ω = 7.0×10−9, λJ = (ω)1/(1−p).

K1 = e2TλJ K2 = {ω(e2TλJ − 1)/λJ} K3 = |∆t|K2 K4 = K3/(4ω)
K1 < 5.4 K2 < 7.3× 10−12 K3 < 9.2× 10−20 K4 < 3.3× 10−12

In the ill-posed problem of marching backward from t = T discussed in
Theorem 2, it is assumed that the given data ũ0(x, y) at t = T , differ from the
unknown exact data by an error γ(x, y):

ũ0(x, y) = u(x, y, T ) + γ(x, y), ‖ γ ‖2≤ δ. (25)

Theorem 2 With ∆t < 0, let un(x, y) be the unique solution of the forward
well-posed problem in Eq. (14) at s = T − n|∆t|. Let ũn(x, y) be the corre-
sponding solution of the backward explicit scheme in Eq. (15), with initial data
ũ0(x, y) = u(x, y, T ) + γ(x, y) as in Eq. (25). Let p, λJ , ω, be as in Lemma 1,
and let P be as in Eq. (12). If hn(x, y) ≡ un(x, y)− ũn(x, y), denotes the error
at s = T − n|∆t|, n = 0, 1, 2, · · · , N + 1, we have, with δ as in Eq.(25),

‖ hn ‖2≤ δe2n|∆t|λJ +
{

ω(e2n|∆t|λJ − 1)/λJ

}

|||Pu|||2,∞

+
{

(e2n|∆t|λJ − 1)/2λJ

}

{

2ω|∆t||||PLu|||2,∞ + (|∆t|/2)|||L2u|||2,∞
}

.(26)

With the definitions given in Eq. (23), it follows from Eq. (26) that hN+1(x, y),
the error at time t = 0 in the backward problem in Theorem 2, satisfies

‖ hN+1 ‖2≤ δK1 +K5 (27)

5 Application to Data Assimilation

The methods in [10–12] together with Theorem 2 above, are aimed at backward
in time reconstruction from data that are known to closely approximate the
exact solution at time T > 0, and presuppose a known small δ > 0 in Eq. (25).
However, it may be possible to obtain useful results in the inverse design case
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where ũ0(x, y) is the target data u∗(x, y, T ) in Eq. (25), and differs from some
unknown exact data u(x, y, T ), by an unknown amount δ > 0 that may be larger
than expected. If such an unknown exact solution u(x, y, t) does not have ex-
ceedingly large values for |||Pu|||2,∞, |||PLu|||2,∞, and |||L2u|||2,∞, useful data
assimilation may be feasible with proper choice of parameters in the smoothing
operator S in Eq. (15). For example, with the parameter choices made in Table
1 above, the resulting values for the constants K1 through K4 may lead to
a useful reconstruction ũ(x, y, 0) at time t = 0, differing from the exact value
u0(x, y) in Eq. (14), by an L2 error δK1 + K5, according to Eq. (27). From
Eqs. (23), and Table 1, the constant K5 may be negligible when compared to
δK1.

Next, using the backward reconstruction ũ(x, y, 0) as initial data in the for-
ward problem in Theorem 1, and using the above choice of parameters, leads to
an approximation ũ(x, y, T ) at time T , differing from the unknown exact value
u(x, y, T ) by an L2 error [K1 (δK1+K5)+K5], according to Eq. (24). Hence,

‖ ũ(., T )− u∗(., T ) ‖2 ≤ ‖ ũ(., T )− u(., T ) ‖2 + ‖ u(., T )− u∗(., T ) ‖2
≤ δ(1 +K12) +K5(1 +K1). (28)

Thus, if K5 is negligible, Theorem 2 produces initial data ũ(x, y, 0) that
evolve into ũ(x, y, T ), approximating the given target data with an L2 error
δ(1 +K12).

Remark. When data assimilation is feasible, the values of T, |∆t|, ω, p, and
λJ = ω1/(1−p), play a decisive role. With the choices made in Table 1 above,
one finds (1 + K12) ≈ 30.0. However, with a smaller value of ω, such as
ω = 3.0 × 10−10, one would find (1 + K12) ≈ 86000, and less successful data
assimilation. Choosing a larger value of T , such as T = 1.0× 10−3, would lead
to (1 +K12) ≈ 2.0× 107, and unsuccessful data assimilation.

