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Abstract

The structural characterization of branched polymers still poses experimental chal-

lenges despite their technological potential. This lack of clarity is egregious in lin-

ear low-density polyethylene (LLDPE), a common industrial plastic. Here, we de-

sign a coarse-grain, implicit solvent molecular dynamics model for LLDPE in 1,2,4-

trichlorobenzene, a canonical good solvent, that replicates all-atom simulations and

experiments. We employ this model to test the relationship between the contraction

factors, the ratios of branched to linear dilute solution properties. In particular, we re-

late the contraction factor of the radius of gyration to that of the intrinsic viscosity and

the hydrodynamic radius. The contraction exponents are constant as we vary branch

length and spacing in contrast to theoretical expectations. We use this observation

to develop a general theory for the dilute solution properties of linear polymers with

linear side-chain branches, comb-like macromolecules, in a good solvent and validate

the theory by generating master curves for LLDPE.
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Introduction

Research dating to the 1960s establishes the foundation for the theory of linear polymers in

good solvents.1 However, understanding the next simplest architecture, linear polymers with

linear side-chain branches, remains a challenge. Branches increase the mass per backbone

length of the polymer chain. While prior work demonstrates this effect typically leads to a

decrease in the dilute solution properties at a given molar mass,2–4 these expectations do not

constitute a complete theory. This lack of understanding makes it difficult to characterize

structure-property relationships for comb-like macromolecules that have applications in nu-

merous, novel technologies, such as photonic crystals,5 chemotherapy,6 and drug delivery.7

These applications do not consider less novel but industrially important comb-like polymers

such as linear low-density polyethylene (LLDPE), which combined with low-density polyethy-

lene (LDPE) comprises 16% of the plastics market worldwide.8 The popularity of LLDPE

in applications from food packaging to playgrounds stems from its flexibility compared to

high-density polyethylene (HDPE) and its improved stress-crack resistance, puncture resis-

tance, and optical clarity compared to LDPE.9,10 These properties and the properties of

comb-like polymers generally depend on the the polymer’s precise macromolecular architec-

ture. An improved understanding of the relationship between comb-like polymers’ dilute

solution properties and architecture would provide a useful tool to infer this architecture

from measurable quantities. Such a theory would enable the simultaneous tuning of multi-

ple properties or the extrapolation of properties from previously studied structure-property

relationships.

Studies of polymer dilute solution properties typically consider the scaling relationships

of the radius of gyration (Rg), intrinsic viscosity ([η]), and hydrodynamic radius (Rh) for a

given architecture

Rg = KRgM
νRg (1)

[η] = K[η]M
ν[η] (2)
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Rh = KRhM
νRh (3)

where M is the molar mass. Here, the radius of gyration is the root-mean-square distance

from the center of mass and represents a structural measure of polymer size. The other two

properties represent dynamic measures of polymer stiffness and size. In particular, intrinsic

viscosity measures the increase in viscosity due to an infinitesimal amount of polymer solute.

In contrast, the hydrodynamic radius measures the radius of a hard sphere that diffuses at

the same rate as the polymer solute.

The scaling exponents (νi) and prefactors (Ki) of Eqs. 1-3 depend on solvent quality and

architecture. For example, a linear polymer behaves as an ideal chain in a theta solvent,

and the scaling exponents tend to νi = 1/2.11 In a good solvent, these exponents increase

due to excluded volume interactions. The simple Flory theory suggests νRg = 3/5,1 whereas

the more precise Borel resummation indicates νRg = 0.588 ± 0.001.12 The precise values of

ν[η] and νRh depend on the nature of the polymer-solvent interactions. In the non-draining

limit, solvent molecules inside the polymer coil move with it.11 This assumption implies

Rh ∼ Rg =⇒ νRh = νRg and leads to the Flory-Fox relationship that indicates [η] ∼

R3
g/M =⇒ ν[η] = 3νRg–1.11 Experimentally, these relationships are reasonable estimates

but imperfect due to drainage effects.13,14 Typically, experiments find 0.70 ≤ ν[η] ≤ 0.80 in

good solvents in contrast to the predicted ν[η] = 0.764 found using the above theory with

the Borel resummation exponent.11 The prefactors of Eqs. 1-3 are more difficult to quantify.

While we can compute the prefactor of a linear polymer’s radius of gyration in a theta

solvent using rotational isomeric state theory,1 this approach cannot compute the prefactors

for dynamic quantities such as [η] and Rh. The computation of these values from structural

information is still an area of active research.15,16

The above arguments do not account for changes in these scaling relationships caused

by the presence of branches. A quantitative method to explore these changes is through

contraction factors (gi), the ratio of branched to linear dilute solution properties. Specifically,
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we consider

gR2
g

=

〈
(Rg,b)

2

(Rg,l)2

〉
(4)

g[η] =

〈
[η]b
[η]l

〉
(5)

gRh =

〈
Rh,b

Rh,l

〉
(6)

where the subscripts l and b denote whether we measure a dilute solution property for

linear or branched polymers. If the linear and branched dilute solution properties follow

the different scaling exponents, we must specify some mass range over which to perform

these averages denoted by the angle brackets in Eqs. 4-6. Otherwise, the contraction factor

simplifies to a ratio of Ki,b to Ki,l. We take the contraction of Rh rather than R2
h because the

linear version is what is measured experimentally and has been considered in the literature

previously.17 Furthermore, these quantities are typically less than unity due to increased

mass per backbone length from branching.

