
Jacob Fabro
Department of Mechanical and

Industrial Engineering,
University of Minnesota Duluth,

Duluth, MN 55804
e-mail: fabro001@umn.edu

Gregory W. Vogl
Production Systems Group,

National Institute of Standards and Technology,
Gaithersburg, MD 20899

e-mail: gregory.vogl@nist.gov

Yongzhi Qu1

Department of Mechanical and
Industrial Engineering,

University of Minnesota Duluth,
Duluth, MN 55804

e-mail: yongzhi@umn.edu

Run-Time Cutting Force
Estimation Based on Learned
Nonlinear Frequency Response
Function
The frequency response function (FRF) provides an input–output model that describes the
system dynamics. Learning the FRF of a mechanical system can facilitate system identifica-
tion, adaptive control, and condition-based health monitoring. Traditionally, FRFs can be
measured by off-line experimental testing, such as impulse response measurements via
impact hammer testing. In this paper, we investigate learning FRFs from operational
data with a nonlinear regression approach. A regression model with a learned nonlinear
basis is proposed for FRF learning for run-time systems under dynamic steady state.
Compared with a classic FRF, the data-driven model accounts for both transient and
steady-state responses. With a nonlinear function basis, the FRF model naturally handles
nonlinear frequency response analysis. The proposed method is tested and validated for
dynamic cutting force estimation of machining spindles under various operating conditions.
As shown in the results, instead of being a constant linear ratio, the learned FRF can rep-
resent different mapping relationships under different spindle speeds and force levels,
which accounts for the nonlinear behavior of the systems. It is shown that the proposed
method can predict dynamic cutting forces with high accuracy using measured vibration
signals. We also demonstrate that the learned data-driven FRF can be easily applied
with the few-shot learning scheme to machine tool spindles with different frequency
responses when limited training samples are available. [DOI: 10.1115/1.4054157]
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1 Introduction
1.1 Motivation. Data-driven system modeling and dynamic

analysis have gained increasing popularity as more data are avail-
able for Industry 4.0. There are several focuses for data-driven
dynamic modeling: (a) data-driven dynamical system modeling,
(b) data-driven discovery of system dynamics, and (c) data-driven
online system identification. The above focuses are closely related
and sometimes overlap. However, they differ in the modeling
space, i.e., the observation space, state space, or both. First, data-
driven dynamical system modeling works in a high-dimensional
observation space and aims to model the time-evolving dynamics
with a purely data-driven approach. Dynamic mode decomposition
[1] and Koopman operator theory [2] are two examples of data-
driven approaches for dynamical system modeling. The major ben-
efits of a data-driven Koopman operator-based approach are that (1)
it transforms the representation of nonlinear dynamics for state var-
iables, in the form of nonlinear differential equations, into a linear
representation in terms of observation variables when lifted to the
infinite dimensional observation space and (2) it provides a conve-
nient approach for high-dimensional data modeling, such as a
dynamic fluid field [3]. The Koopman operator can be learned as
a high-dimensional coefficient matrix that captures the time-
evolving relationship in a high-dimensional spatial field. Second,
data-driven discovery of system dynamics shares similar goals as
data-driven dynamical system modeling. It works in the state

space directly and aims to learn a data-driven solution to system
equations, such as a set of differential equations. It can also be
used to learn system parameters with measured dynamical data in
the state space. Data-driven discovery of system dynamics is best
known as physics-informed machine learning (ML), which com-
bines data-driven approaches with physics-based models.
Physics-informed neural networks (PINNs) are among the most
popular approaches in physics-informed machine learning (ML)
[4]. One major benefit of PINN lies in that the imposed physics con-
straint can help the ML algorithm converge faster with a relatively
small dataset while respecting physical rules. Third, data-driven
online system identification works in both the observation space
and the state space. It not only models the time-evolving patterns
in the state space but also explicitly correlates state variables and
observation variables. Kalman-filter-based identification is one
example of system identification that can be used to estimate
system parameters and perform prediction in the joint state and
observation space.
This work proposes to learn the frequency response function

(FRF) of a dynamic system, which can be used to represent the
system dynamics and to establish an input–output mapping relation-
ship. The proposed approach is related to focus (c) in building a cor-
relation model, as we learn a FRF that correlates the system
response with the system input, whereas focus (c) correlates the
observation (or response) to state variables. While state variables
are typically hidden and can be hard to measure in practical appli-
cation, the system response and input are generally measurable. A
learned model between the system response and the input can be
used for multiple purposes, such as output prediction, system eval-
uation, and input estimation. Such a model will be preferrable in a
real-time situation, where the input can vary with time and the
system itself may change due to wear and degradation.
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A physics-based model that captures the relationship between an
input and an output is typically hard to obtain because many phys-
ical parameters are difficult to measure or estimate. For example,
there is no standard way to measure the contact stiffness and
other physical parameters of a run-time dynamic system involving
rotating contacts like a machine tool spindle. Also, during run-time
operation, there are both steady state and transient components in
the dynamic response. The traditional FRF is a function of fre-
quency (ω) and is independent of the input amplitude. Thus, the tra-
ditional FRF yields a linear ratio of the output to the input at each
frequency and represents a static view of the system dynamics.
However, for machines undergoing different operating conditions,
such as varying rotating speeds and force levels, the dynamic stiff-
ness and boundary conditions can change and introduce nonlinear-
ities [5]. Moreover, force can introduce geometric structural
nonlinearities through Hertzian contact stiffness associated with
bearings [6]. This leads to an intrinsic dependency of the FRF on
the input data. Therefore, a classic input-independent physics-based
model is not only hard to build but also insufficient to reflect the
complex input–output mapping relationships.
On the contrary, machine learning models, such as a deep neural