6 2D nonlinear computational experiments

It remains to be seen whether the above simplified linear analysis is predictive
of behavior in the coupled nonlinear system in Eq. (7). The three experiments
discussed below involve use of the stabilized difference scheme in Eq. (13). An
equispaced grid is placed on the unit square Ω, and second order accurate cen-
tered finite differencing is used for the space variables in the fully discrete non-
linear scheme. Fast Fourier Transform (FFT) algorithms are used to synthesize
the smoothing operator S defined in Eq. (12). In each of the three experiments,
the kinematic viscosity ν = 0.02, and the target data are prescribed at time
T = 2.0 × 10−4. All three experiments fail if the same data are prescribed at
T ≥ 1.0 × 10−3. In the 1D nonlinear Burgers equation, a restriction on T is
implied in the stability estimate in Eqs. (4, 5).

All three experiments involve 256 × 256 pixel gray scale images, defined
by non-smooth underlying intensity data, with integer values ranging between
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zero and 255. These images have zero intensities on and near the bound-
ary. With ν = 0.02 and A = 1 in Eq. (1), this leads to a Reynolds Number
RE ≈ 18000. The 2D Burgers equation involves the evolution of two distinct
images that interact with each other, which may produce unexpected results.
With |∆t| = 1.25× 10−8, we choose p = 3.25, ω = 7.0 × 10−9, in the smooth-
ing operator S in the nonlinear difference scheme in Eq. (13). This choice of
parameters leads to the favorable values for K1 through K4 , shown in Table 1
in the simplified linear analysis in Section 5. In these experiments, after every
time step, the computed values are constrained to lie between zero and 255, by
redefining all negative values to be zero, and all values exceeding 255 to be 255.

Sydney Opera House and Joan Crawford. This is illustrated in Figures
2 and 3, and documented in Table 2. The Sydney and Joan Crawford target
data at time T are shown in the leftmost columns of these two Figures, as images
and associated contour plots. Marching backward in time from these data, using
Eq. (13), produced the curious results shown in the middle columns of Figures
2 and 3. Here, the distorted roof tops in the Sydney image, together with the
new facial expression in the Joan Crawford image, were unanticipated. Such
candidate initial values did not seem likely to evolve into the desired target
data in the leftmost columns. Marching forward in time from these middle
column data, using Eq. (13), resulted in the images and contour plots shown in
the rightmost columns of Figures 2 and 3. Clearly, since the leftmost column
data do not correspond to an actual solution of the 2D Burgers equation at
time T , one cannot expect the rightmost column data to provide a close match.
However, the Sydney rooftops and Joan Crawford’s original facial expression,
appear to have recovered.

Indeed, Table 2 provides important quantitative information. While the
analysis given in Sections [3-5] involved the L2 norm, the present data assimila-
tion approach is found to be better behaved in the L1 norm. The L1(Ω) norms
of the images in the rightmost column closely approximate the correponding
norms in the leftmost column. The L1(Ω) relative errors are 7.93% for the Syd-
ney image and 8.49% for the Joan Crawford image, while the L2(Ω) relative
errors are noticeably higher. Taken together, the rightmost images, contour
plots, and L1(Ω) relative errors, indicate successful data assimilation in this
example.

Mr Spock and Brain MRI. This is illustrated in Figures 4 and 5, and doc-
umented in Table 3. The Spock and Brain MRI target data at time T are shown
in the leftmost columns of these two Figures, as images and associated contour
plots. Marching backward in time from these data, using Eq. (13), produced
the results shown in the middle columns of Figures 4 and 5. Here, the candidate
Brain MRI image at t = 0, appears unexpectedly distorted. However, marching
forward in time from these middle column data, using Eq. (13), resulted in the
images and contour plots shown in the rightmost columns of Figures 4 and 5.
The Mr Spock image in the rightmost column is surprisingly good, while much
of the distortion in the Brain image seems to have been eliminated.
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The quantitative information in Table 3 again confirms successful data as-
similation in this example. The L1(Ω) norms of the desired target data have
been closely approximated by the corresponding norms in the rightmost data,
while the L1(Ω) relative errors are 6.96% for the Spock image and 9.15% for the
Brain image. The L2(Ω) relative errors are again higher.

Alphanumeric image and USAF resolution chart. While numerous
examples can be found of successful data assimilation with L1(Ω) relative errors
< 10%, there are also less succesful examples with L1(Ω) relative errors on the
order of 20%. A highly unsuccessful example is illustrated in Figures 6 and 7,
and documented in Table 4. The Alphanumeric and USAF chart target data at
time T are shown in the leftmost columns of these two Figures, as images and
associated contour plots. Marching backward in time from these data, using
Eq. (13), produced the results shown in the middle columns of Figures 6 and 7.
Here, while both candidate initial values are severely distorted, the Alphanu-
meric data are unintelligible, either as an image or a contour plot. Marching
forward in time from these middle column data, using Eq. (13), resulted in the
images and contour plots shown in the rightmost columns of Figures 6 and 7.
The Alphanumeric data in the rightmost column remain largely indecipherable,
and not a useful approximation to the target data.