Because measuring the radius of gyration through light scattering is imprecise compared

to measuring intrinsic viscosity, theorists have invested a significant amount of research into

relating the contraction factor of the radius of gyration to that of intrinsic viscosity. The

Flory-Fox relationship gives g[η] = g
3/2

R2
g

for non-draining linear polymers, whereas Zimm

and Kilb18 indicate g[η] = g
1/2

R2
g

for non-draining star polymers. These distinct contraction

exponents (3/2 and 1/2) indicate at least two scaling regimes of polymer dilution solution

properties in good solvent.

This observation leads to the question: How does one relate the radius of gyration and

intrinsic viscosity contraction factors in the case of comb-like macromolecules? One may

expect that they behave as linear polymers. Conversely, Berry19 suggests the contraction

exponent may smoothly vary as macromolecular architecture is changed between the ex-

tremes of star and linear polymers. Although not well studied, we can hypothesize a similar

relationship between the contraction factors of the hydrodynamic radius and the radius of
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gyration. Thus, we may anticipate

g[η] = g
ε[η]
R2
g

(7)

gRh = g
εRh
R2
g

(8)

where ε[η] and εRh are the contraction exponents. In the case of comb-like macromolecules

behaving like linear polymers, we expect ε[η] = 3/2 from the Flory-Fox relationship and

εRh = 1/2 from the non-draining model. If Berry’s suggestion holds,19 we should expect

these contraction exponents to vary with branch length and spacing.

Experimentally, significant uncertainty exists in the measurement of these contraction ex-

ponents. Accurate experiments must use size exclusion chromatography combined with triple

detection to reduce uncertainty due to postfractionation, as well as a synthetic chemistry that

allows for homogeneous architectures due to the inability of size exclusion chromatography

to resolve architectural heterogeneity.3 Initially, star polymers were found to have ε[η] = 0.6

for 12 arms in both good and theta solvents,20 but later it was shown that this contraction

exponent increased to ε[η] ≈ 1 as the number of arms was increased from 3 to 128.21 In a

good solvent, comb-like polystyrene has 0.9 ≤ ε[η] ≤ 1.2,3,22,23 while comb-like polyethylene

has 0.92 ≤ ε[η] ≤ 1.52,24,25 in good solvent. To complicate matters further, these contraction

exponents change as a function of solvent quality.3

The lack of high quality experimental data to test theories and benchmark noisy in-

dustrial feedstocks is particularly egregious for a plastic as common and useful as LLDPE.

Because generating precise experimental data is challenging, one may attempt to turn to

molecular dynamics simulations to provide high-quality measurements of LLDPE in a good

solvent, but existing models are inadequate. While chemically specific polyethylene coarse-

grain models have been designed,26–29 these models focus on the melt rather good solvent

properties of polyethylene and do not include branching. Panizon et al.30 develop a model of

LLDPE with branches of 4 carbons that is compatible with the MARTINI31 potential, but it

requires the use of an explicit solvent that limits its use to small molecules. Another method
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by Zhang and coworkers32 utilizes an implicit solvent coarse-grain, bead-spring model to

explore the effect of nonbonded interactions on solvent quality. They subsequently compare

their results to experiments of LLDPE with precise branch lengths and spacings and find

qualitative agreement for a variety of dilute solution properties. However, this model does

not include chemically specific local interactions such as bond angles that prohibit quantita-

tive agreement. More recently, López-Barrón et al.25 simulate bottlebrush polymers in good

solvent using an implicit solvent, united atom model. This model uses united-atom bonds33

and modifies six nonbonded parameters to match all-atom Rg data. However, the atomic

resolution of this model inherently limits the range of molar mass that can be simulated in

a timely manner even with advanced sampling techniques.