network, possess the capability to learn a versatile model that can
handle a nonlinear mapping model as well as input dependencies
[7]. Intuitively, machine learning algorithms are generally consid-
ered as local approximations because they always approximate a
mapping relationship that is confined by the given training
samples. Generalization and extrapolation can be challenging for
machine learning (ML) since traditional ML models cannot approx-
imate functional relationships and generalize the learned model
from the trained domain to the full domain of a function. To learn
a data-driven FRF, it is desired that the learned model can be gen-
eralized to the full domain of the FRF, which implicitly mimics the
physical relationship. To address those drawbacks of machine
learning, a learning approach that features regression with a
learned function basis is adopted and developed for frequency
response function learning.

1.2 Review. Next, we provide a short discussion on the moti-
vation and literature review of spindle process modeling and FRF
learning. Advanced manufacturing depends upon innovative
sensor-based monitoring and modeling systems that are intelligent,
robust, reliable, and ideally inexpensive [8]. Building models from
sensory data that can assist the analysis and prediction of machining
performance is one of the core tasks to realize advanced manufac-
turing. As an example, the quality and repeatability of the part
surface produced with a milling machine tool depend on the
quality and consistency of the cutting forces. Chatter, which is a
particular frequency response phenomenon, can happen at certain
combinations of rotational speeds and cutting forces during
milling operations and can significantly affect the part quality [9].
As a cutting tool wears from usage, cutting forces can increase or
vary due to worn, damaged, or broken teeth on the cutting tool
[10]. As a cutting tool wears from usage, cutting forces can increase
or vary due to worn, damaged, or broken teeth on the cutting tool.
Such changes result in part variations as production proceeds,
potentially resulting in the violation of quality specifications or
damage to the part [11]. If cutting forces are known, then tool
wear, surface quality, and chatter can potentially be monitored in
real time.
However, monitoring cutting forces is difficult because the mea-

surements require invasive force sensors installed on the machine
tool or underneath the workpiece. The typical use of a plate dynam-
ometer [12] for force measurements is impractical for part manufac-
turing due to workspace constraints and inertial forces that may
corrupt the measured forces [13]. Moreover, direct force measure-
ment approaches on tool tips are generally expensive and can intro-
duce calibration problems for spindles. Alternatively, indirect
methods for estimating cutting forces have been investigated,
including the use of motor currents with structural dynamics

compensation and servo information [14,15]. Accelerometers, espe-
cially the miniature type, can be hidden within machine tool spindle
housings and used to estimate cutting forces. In addition, acceler-
ometers provide the benefits of long operational life and simple
maintenance [16]. Because of these advantages, spindle-mounted
accelerometers have been used to estimate cutting forces. Wang
et al. proposed a dynamic force identification method in the time
domain using conjugate gradient least square optimization to recon-
struct the milling forces using acceleration signals [17]. Postel et al.
proposed a Kalman-filter-based approach to estimate the forces and
displacements at the tool tip with accelerations measured on the
spindle housing [18]. Even though considerable efforts have been
seen to estimate cutting forces, existing works are exclusively
based on the FRF identified off-line with impact hammer testing.
However, these off-line FRF models can be significantly different
than real-time models that change over time.
Research on real-time FRF learning and the application to cutting

force estimation have been rare. Kushnir proposed estimating the
run-time FRF for a lathe using the measured vibration spectrum
at the top plate and spindle headstock. The FRF was represented
as a vector specifying the averaged linear ratio between output
and input spectrums at each frequency [19]. Deng et al. investigated
a transfer learning method to obtain a mapping relationship between
the frequency response and the parameters in a finite element model
[20]. While their work is in line with frequency response analysis,
they did not aim to learn a frequency response function. Thenozhi
and Tang proposed to use a radial basis neural network and
support vector machine to learn the FRF from simulation data of
a single-degree-of-freedom mechanical system [21]. A regression
model was built between the inputs and outputs, in the form of
OFR= f (a, ω), where OFR is the amplitude of the corresponding
output frequency response, a is the amplitude, and ω is the fre-
quency. While Thenozhi and Tang’s work is closely related to
our work, they did not build a full FRF learning algorithm with
both amplitude and phase (or real and imaginary terms), which
would require a multiple-input, multiple-output model structure.
Nonlinear frequency response analysis (NFRA) has drawn recent