In Table 4, we now find that the L1(Ω) norms in the rightmost data poorly
approximate the corresponding norms in the target data, while the L1(Ω) rel-
ative errors are near 174% for the Alphanumeric image, and near 54% for the
USAF chart image. The L2(Ω) relative errors are smaller, but nevertheless quite
large. Repeating the above experiment with larger or smaller values of ω, did
not noticeably change the outcome.

The evident failure in the above example appears to vindicate the rigorous
uncertainty estimates developed in [13–19], and highlighted in Eqs. (4, 5) above.

7 Concluding remarks

With proper parameter choices, stabilized explicit schemes appear to be help-
ful in difficult data assimilation problems, involving non differentiable data,
and such quasilinear parabolic equations as the 2D Burgers system. Future
work should explore the possible application of explicit schemes to data as-
similation/inverse design in other nonlinear parabolic problems of geophysical
interest. Examples of failure in such data assimilation are also instructive and
valuable.
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Figure 2: Data assimilation of Sydney Opera House and Joan Crawford images.
Desired data at time T , shown in leftmost column, is marched backward in time
to obtain the candidate initial values shown in middle column. When marched
forward in time, middle column data produces solution of 2D viscous Burgers
equation at time T, shown in rightmost column. Quantitative error estimates
for this experiment are provided in Table 2.
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Figure 3: Associated contour plots in data assimilation experiment described in
Figure 2.
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Figure 4: Data assimilation of Mr Spock and Brain MRI images. Desired data
at time T , shown in leftmost column, is marched backward in time to obtain
the candidate initial values shown in middle column. When marched forward
in time, middle column data produces solution of 2D viscous Burgers equation
at time T, shown in rightmost column. Quantitative error estimates for this
experiment are provided in Table 3.
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Figure 5: Associated contour plots in data assimilation experiment described in
Figure 4.
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Figure 6: Data assimilation of Alphanumeric and USAF Chart images. Desired
data at time T , shown in leftmost column, is marched backward in time to
obtain the candidate initial values shown in middle column. When marched
forward in time, middle column data produces solution of 2D viscous Burgers
equation at time T, shown in rightmost column. Quantitative error estimates
for this experiment are provided in Table 4.



DATA ASSIMILATION IN 2D VISCOUS BURGERS EQUATION 17

❋�✁✂✄☎✆ ✁✝ ✞�✟� �✠✠✁❙✁✂�✟✁✡✝ ✁✝ ☛✞ ☞✄☎❘✆☎✠ ✆✌✄�✟✁✡✝ ❋☎✡❙

✟�☎❘✆✟ �✟ ✟✁❙✆ ✟❚☛✍✎✆✏✑✒ ✓✁✟✔ ☎✆❨✝✡✂✞✠ ✝✄❙☞✆☎ ❚ ✕✖✒✱✱✱

✥✗✘✙✚✗✥ ✚✗✘✛✜✢ ✣✢ ✢✙✤✗ ✢ ✦✧✤★✛✢✗✥ ✣✢ ✢✙✤✗ ✩ ✣✦✪✙✗✫✗✥ ✣✢ ✢✙✤✗ ✢

Figure 7: Associated contour plots in data assimilation experiment described in
Figure 6.
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TABLE 2
Sydney Opera House and Joan Crawford at RE=17800.

L1-norm behavior in data assimilation from non smooth target at
T = 2.0× 10−4.

Image Target L1 norm Achieved L1 norm L1 Rel Err L2 Rel Err
Sydney 156.33 155.16 7.93% 12.05%

Crawford 80.26 80.46 8.49% 11.74%

TABLE 3
Mr Spock and Brain MRI at RE=16000.

L1-norm behavior in data assimilation from non smooth target at
T = 2.0× 10−4.

Image Target L1 norm Achieved L1 norm L1 Rel Err L2 Rel Err
Spock 123.78 123.42 6.96% 10.54%

Brain MRI 58.97 59.31 9.15% 11.68%

TABLE 4
Alphanumeric and USAF Chart at RE=18000.

L1-norm behavior in data assimilation from non smooth target at
T = 2.0× 10−4.

Image Target L1 norm Achieved L1 norm L1 Rel Err L2 Rel Err
Alphanum 8.16 13.06 173.55% 83.42%
USAF 46.73 43.35 53.76% 43.34%
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