To remedy these issues, we build a coarse-grain, implicit solvent model of LLDPE in

1,2,4-trichlorobenzene, a standard polymer-good solvent pair.2,4,34 We design this coarse-

grain potential to reproduce all-atom bond distributions of monomers on short-length scales

and experimental results on long-length scales using the precisely synthesized LLDPE by

Orski and coworkers4 both for inspiration and benchmarking. This coarse-grain potential

allows us to efficiently extend the library of good solvent dilute solution structure-property

relationships of LLDPE with precise branch lengths (L carbons) and branch spacings (S

carbons), i.e., the number of carbons between branch points, to significantly larger branch

spacings. This regime is well beyond what is currently experimentally accessible through

precise synthesis techniques such as ring-opening metathesis polymerization.35 Additionally,

these results provide a measure of the hydrodynamic radius which was not measured in

the original experiments. Our data allows us to explicitly test theoretical and experimental

predictions for ε[η] and confirm the hypothesized relationship in Eq. 8 for εRh . We find our

scaling and contraction exponents are constant with respect to branch length and spacing but

also do not match theoretical expectations (ε[η] = 1.13± 0.03 6= 3/2 and εRh = 0.33± 0.02 6=

1/2). Noting our scaling and contraction exponents are constant suggests comb-like polymers

form a scaling regime, i.e., a set of polymer architectures in which all parameters that
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define the architecture share the same scaling form. We build upon these observations to

generate a generic model to predict dilution solution properties of comb-like macromocules

in good solvent. This model collapses our coarse-grain LLDPE data at all branch lengths

and spacings onto a single master curve for each dilute solution property. We then discuss

future applications of our coarse-grain model and the ramifications of our theory, especially

on approach to the bottlebrush limit (large L and small S).

Methods

To generate our coarse-grain implicit solvent model, we simulate two small polyolefin molecules

in 1,2,4-trichlorobenzene at T = 135 ◦C and P = 101 kPa (1 atm) using the all-atom op-

timized potential for liquids simulation force field (OPLS-AA).36 This force field has been

optimized to obtain accurate descriptions of liquid state properties37 and has been used

to build coarse-grain polyethylene models in the past.28,29 In order to simulate the dilute

regime, we carry out these simulations with 264 solvent molecules and a single polyolefin

oligomer. We choose the amount of solvent such that the polymer avoids self-interactions.

A more detailed description of these simulations and the small molecules used is provided in

the Supporting Information, Fig. S1.

Our coarse-grain scheme in Fig. 1A contains three types of monomers: main chain

monomers (A), branch monomers (B), and connector monomers. Main chain monomers

are ethylene units containing 4 carbons. Branch monomers are the same as main chain

monomers, but they contain an extra carbon bond on the third carbon atom to allow branch-

ing. Connector monomers attach to branch monomers using these extra carbon bonds. These

monomers either contain 4 carbons (C4) or 2 carbons (C2), as shown in red on the left and

right of Fig. 1A. Designing our model with two types of connector monomers allows for

additional precision in the branch lengths of LLDPE that we can build. We convert the

all-atom bond length, angle, and dihedral monomer distributions to coarse-grain potentials
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Figure 1: Comparison of all-atom and coarse-grain bond distributions. (A) The
image shows a schematic of our coarse-grain model. Lines represent polyolefin in bond
line notation, while light and dark blue circles represent main-chain (A) and branch (B)
monomers. Red circles denote the 4-carbon (C4, left) or 2-carbon (C2, right) connector
monomers. (B) The plot presents example distributions of bond lengths for bonds X-X,
B-C4, and B-C2 in black, blue, and red, where X indicates either a B or A monomer. Dots
and lines represent all-atom and coarse-grain monomer distributions. (C) The plot shows
selected distributions of bond angles X-A-X, X-B-X, X-B-C4, and X-B-C2 in black, grey,
blue, and red. The inset shows a snapshot of a coarse-grain LLDPE with a branch spacing
of S = 8 carbons, a branch length of L = 4 carbons, and molar mass of M = 8.3 × 103

g/mol. The colors correspond to the coarse-grain scheme in (A).

using the first step of Boltzmann inversion.29

To obtain our nonbonded interactions, we first fit a 12-6 Lennard-Jones interaction,

Un
LJ(r) = 4ε((σn

r
)12 − (σn

r
)6) for r < rc = 15 nm, to the n = 2 and 4-carbon coarse-grain

nonbonded tabular potentials for polyethylene melts found in Salerno and coworkers.29 This

procedure gives a similar result to the MARTINI nonbonded potential for the 4-carbon
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case.30 We display the fits to this data in the Supporting Information, Fig. S5. We then set

our implicit solvent, nonbonded interaction to be

Un(r) = αUn
LJ(r) + (1− α)Un

WCA(r) (9)

where Un
WCA(r) is a Weeks-Chandler-Andersen (WCA) interaction38 and α is a parameter

that modulates the solvent quality. A WCA interaction is the purely repulsive part of the

Lennard-Jones interaction. The advantage of this form is that it allows us to transform the

potential from a purely repulsive potential (α = 0) to the melt potential (α = 1) without

changing the short-range, repulsive nonbonded forces. We expect such behavior because

there is no solvent between the monomers to mediate their interactions at distances within

the range of the WCA potential. We use standard Lorentz-Berthelot39 combination rules

to parameterize the cross-interaction between the n = 2 and 4 carbon beads. Finally, we

choose α = 0.2 to ensure scaling exponents that are consistent with experimental values

for polyethylene.2,4 Additional details are provided in the Supporting Information, Fig. S6.