attention in battery analysis related to electrochemical impedance
spectroscopy [22]. NFRA aims to give a full and detailed represen-
tation of the system response that can establish a relationship
between model parameters and the experimentally observed phe-
nomena. Nonetheless, NFRA has seen limited research in mechan-
ical system analysis. Lang and Billings proposed the concept of
nonlinear output frequency response functions (NOFRFs) [23].
As discussed in the NOFRFs approach, the system nonlinear beha-
vior depends on a combined effect of the input spectrum and the
system frequency domain characteristics. Bayma et al. further pro-
posed a polynomial nonlinear auto-regressive with exogenous input
model for output response prediction based on NOFRFs, which
handled the nonlinearities based on a time-domain auto-regressive
model with external input [24]. In contrast, this paper focuses on
learning the nonlinear FRF in the frequency domain directly with
a nonlinear function basis of the input spectrum and the correspond-
ing frequency. In a previous work [25], we proposed to use a pre-
selected nonlinear function basis for FRF learning. However, the
model in Ref. [25] cannot effectively extrapolate to unforeseen
machine conditions.
To this end, this paper outlines how to learn a data-driven nonlin-

ear FRF and presents its application in learning a mapping model
from the on-machine vibration response to the cutting force for
run-time spindle systems, which can provide an effective estimation
of cutting force. To the best knowledge of the authors, this is the first
work that learns a full nonlinear FRF from run-time experimental
data. The contributions of the paper are threefold: (1) we formu-
lated and developed a FRF learning method in the frequency
domain. The learned data-driven FRF represents a complex model
for systems under dynamic steady state and can be used for real-
time dynamic input/output prediction; (2) we proposed a multivar-
iate regression model that can model the relationships between mul-
tiple input variables and multiple output variables and can be
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applied to a general multi-input, multi-output (MIMO) system; and
(3) we showed that with a few-shot FRF learning strategy, the
model can be easily adopted to a new machine with a different
FRF. The performance of the proposed method and the few-shot
learning scheme are validated using experimental data.
The rest of the paper is organized as follows: Sec. 2 presents the

related background and proposed methodology; Sec. 3 describes
the experimental setup and illustrates the datasets; Sec. 4 presents
the results and discusses the sensitivity of the model structures
and parameters; and Sec. 5 concludes the paper. The data and
codes are provided in a GitHub repository.2

2 Methodology
In this section, a general regression method for data-driven FRF

learning of a multiple-input, multiple-output system is proposed.

2.1 Related Background. This section discusses the back-
ground of regression methods with a learned function basis to
obtain a compressed representation of a general nonlinear function
[26,27].
A regression task aims to learn a function that accurately maps an

input to an output for all possible input values in the defined func-
tion domain. Mapping the input to the output of a complex system
can be done effectively with a function basis, sometimes noted as
mode decomposition, where various simple functions contribute
on a weighted basis to make up the more complex function
output. Function basis mapping of an unknown function F(x) may
be represented generally as follows [26]:

F(x) = Pψ (1)

P = [ p1, p2, . . . , pn] (2)

ψ = [ψ1, ψ2, . . . , ψn]
T (3)

where P is a set of weights and ψ is a set of basis functions.
Equation (1) can be represented as the summation of the products
of the individual weights and the respective basis functions, that is,

Y = F(x) =
∑
i

piψ i(x) (4)

ψ i(x) ∈ {1, x, sin(x), ex, x2 + 1, . . .} (5)

Equation (5) shows that ψi(x) can be an arbitrary function. In
practice, the set of basis functions can be learned to best approxi-
mate the unknown function F(x).
Furthermore, the weights, P, can be learned as a solution for a

given set of basis functions ψ and the target value of F(x) as Y.
Therefore, P can be represented as a function of ψ and Y:

P = H(ψ, Y) (6)

pi = hi(ψ, Y) (7)

Next, the adopted function-basis-based few-shot regression
model [26] is briefly summarized with the model architecture
and how the model learns to approximate an unknown function.
Figure 1 shows a diagram of the model architecture. There are
three major modules in the regression model: basis function gener-
ator (BFG) module, weights generator (WG) module, and dot
product (DP) module, as indicated by the dashed boxes. The
data flow is separated into two routes: the training process, repre-
sented by the black arrows and boxes, and the testing process, repre-
sented by the blue arrows and boxes in Fig. 1. Each module is
described briefly below as a step in the model.

First, the BFG module serves as a space explorer, which finds the
high-dimensional embedding space for the input variables. There-
fore, it learns the basis functions that augment the input data. The
BFG module can be implemented as a feedforward neural
network. The BFG neural network is initialized randomly with a
preselected number of outputs, where each output represents the
result of one basis function in the high-dimensional embedding
space. During the model training stage, the BFG neural network
will be trained and optimized to approximate the most suitable set
of basis functions.
Then, the WG module learns the weights as a function of the

basis functions and the ground truth labels, according to (6). As pro-
posed in Ref. [26], the weights can be best solved by an attention
model, which explicitly encourages different levels of emphasis
when mapping the inputs to the outputs in a neural network.
Finally, the DP module performs two operations. It first takes the

mean of the learned weights across n points over the function
domain. Taking the mean approximates a voting mechanism for
the final weights that represent the underlying function across the
function domain. Second, the DP module performs the dot
product of the mean weights and the learned basis functions to
yield the predictions. The predictions are then compared with the
true labels, and the errors can be backpropagated to optimize the
parameters in both the BFG and WG modules.

2.2 Problem Formulation. A FRF is defined as the ratio
between the output spectrum to the input spectrum in the frequency
domain of a system or device. More broadly, FRFs are special cases
of transfer functions. A FRF is defined for a linear system under
dynamic steady state, in which there are sinusoidal inputs and the
transient response has dissipated. Obtaining the FRF of a system
allows informed operation and predictive control of that system.
It is noteworthy that in experimentally collected real-time operating
data, there are numerous transient responses that cannot be modeled
with traditional FRFs.

Fig. 1 Model architecture diagram

2https://github.com/yongzhiqu/FRF-Learning-with-Few-Shot-Multivariate-Regression
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Nonetheless, we consider the nominal operating state of a real-
time system as dynamic steady state, and without losing generality,
we will use the traditional FRF model to illustrate the proposed
method. A general FRF is

H(ω) =
Y(ω)
X(ω)

(8)

where H(ω) is the FRF, X(ω) is the input spectrum, and Y(ω) is the
output spectrum. Hence, Y(ω) can be represented as a function of
the product of H(ω) and the input X(ω) in the frequency domain,
that is,

Y(ω) = H(ω)X(ω) (9)

In practice, one often needs to approximate the FRF, H(ω), for a
given system such that the relationship between the system output
Y(ω) and input X(ω) can be determined analytically. In a data-driven
manner, H(ω) can be learned as a mapping relationship between
Y(ω) and X(ω). Since the mapping relationship varies as ω
changes, H(ω) should be learned as a function not only of the
input spectrum X(ω) but also as a function of ω. Towards this
end, Y(ω) is represented as a general function of ω and X(ω) as

Y(ω) = F(ω, X(ω)) (10)

Equation (10) can be learned as a data-driven model that approx-
imates the FRF. The FRF learning problem naturally becomes a
regression problem between (ω, X(ω)) and Y(ω). The task is then
to determine the function F, which is equivalent to a FRF and can
be used to predict the output Y(ω).

2.3 Challenges. The major difficulty with learning a FRF is
that, for a complex system, FRFs may be highly nonlinear and
depend on the inputs [28], such as speeds and force amplitudes.
Also, FRFs are typically not smooth or continuously differentiable.
Approximating a FRF with polynomial terms can lead to overfitting
as well. Additionally, it is difficult to interpolate along a FRF
because the response of the FRF at each given frequency is rela-
tively independent.
A practical challenge comes from the nature of operating data. To

obtain a full FRF, an ideal impulse input excitation is desired since
it includes all frequency components uniformly. During impulse
testing, the testing system undergoes a free-vibration response.

However, during normal operating conditions, the system is often
under forced vibration. The input excitations are typically at discre-
tized harmonics, such as the multiples of the spindle speed fre-
quency. Therefore, collecting frequency response data at each
frequency is infeasible during normal operation, which makes learn-
ing the FRF from real-time operating data challenging. For
example, Fig. 2(a) shows a FRF for a machine spindle with
sampled points marked as red dots. It is shown that if the only
sampled responses are the red dots, then many of the harmonics
of the FRF would not be captured, making it difficult to model
via a data-driven learning model.
The goal of learning a FRF is to accurately predict all responses

across the function domain. However, it is typically not possible to
collect operating data at each frequency point. Due to the challenge
of limited data, the model must be capable to “extrapolate” to
unforeseen frequencies, so a learning scheme with a function
basis is preferred to introduce some extrapolating capability.
Other realistic application challenges for learning the FRF

include that machine conditions can change over time due to
system degradation and FRFs can vary significantly from one
machine to another. Once a FRF associated with a given system
is learned by a model, it is challenging to apply the model to a
new system without enough training data. Figure 2(b) shows two
different FRFs. A model that learns the first FRF, the blue curve
in Fig. 2(b), will only be effective in practical application if it can
adapt to the changes of a new FRF, the red curve in Fig. 2(b),
without requiring too much new training data. As discussed
above, training data under one operating condition captures the fre-
quency response effectively at only certain discrete frequencies.
Thus, to learn a continuous FRF that can predict the force spectrum
at a broader frequency range than the frequencies covered in the
training dataset, few-shot regression can be employed. Compared
to random initialization of the model for the normal training
process, the few-shot regression training takes the trained model
for the existing dataset and performs further training with a few
samples from the new machine until the model converges for the
new dataset.
The last challenge in learning the FRF is that the data of X(ω) and

Y(ω) are complex numbers. To handle complex numbers with a
machine learning model, one can either separate the complex
numbers into real and imaginary parts or convert them into ampli-
tude and phase representations. This creates a multivariate regres-
sion problem like a MIMO system. To handle a multivariate

Fig. 2 (a) Plot of continuous FRF versus sampled FRF and (b) comparison of two
different FRFs
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regression problem with a learned function basis, we designed a
model with a shared function basis and separate weight vectors
for each output dimension. Each function basis is a function con-
taining all input dimensions.