Changes in α do not affect the coarse-grain distributions of Figs. 1A and 1B for α ∈ [0, 1]. We

list the parameters for all bonded and nonbonded interactions in the Supporting Information,

Tables S1, S2, S3, and S4.

We perform our coarse-grain polymer simulations using the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS)40 utilizing a Langevin thermostat and timestep of

8 fs when using C2 monomers or 10 fs otherwise. All dilute solution properties are estimated

using ZENO. For every snapshot, ZENO models the polymer as a collection of hard spheres,

taken to have a radius of 2.8 nm for monomers with 4 carbons and 2.1 nm for monomers

with 2 carbons, and computes the various dilute solution properties. The radius of gyra-

tion squared is computed directly while the hydrodynamic radius and intrinsic viscosity are

calculated by invoking an electrostatic-hydrodynamic analogy.41,42 Specifically, the hydrody-

namic radius is taken to be equal to the capacitance, while the intrinsic viscosity is taken to
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be proportional to the intrinsic conductivity, with a prefactor that varys slowly with shape

as detailed in Ref. 42. We choose the radii of the hard spheres to correspond to minimum

radii to maintain chain connectivity throughout our simulations. The properties are then

averaged over all the snapshots. ZENO has previously been shown to capture the experi-

mental dilute solution properties.14,25,43,44 We find that for this solvent-solute combination,

ZENO overestimates the experimentally measured intrinsic viscosity by approximately 30%.

Similar overestimation of intrinsic viscosity seems to occur in all molecular dynamics studies

attempting to model this solvent-solute pair with ZENO.25,32 This deviation could be due

to an inaccurate empirical prefactor for this class of shapes; however, we leave the explo-

ration of why this deviation occurs to future work but find that multiplying all our intrinsic

viscosity data by a best-fit constant c = 0.68 aligns our simulations with experiments. To

speed up the mixing rate of these simulations, we use parallel tempering45 and perform

averaging using the multistate Bennett acceptance ratio estimator.46 To guarantee proper

mixing, we monitor the radius of gyration as a function of simulation time and ensure it

decorrelates multiple times for a given simulation. We discard the first decorrelation time

from our analysis so that our initial configurations are properly equilibriated.

Results

Coarse-grain model

We compare the all-atom to coarse-grain monomer distributions for selected bond lengths

and angles in Figs. 1B and 1C, respectively. Other distributions are available in the Sup-

porting Information, Figs. S2, S3, and S4. We find these distributions are generally in good

agreement with each other suggesting that our model accurately captures the characteristics

of LLDPE on short length scales. We then compare our coarse-grain model to the exper-

iments of Orski and coworkers.4 These experiments are ideal for comparison to our model

because the synthetic chemistry used fixes branch spacings and lengths for a given architec-
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ture rather than randomly varying these parameters as in most experimental data. Figures

2A and 2B display the radius of gyration and intrinsic viscosity for polymers with a branch

spacing of S = 8 carbons and branch lengths of L = 0 (high-density polyethylene), 2, 4, 6,

and 10 carbons. Here, we find that all branch lengths exhibit power-law scaling behavior. At

constant molar mass as branch length increases, we see that both the radius of gyration and

intrinsic viscosity decrease, consistent with the experimental results. Furthermore, our sim-

ulations are in good quantitative agreement with experiments. We find that extrapolations

from our simulations exhibit 5% average error from experiments.

We also consider the shape factor (ρ = Rg/Rh), Fig. 2C. This result has significantly

more noise than Rg and [η] because it is a ratio of two quantities each with its own uncer-

tainty. However, we find a general trend that longer branch lengths show lower shape factors.

While we expect randomly branched and comb-like polymers to reside in different scaling

regimes, this result is consistent with experimental results34 that show branched polymers

have decreased shape factors compared to linear polymers. The shape factor also compares

well with experimental results for linear polyethylene34 denoted by the dashed line.

To better quantify these results, we extract the scaling exponents and prefactors that

characterize Eqs. 1-3. While many works4,25 fit independent scaling exponents for different

architectures, within uncertainty, we see no change in the scaling exponents in our data as

shown in Figs. 2A and 2B, suggesting our comb-like polymers belong to the same scaling

regime of polymer architecture. Moreover, we note that prior experimental works have made

similar assumptions.2 Thus, we fit our data with an architecture dependent prefactor and

a single, universal scaling exponent for each dilute solution property. These fits, shown in

Figs. 2A and 2B, quantitatively match our data well. The exponents we obtain are νRg =