2.4 Proposed Frequency Response Function Learning
Approach. To tackle the above challenges, the nonlinear function
basis-based regression model is adopted and expanded to develop a
FRF learning model. In this paper, real and imaginary parts are used
separately. Thus, the relationship between the input (X ) and output
(Y ) of the system can be rewritten as shown in (11), where the input
is a [3 × 1] vector and the output is a [2 × 1] vector:

YR
YI

[ ]
= F

ω
Xr

Xi

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠ (11)

More generally, (11) can be written as

Y1
Y2

[ ]
= F

X1

X2

X3

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠ (12)

The expansion of F(ω, X(ω)) reflects the weights and basis func-
tions of the model, as shown here:

Y1
Y2

[ ]
= F

X1

X2

X3

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠ =

P1ψ
P2ψ

[ ]
(13)

Equation (13) can be further expanded into (14), where all basis
functions ( fj) and the respective weights (pi,j) are shown:

Y1
Y2

[ ]
=

p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n

[ ]
·

f1
f2

..

.

fn

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (14)

As stated in Sec. 2.1, the model learns both the set of basis func-
tions, ψ , as well as the set of weights, P. Each basis function within
the set is a function of ω and the inputs spectrum value at ω. In other
words, each output of the basis function generator (see Fig. 1) can
be noted as∅i = ψ i(ω, X(ω)). The weights are then a function of the
learned set of basis functions and the ground truth output of the
system. Therefore, each output from the weights generator (see
Fig. 1) can be written as pi,j= h(ψ, Y(ω))= g(ω, X(ω), Y(ω)). In
the formulation of this paper, the inputs to the model are the fre-
quency ω and the real and imaginary parts of a complex number;
the outputs of the model are the real part (yR) and the imaginary
part (yI) of a complex number.
Learning the data-driven model (see Fig. 1) involves minimiza-

tion of the overall loss function, L, defined as

L =
1
n

∑n
i=1

[(Yi,R − yi,R)
2 + (Yi,I − yi,I)

2] + ‖Q‖1 + ‖Q‖2 (15)

where Yi,R is the ground truth real part, yi,R is the predicted real part,
Yi,I is the ground truth imaginary part, and yi,I is the predicted imag-
inary part for the ith point in the frequency domain. Also, ‖·‖1 rep-
resents the L1 norm, ‖·‖2 represents the L2 norm, and Q is the full
set of model parameters for the BFG and theWG. The summation in
(17) is over the n complex data points. The completion of model
training provides a fully trained BFG and WG and a final mean
weights matrix. Testing consists of evaluating the response of
each set of basis functions and computing the prediction with the
final mean weights matrix. The L1 and L2 norms are added to the
cost function to regularize the solution space. L1 regularization
ensures a sparse model and the L2 norm reduces overfitting.

3 Experimental Study
3.1 Experimental Setup. Figure 3 shows the spindle testbed

that was created for the development and testing of new methods
for estimating real-time cutting forces from on-machine accelera-
tions. In the testbed, a motor connects to the custom instrumented
tool holder with a rubber belt under tension. When the motor oper-
ates, it spins the tool holder via the belt. The motor speed can be
controlled similarly to a spindle motor in a machining center. The
tool holder has a rotational speed up to 3000 rpm. Simultaneously,
a magnet on the custom tool holder rotates and interacts with two
stationary magnets. Figure 4 shows how the peak-to-peak magnetic
forces can be controlled by changing the distance, d, between the
rotating and stationary magnets. As the distance is decreased, the
magnetic force increases. For any spindle speed, force magnitudes

Fig. 3 Spindle testbed comprising a custom tool holder, accel-
erometers, and force sensors

Fig. 4 Illustration of a magnetic assembly located to yield a (a) relatively low tool-to-work-
piece force or (b) relatively high tool-to-workpiece force
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range up to 40 N. These forces are measured during rotation along
with six accelerations (AX1, AY1, AZ1, AX2, AY2, and AZ2)
from two triaxial accelerometers that are mounted near one of the
spindle bearings. Because the magnetic forces simulate cutting
forces, the spindle testbed mechanically simulates a machine tool
spindle during parts production for any combination of spindle
speed and force range.
The accelerations represent on-machine sensor readings that will

be utilized in the proposed approach to estimate cutting forces, as
summarized in Fig. 5. Before machining, accelerations and mag-
netic forces at various spindle speeds and force ranges are collected
with the custom instrumentation. This dataset is then processed via
the proposed method to learn a data-driven FRF between the forces
and accelerometer data. Finally, during machining, a different tool
holder is placed in the spindle, and as the tool rotates and removes
material from the workpiece, the accelerometer data are inputted
into the learned FRF model, which outputs a real-time estimation
of the forces. If implemented on a machine tool during production,
the method will yield real-time force estimates that can be used to
determine the health of the cutting process for process control pur-
poses and prognostics and health management.
It is worth noting that the force is the actual excitation (input) and

the vibration on the spindle housing is the response (output) in tra-
ditional system dynamic modeling. In contrast, the prediction
model for force prediction represents the inverse FRF in a strict
sense.However, a machine learning model is flexible with the selec-
tion of inputs and outputs. Therefore, the model in this paper is still
considered as a data-driven FRF.

3.2 Data Collection. Three datasets were collected to validate
the proposed FRF learning method for FRF learning, dynamic
cutting force prediction, and adaptation to a new machine.
Dataset A is used to demonstrate the performance of FRF learning.
Dataset B is used to validate the learned FRF for the application of
dynamic force prediction. Dataset C is used to demonstrate that the
learned FRF can be adopted to a new machine with limited new
data. The details of the datasets are summarized in Table 1.
One second of acceleration and force signals were recorded for

each data sample in all datasets. For dataset A, data were collected

at 1300 different operating states. Specifically, data were collected
for 100 different spindle speeds, from 400 rpm to 3000 rpm at every
26 rpm, and 13 different force levels, from 4 N to 40 N at every 3 N.
The data were then divided into 0.5-s-long segments, which double
the number of samples to 2600 samples. Then, the temporal data
were converted to the frequency domain via Fourier transforms.
These single-sided Fourier spectrums have a frequency resolution
of 2 Hz, due to the sample length of 0.5 s. The direct current com-
ponents are not utilized, however, to focus on the alternating current
response of the dynamical system. Figure 6 shows two examples of
force and vibration signals in both the time and frequency domains.
Dataset B was collected with the same simulated machine settings

as dataset A, making them suitable for regular model training and
testing. The spindle speed range was the same for both datasets,
from 400 rpm to 3000 rpm, but the speed interval for dataset B was
13 rpm,which is half the size as 26 rpm for dataset A.Another differ-
ence is that the force range was 4–28 N with an interval of 2 N for
dataset B. Therefore, dataset B includes more data than dataset A.
Dataset C is different than datasets A and B. These data were col-

lected to simulate a different machining center than the other two
datasets with a significantly reduced stiffness, adjusted by clamp
springs. Thus, it makes the dataset an effective one for evaluating
force predictions on different machines. Dataset C had seven differ-
ent spindle speeds, from 150 rpm to 3000 rpm with a nominal speed
interval of 500 rpm, and nine force levels per spindle speed, from
4 N to 40 N with a nominal force interval of 5 N. Twenty
samples were collected for each operating condition. This dataset
includes a total of 1260 samples.

Fig. 5 Summary of the high-level approach for estimating real-time cutting
forces

Table 1 Description of experimental datasets

Dataset A B C

Number of samples 2600 5200 1260
Speed range (rpm) 400–3000 400–3000 150–3000
Speed interval (rpm) 26 13 500
Force range (N) 4–40 4–28 4–40
Force interval (N) 3 2 5
Reduced stiffness? [1] No [2] No [3] Yes
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After the Fourier transform is performed on the collected tempo-
ral data, the real and imaginary parts of the complex spectrums are
separated. Real and imaginary parts of vibration spectrums and the
corresponding frequency create a 3 × 1 dimensional input data. The
ground truth labels are the corresponding real and imaginary parts
of the complex force spectrums with a dimension of 2 × 1.

3.3 Model Architecture. To learn a FRF between the vibra-
tion and force signals, the first 200 Hz of the frequency spectrums
were used. With a frequency resolution of 2 Hz, each sample con-
tains 100 points. It is worth noting that, even if the training data
are provided at every 2 Hz, under a specific spindle speed, the
useful training points are mainly at the spindle speed frequency
and its harmonics. Sixty-four basis functions are chosen for both
case studies reported in Sec. 4. The model structure is as follows:
the BFG takes a three-dimensional input and has ten subsequent
fully connected layers with 64 nodes per layer. The activation func-
tions are rectified linear unit for all but the last layer, where a
sigmoid activation function is chosen. The WG network is an atten-
tion model with four attention layers. Before each attention layer,
there is an additional embedding layer. The WG has 66 nodes in
the input (64 from the BFG concatenated with two ground truth
labels), 64 nodes in each embedding layer, 128 nodes in each atten-
tion layer, and 128 nodes for the output (64 × 2 for two-dimensional
output). The learning rate was set to 0.0005, the weight decay was
set to 0.000001, the L1 regularization term was set to 0.00001, and

the L2 regularization term was set to 0.0001. Model structure anal-
ysis and model convergence are covered in the results sensitivity
analysis in Sec. 4.
For case study 2 reported in Sec. 4, few-shot training is per-

formed for dataset C in addition to the original training of the
model based on dataset A. The few-shot learning aims to learn
the FRF for a new machine with limited testing samples. The
few-shot process takes a similar route as the original training proce-
dure except that the trained model for dataset A is initialized as the
model for dataset C. Then, the few-shot training is performed for
dataset C with 10, 20, and 50 shots.
The metrics used to evaluate the results are the mean absolute

error (MAE), the mean root mean square error (MRMSE), and
the mean maximum error (MME), defined as