0.594 ± 0.003, ν[η] = 0.684 ± 0.005, and νRh = 0.550 ± 0.002 where the error bars represent

standard deviations. These results are within the measurement error of experiments,4 and

agree reasonably well with the expected theoretical value for the radius of gyration scaling

exponent, νRg = 0.588± 0.001.12
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Figure 2: Comparison of coarse-grain model to experimental data. Plots show the
(A) radius of gyration (Rg), (B) intrinsic viscosity ([η]), and (C) shape factor (ρ = Rg/Rh

where Rh is the hydrodynamic radius) as a function of molar mass (M). Results from
molecular dynamics simulations of LLDPE with a branch spacing of S = 8 carbons are
displayed as dots. As we go from red to blue, the branch length of the LLDPE increases
from L = 0 (high density polyethylene), 2, 4, 6, and 10 carbons. Plots (A) and (B) also
show experimental data from Orski and coworkers4 for the same architectures represented
by triangles at high molar mass. Experimental radius of gyration data was excluded from
(A) for all but the high density polyethylene sample because uncertainty in the differential
refractive index made other architectures unreliable. The constant rescaling factor (c) is used
to align the intrinsic viscosity computed with ZENO with experiments in (B) as discussed
in the Methods section. Solid lines in (A) and (B) are power-law fits to the molecular
dynamics data using the same scaling exponents across all architectures. The dashed red
line in (C) shows the average ρ for linear PE.34 The error bars in (C) are generated by
taking the bootstrap standard error of 3 independent simulations.
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Figure 3: Coarse-grain model prefactors. Plots show prefactors of (A) radius of gyration
(KRg), (B) intrinsic viscosity (K[η]), and (C) hydrodynamic radius (KRh) as functions of
branch length (L) in carbons. The colors blue, green, and red represent branch spacings
(S) of S = 8, 16, and 32 carbons between branches. Black is the prefactor for polyethylene.
Circles represent prefactors from our coarse-grain model. Error bars denote the standard
deviations. Lines and squares denote predictions of our comb-like polymer model.

We present the corresponding scaling prefactors in Fig. 3. We see a downward shift

of these scaling prefactors for all dilute solution properties as we increase branch length

and decrease branch spacing. Some curvature exists at low branch lengths for small branch

spacings (S = 8 carbons), while less curvature exists at large branch spacings (S = 16 and

32 carbons).
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Figure 4: Contraction factors of coarse-grain model. Plots show contraction factors of
(A) intrinsic viscosity (g[η]) and (B) the hydrodynamic radius (gRh) against the contraction
factor of the radius of gyration (gR2

g
). The colors blue, green, and red represent branch

spacings (S) of S = 8, 16, and 32 carbons between branches. The dashed lines are power
laws using theoretically predicted exponents (ε[η] = 3/2 and εRh = 1/2, respectively) while
the solid lines are power laws found by fitting our theoretical model to the available data
(ε[η] = 1.13± 0.03 and εRh = 0.33± 0.02, respectively).

Using the scaling prefactors, we compute the contraction factors and examine the rela-

tionship between the contraction factor of the radius of gyration and the contraction factors

of intrinsic viscosity and the hydrodynamic radius in Fig. 4. The data is nearly linear on

a log-log scale, indicating a power-law relationship between the contraction factors as pos-

tulated in Eqs. 7 and 8. These power-laws show significant deviation from the power law

predicted by the Flory-Fox relationship and the non-draining model that suggest ε[η] = 3/2

and εRh = 1/2.11 Moreover, we see no apparent change in these power-laws as a function of

branch spacing or length. We review the implications of this result in further detail in the

Discussion section.
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Theoretical model and scaling collapse

To better understand our results, we build a physically inspired model for comb-like macro-

molecules. While previous work has developed models of the conformational properties of

comb-like polymers in good solvent47–49 based on Flory free energy arguments as compared

to experiments recently,50 we take a geometric approach that is motivated by our coarse-

grain model. We begin with the excess mass per unit backbone length that the branches

of these polymers add compared to their linear counterparts. Consider a linear polymer

with linear branches of length L units, a branch spacing of S units, and the same backbone

length as a linear polymer with mass Ml. The mass of this comb-like macromolecule is

MC = (1 + L/S)Ml. If these branches do not change the chain configuration and only add

mass to the macromolecule, we would expect a radius of gyration scaling relation similar to

Eq. 1,

Rg = K l
Rg(γM)νRg (10)

whereK l
Rg

is the prefactor of the radius of gyration scaling relationship for the linear polymer,

and γ = 1/(1 +L/S) is a mass rescaling factor for the branched polymer. We may interpret

L/S as the excess mass per unit backbone length.