MAE =
1
n

∑n
i=1

∑m
j=1

|Yij − yij|
m

( )
(16)

MRMSE =
1
n

∑n
i=1

���������������∑m
j=1

(Yij − yij)2

m

√√√√
⎛
⎝

⎞
⎠ (17)

MME =
1
n

∑n
i=1

∑m
j=1

max(|Yij − yij|)
m

( )
(18)

Fig. 6 Example force and vibration signals and their spectrums: (a) the force signals, (b) the vibration signals, (c) the
force spectrum, and (d ) the vibration spectrums for two spindle states with different spindle speeds and force levels
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where Yij is the jth data point in the ith sample of the ground truth, yij
is the jth data point in the ith sample of the prediction, n is the
number of samples, and m is the number of data points in each
sample.

4 Results and Discussions
To test and validate the proposed methodology, the learned FRF

of the machining spindle will be first presented, followed with two
case studies on dynamic cutting force prediction using the learned
FRF, and then a sensitivity analysis is presented.

4.1 Learned Nonlinear Frequency Response Function. As
we emphasized in the introduction, there is no ground truth for
the run-time FRF since the FRF will vary depending on speed
and force levels. To validate the learned FRF, we averaged FRFs
for various repeated measurement samples near a specific opera-
tional condition and assumed this computed ratio to be the true
FRF. We then compared the learned (inverse) FRFs and the com-
puted FRFs from the experimental measurements. For various
levels (low, medium, and high) of speeds and forces, we compare
the predicted FRFs with the measured FRFs.
For example, Fig. 7 shows the FRFs at three different rotational

speeds. It shows that at different rotational speeds, the FRF varied
significantly, perhaps due to gyroscopic and centripetal effects as
well as nonlinearities, because at different spindle speeds, the
dynamic properties and coupling boundary conditions, such as the
contact stiffness between moving parts, can change significantly.
Figure 7 shows that the predicted FRFs not only match the mea-
sured FRFs with high accuracy but also capture the variations at dif-
ferent operational speeds.
The learned FRFs can also be compared with the measured FRFs

for different force levels. Because the cutting force modifies the
boundary conditions within the spindle, when the cutting force is
different, the spindle is subjected to different boundary conditions
that can affect the system response in a nonlinear manner. For
example, Fig. 8 shows that the measured FRF changes with differ-
ent force levels and that these variations are captured accurately by
the predicted FRFs.
Lastly, Fig. 9 compares the learned average FRF and the mea-

sured average FRF for all tested speeds and forces. Even though
the predicted FRF matches the measured average FRF fairly accu-
rately, it is worth noting that this FRF only represents the average
dynamic behavior of the system; the average FRF never governs
the system dynamics at any moment. Instead, the average FRF rep-
resents a traditional static view of the FRF for a linear system. It can
be understood that if a static FRF were used to represent the system

dynamics, it would not be able to reflect the varying relationship
between force and vibration under different operating conditions.
Next, we will use two case studies to evaluate the proposed FRF

learning method for the application of run-time dynamic cutting
force prediction.

4.2 Force Prediction Case Study 1: Model Training and
Testing With Datasets From the Same Machine. This case
study aims to evaluate the performance of the FRF learning
method for run-time force prediction. We purposely trained the
model with a small dataset and test the performance on a relatively
larger dataset and make predictions over unforeseen operating con-
ditions under the same machine setting. Particularly, a model was
trained on dataset A and the learned FRF was then tested with
dataset B. Since dataset B is collected at a smaller spindle speed
interval compared with dataset A, this process allows for the deter-
mination of whether the model can handle unforeseen predictions at
untrained frequencies. Hundred and fifty epochs were run for the
training stage in this case study. Figure 10 shows example compar-
isons of force predictions against the ground truth for low, medium,
and high spindle speeds (1000 rpm, 2000 rpm, and 3000 rpm,
respectively) as well as low and high force levels (6 N and 26 N,
respectively). The relatively small differences between the pre-
dicted and measured forces reveal that the model reconstructs the

Fig. 7 Learned and measured FRFs under different rotational
speeds

Fig. 8 Learned and measured FRFs under different force levels
for a spindle speed of 1000 rpm

Fig. 9 Comparison of the average measured FRF and the
average predicted FRF under all operating conditions
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real-time forces with minor errors. Nonetheless, all six plots in the
figure show some relative inaccuracy in the valleys between the
force peaks. This could possibly be caused by the noise in the vibra-
tion spectrums.
Figure 11 shows a surface plot for the MAEmetric across various

spindle speeds and force levels. The notable trend is that the error
metric increases as the force level of the signal increases.
However, the increase is considered moderate, because if the
metric is evaluated relative to the force level, the relative MAE
metric would be nominally insensitive to the force level. Also,
with regard to spindle speed, there does not seem to be a significant
correlation between spindle speed and the MAE metric.
Table 2 summarizes the overall prediction errors for case study 1

with population values reported in the form of “mean± standard
deviation.” TheMAEmetric shows that the average force prediction
error is less than 1 N, which is only about 4% of the median force
level of 24 N. Since dataset B has twice the number of spindle
speeds as dataset A, half of the spindle speeds in dataset B are
not present in dataset A, which means that the results show that

the model can extrapolate the frequency response to untrained
spindle speeds.