To fully capture the physics of comb-like macromolecules, we must make two additional

modifications to this theory to account for changes in the persistence length of the backbone

due to the addition of branches. First, excluded volume effects at the branching point cause

the backbone of polymer chains to kink. We observe this effect for LLDPE directly in

Fig. 1C where the distribution of X-A-X bond angles (backbone angles without branches) is

straighter than X-B-X bond angles (backbone angles with branches). Suppose the dihedral

angle energies are relatively small compared to our bond length and bond angle energies, as is

typical when coarse-graining over a few atoms. In that case, we can expect to account for this

effect using a modification of the freely rotating chain model. In this model, the persistence

length of a linear polymer is llp ∝ 1/ ln (〈cos(θXAX)〉).11 For a comb-like macromolecule with
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branch spacing of S ′ coarse-grained monomers, or equivalently S/4 carbons, the percentage

of monomers along the backbone with branches is 1/S ′. Assuming these branches occur at

random locations in the chain, we can follow the derivation of the persistence length for a

freely rotating chain to obtain

lbp ∝
1

ln (1/S ′〈cos(θXBX)〉+ (1− 1/S ′)〈cos(θXAX)〉)
(11)

in monomer units. This expression suggests the ratio of LLDPE to high density polyethylene

persistence lengths due to kinks

δk =
ln (〈cos(θXAX)〉)

ln (4/S〈cos(θXBX)〉+ (1− 4/S)〈cos(θXAX)〉)
(12)

where the factor of 4 comes from the number of carbons in coarse-grain monomers along the

backbone, as shown in Fig. 1A, and measuring S in carbons. Using an alternative coarse-

graining scheme with a different number of carbons along the backbone would change this

factor as well as the bond angles employed, yielding quantitatively similar results.

The second effect that modifies the persistence length is inter-branch repulsion. To

understand this effect, we consider how inter-branch repulsion changes the branched to

linear polymer persistence length ratio, δr ≈ 1 + ∆l. Modeling the backbone between the

branches as a spring, we see that ∆l should be proportional to the force between the branches,

which is proportional to the number of interactions between the branches. The number of

interactions between branches should be roughly proportional to the area that the branch

occupies, similar to number collisions between a gas and a piston at constant pressure. Thus,

we should expect ∆l ∝ R2
g(L) where R2

g(L) is the squared radius of gyration of a branch L

units long. Dimensional analysis suggests that ∆l ∝ R2
g(L)/R2

g(S) where S is the spacing

between branches. Assuming that both the branch length and spacing are long enough to

exhibit scaling behavior and that the branches and backbone are in a good solvent regime,

we expect ∆l ∝ (L/S)6/5 where we use the Flory theory exponent, νRg = 3/5, for simplicity.
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Thus, we expect

δr = 1 + C

(
L

S

)6/5

(13)

where C is a constant that measures the repulsive force between branches at a given con-

centration and temperature.

Given these two contributions, we surmise that the total ratio of comb-like to linear

polymer persistence lengths is lbp/l
l
p = δkδr. Flory theory11 suggests that this modification

to persistence length should modify Eq. 10 such that

Rg = λRgK
l
Rg(γM)νRg (14)

where λRg = (δkδr)
2/5.

Having determined a general theory for Rg, we employ relationships between our con-

traction factors (Eqs. 7 and 8) as well as the observation that ε[η] and εRh are constant for

lightly branched polymers, as shown in Fig. 4, to derive

[η] = λ[η]K
l
[η](γM)ν[η] (15)

Rh = λRhK
l
Rh

(γM)νRh (16)

where λ[η] = γ−ν[η](λRgγ
νRg )2ε[η] and λRh = γ−νRh (λRgγ

νRg )2εRh .

We fit our LLDPE data to this model, fixing the scaling exponents we found previously

and the average angles (〈cos(θ)〉XAX = 0.7465 and 〈cos(θ)〉XBX = 0.5842) to the molecular

dynamics results. We find C = 0.56±0.03, K l
Rg
/10−2 = 2.33±0.01, K l

[η]/10−4 = 7.08±0.05,

K l
Rh
/10−2 = 2.53± 0.02, ε[η] = 1.13± 0.03, and εRh = 0.33± 0.02. The error bars represent

standard deviations. In principle, we can fix all values except C by directly fitting the data

in Figs. 3 and 4, but this approach leads to the error in the scaling prefactors of high density

polyethylene propagating throughout the calculation, whereas globally fitting reduces this

uncertainty. We now plot the scaling collapses for our dilute solution properties for a set
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Figure 5: Scaling collapse. Plots show scaling collapse of (A) the radius of gyration, (B)
intrinsic viscosity, and (C) the hydrodynamic radius for simulated data using the theory
(Eqs. 14-16). We use the color scheme from Fig. 3 to denote different branch spacing. Point
sizes (small, medium, and large) denote branch lengths of L = 4, 8, and 12, respectively.
Lines are high density polyethylene scaling relationships. (D) Plot shows the scaling collapse
of experimental data of Orski and coworkers4 for branch spacing S = 8 carbons. We use the
color scheme from Fig. 2 to denote branch lengths. In each plot, the inset shows data prior
to scaling transformation. Error bars are generated by taking the bootstrap standard error
of 3 independent simulations.

of selected molecular dynamics data in Figs. 5A, 5B, and 5C. Additionally, we plot the

scaling collapse of the experimental data of Orski and coworkers4 in Fig. 5D. We find that

in all cases, the scaling collapse is excellent. As a further check of these results, we plot the

predictions our model makes against our molecular dynamics data for our prefactors and

contraction factors in Figs. 3 and 4. The comparison is good in both cases. In the case

of Fig. 3, we find that the theory is mostly within the error bars of the prefactor fits. For

Fig. 4, we find the fits have R2 ≥ 0.97 in both cases.
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Discussion

This work develops an implicit solvent, coarse-grain force field for LLDPE in 1,2,4-trichlorobenzene.

At short length scales (low molar mass), this force field replicates all-atom bond length, angle,

and dihedral monomer distributions. At long length scales (high molar mass), it extrapolates

to the experimental results of Orski and coworkers.4 This model allows for the scaling anal-

ysis of the radius of gyration, intrinsic viscosity, and hydrodynamic radius of LLDPE in a

good solvent. In particular, we find that the contraction exponents, as defined in Eqs. 7 and

8, do not depend on branch length or spacing but also do not match theoretical predictions

(ε[η] = 1.13± 0.03 6= 3/2 and εRh = 0.33± 0.02 6= 1/2). Finally, we consider a general theory

to explain the scaling behavior of lightly branched comb-like macromolecules. This theory

rescales the mass and the persistence length of these polymers to obtain a radius of gyration

scaling relationship. Using our empirically constant contraction exponents, we obtain scaling

relationships for intrinsic viscosity and the hydrodynamic radius.

We begin by discussing the practical ramifications of our work. First, our coarse-grain

model and subsequent theory provide high-quality benchmarks that may be compared to in-

dustrial LLDPE feedstocks that lack the precise architecture of the model materials studied

here. We can leverage such benchmarks as a tool to determine the architecture in these feed-

stocks more precisely through dilute solution characterization. Then, we can correlate this

structure with bulk LLDPE properties. Because branch lengths and spacings are uncertain

in industrial LLDPE, these comparisons cannot be one-to-one. Assuming the probability

distributions of branch lengths and spacings do not change along the polymer backbone, our

theory suggests that we can combine these distributions with δk and δr (Eqs. 12 and 13) to

obtain a modified persistence length ratio. Obtaining this ratio immediately leads to expres-

sions for the radius of gyration, intrinsic viscosity, and hydrodynamic radius given constant

contraction exponents. Similarly, we may be able understand the structure of polymers gen-

erated using chain walking catalysis at low walking rates51 given reasonable modifications

to the form of the mass rescaling factor (γ) and repulsion factor (δr) that account for the
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non-linear nature of the branches. Further development and testing is needed to verify these

relationships.

Next, we consider commonly studied dimensionless ratios of dilute solution properties.

The values of these ratios are often compared to theoretical values for hard spheres and rigid

rods to better understand the shape of the polymer. Our theory makes explicit predictions

about these ratios for comb-like macromolecules that clarify how they should depend on

chain architecture. First, it suggests the shape factor25,34 takes the form,

ρ = Rg/Rh ∝
(
γνRgλRg

)(1−2εRh ) (17)

where we have excluded the prefactors and the weak mass dependence (MνRg−νRh = M0.044)

for clarity. While the mass rescaling function (γ) decreases with the addition of branches

(decreasing S) or as branches grow (increasing L), a competition between forces causes the

radius of gyration rescaling factor (λRg) to be non-monotonic. For lightly branched polymers

(small L and large S), this rescaling factor decreases as we add branches indicating a more

sphere-like configuration due to the kinks formed by attaching branches to the backbone.

Decreasing branch spacing further causes this radius of gyration rescaling factor to increase

as chains begin to repulse each other. The non-monotonic nature of the radius of gyration

rescaling factor (λRg) causes the shape factor (ρ) to decrease slower at large L. We show our

theory’s prediction for this quantity in the Supporting Information, Fig. S7.

Another dimensionless ratio, the topology factor (κ = R[η]/Rg) provides similar quali-

tative information about the shape of the polymer.25,34,52 Here, R[η] =
(

3[η]M
10πNA

)1/3

, is the

viscometric radius. Our model yields

κ ∝
(
γνRgλRg

)(2ε[η]/3−1) (18)

where we have again excluded prefactors and weak mass dependence (M (ν[η]+1)/3−νRg =

M−0.032). Comparing the shape and topology factors, we find that these ratios are related
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by a power law with an exponent of approximately −1. As such, the above arguments about

the shape factor also hold for the topology factor in reverse. This relationship also clarifies

the negative correlation between these factors as seen in experiments.34

We now discuss the more theoretical ramifications of our work. We first consider our

constant contraction exponents. These contraction exponents deviate significantly from the

Flory-Fox relation (ε[η] = 3/2) and non-draining model (εRh = 1/2). Moreover, they do

not seem to systematically vary as we change branch length or spacing in contrast to the

suggestion by Berry.19 As first postulated in Lee and Chang3 for polystyrene comb-like

polymers, the intrinsic viscosity contraction exponents are constant and approximately unity

(ε[η] ≈ 1) in a good solvent. Our observation of this phenomenon lends additional credibility

to this argument as we have an complete control over the structure of our polymers in silico

and find ε[η] = 1.13 ± 0.03. Furthermore, this observation adds to the growing evidence of

the inadequacy of the Flory-Fox relationship when predicting prefactors.53,54

Indeed, our observation of constant scaling and contraction exponents indicate that comb-

like polymers reside in a single scaling regime. The architectural limits on this regime are

unclear. Certainly, star polymers have different exponents20,21 and may be thought of as

comb-like polymers where the backbone length (N) is much less than the branch length

(N � L). We can further ask whether bottlebrush polymers (large L and small S) reside

in a different regime. Vargas-Lara et al.16 find that worm-like chains have different scal-

ing exponents than more flexible polymers. This observation suggests a separate regime

in the bottlebrush limit in which inter-branch repulsion dramatically increases the persis-

tence length. Gay and Raphaël55 use simple Flory free energy methods to postulate that a

transition between comb-like and bottlebrush polymers occurs when L � S3 and between

comb-like and star polymers occurs when L � S3 � N . We check these limits by com-

paring our theory to experimental bottlebrush polymer data in the Supporting Information,

Fig. S8. Despite using several approximations in our comparison, we find that our model

performs surprisingly well without modifying the exponents.
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While the architectural limits of our constant scaling and contraction exponents remain

unclear, we understand that the approximate expression for the change in persistence length

(δ) breaks down under certain circumstances. First, we would expect changes in δk, Eq. 12,

when branch spacing becomes smaller than the coarse-grain monomer size, i.e. S < 4

carbons. In this case, we may approximate δk as the value of δk for S = 4 if we assume the

backbone is rod-like below this length scale. Second, we apply scaling theory to the branch

spacings and lengths in a good solvent to obtain an expression for δr, Eq. 13. However,

scaling theory is not valid for small branch spacings or lengths. Indeed, the most significant

deviations from our theory occur when L = 2 or 4 in Fig. 3. This observation suggests

that accurately dealing with small branch spacings and lengths in which the geometry of the

carbon-carbon bonds plays a significant role would require a more detailed theory.

We next examine how our theory compares to that of other works. In particular, Vargas-

Lara et al.16 have recently suggested a general interrelation between the dilute solution

properties that we have studied,

[η] =
0.79NA

M
4πR

1/νRg
h R

(3νRg−1)/νRg
g (19)

where NA is Avogadro’s number. This theory indicates relationships between our scaling and

contraction exponents. In particular, we find ν[η] = (3νRg−1)+(νRh/νRg−1) = 0.707±0.005

and ε[η] = 3/2 + (εRh − 1/2)/νRg = 1.21 ± 0.03. These values are similar to our scaling

(ν[η] = 0.684 ± 0.005) and contraction (ε[η] = 1.13 ± 0.03) exponents and will produce

quantitatively similar results for intrinsic viscosity. However, close examination yields that

the scaling exponents are more than 3 standard deviations away from each other, suggesting

a possible more detailed theory relating these terms. Nevertheless, this theory is at least

approximately true in our case and superior to the Flory-Fox prediction.

Last, we turn to future uses of our coarse-grain force-field. Because we have ensured that

our model captures short and long-range behavior of the polymer in the solvent, this model
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for LLDPE in 1,2,4-trichlorobenzene, a standard good solvent for polyolefins,2,4,34 should

extrapolate to structures outside of the comb-like structures we have examined here. We

can efficiently manufacture structures such as diblock, ladder, ring, hyperbranched polymers,

and industrially relevant LLDPE in silico and directly compare to experiments using our

existing model. To study bottlebrush polymers, we would only need to run a limited number

of additional all-atom molecular dynamics simulations to obtain the bonded interactions.

Conclusions

We have designed a coarse-grain, implicit solvent model of LLDPE in 1,2,4-trichlorobenzene,

a common polymer-good solvent pair. This model reproduces all-atom bond distributions

and experimental results, suggesting it is valid at all length scales. We then extend a library

of structure-dilute solution properties of LLDPE with precise branch lengths and spacings in

a good solvent. This data demonstrates that the contraction exponents for intrinsic viscosity

and the hydrodynamic radius (ε[η] and εRh) remain constant as branch length and spacing

is varied. These results motivate our theory for the scaling of dilute solution properties of

comb-like macromolecules in a good solvent. While the architectural limits of this theory

remain unclear, we find that it represents all data in the library we have developed rea-

sonably well. This theory provides insight into how to infer structure from dilute solution

properties allowing for the tuning of multiple properties or the extrapolation of properties

from previously studied structure-property relationships for comb-like polymers.
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