4.3 Force Prediction Case Study 2: Model Training and
Prediction With Datasets From Different Machines. The
second case study was also performed with training on dataset
A. However, the goal is to use the model learned with dataset A
to predict the force in dataset C with a very small amount of new
data. As stated previously, the prediction data, dataset C, were col-
lected with different machine settings, which simulate a different
machine. The initial training process is considered as meta-learning
and a few-shot learning was further carried out on the prediction
dataset. Predictions were first evaluated without few-shot learning.
Then, 10-, 20-, and 50-shot training was performed on dataset C and
the predictions were evaluated again. Random samples from dataset
C were selected for the few-shot training. Compared with the full
dataset C, the few-shot learning only requires a minor fraction of
training data.
Figure 12 shows the reconstructed force, with few-shot learning

(“few-shot prediction”) and without few-shot learning (“predic-
tion”), and the measured forces (“ground truth”) for dataset
C. Similar to the plots in Fig. 10, Fig. 12 shows results for low,
medium, and high spindle speeds (1000 rpm, 2000 rpm, and
3000 rpm, respectively) with low and high force levels (4 N and
30 N, respectively).
The predictions without few-shot learning show significant devi-

ations from the ground truth, especially for low and medium spindle
speeds. Therefore, the initial model from meta-learning, based on
the full dataset A, cannot adequately reconstruct the force signal

Fig. 10 Reconstructed force signal plots from dataset B

Fig. 11 Surface plot of MAE of testing results

Table 2 Force prediction error of case study 1

Metric MAE MRMSE MME

Value (N) 0.958± 0.464 0.258± 0.222 3.513± 1.745

Fig. 12 Model prediction and few-shot prediction plots
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from vibration data from dataset C. This is understandable because
the machine settings, and hence the FRFs, are different for datasets
A and C. In contrast, Fig. 12 shows that the model after few-shot
learning updated and learned the FRF for the different machine
(for dataset C) to reconstruct the ground truth signals with a
much higher accuracy. The results indicate significant improve-
ments to the FRF learning with the few-shot learning scheme.
Quantitative results for predictions from the original model and

the 50-shot model are shown in Table 3, with all values reported
in the form of “mean± standard deviation.” Table 3 shows the
improvement in prediction across all three metrics of 50-shot learn-
ing compared to those without few-shot learning. In particular, the
MAE error decreased by at least 85%, and the standard deviations
improved similarly, due to the few-shot learning. For 10- and
20-shot models, MAE errors of 2.71 N and 2.24 N were obtained,
respectively, compared to an error of 1.21 N for the 50-shot
model. Again, this demonstrates that few-shot learning can utilize
a small amount of data to update the learned FRF to perform accu-
rately in the new function domain.

4.4 Sensitivity Analysis. To determine the optimal structure
of the model and evaluate the computation cost, an extended anal-
ysis was performed to determine the optimal number of basis func-
tions (the model width), the optimal numbers of layers in the BFG
and WG modules (the model depth), and the convergence of the
model.
Four different models, various model widths (32, 64, 128, or 256)

were tested to determine the optimal number of basis functions. To
ensure time efficiency in the comparison process, for the model
width and depth comparisons, each model was trained for 100
epochs. Table 4 details the metrics for these models based on
case study 1. A model with 64 basis functions performed the best
out of the four models evaluated.
For the purpose of simplicity, the reported results for the follow-

ing comparisons will be limited to the MAE, since the results from
the MRMSE and MME metrics generally lead to the same conclu-
sion as that from the MAE. Also, the standard deviation is omitted
in the following tables. A comparison of model depth was per-
formed with the number of basis functions fixed at 64. Based on
the model structure used in Ref. [27], the model structure was
varied extensively to determine the optimal structure. A partial
list of results is given in Table 5 to show the general effect of
model depth on the MAE metric. The model depth is represented
as the numbers of layers in BFG and WG. The optimal depth for
the model was determined to be ten layers in the BFG module
and four attention layers in the WG module.
Finally, model convergence was evaluated for both the original

model training and few-shot training. Both models were trained
until the onset of overfitting and the deterioration of the error
metrics. For the original model training with dataset A, convergence

occurred between 150 epochs and 200 epochs. In contrast, for the
few-shot model in case study 2, convergence occurred around
2000 epochs and 5000 epochs, as observed in Fig. 13. It is shown
in the above results that the few-shot scheme is highly effective
in learning a new FRF even with a very low number of samples.
However, it does require more epochs for the model to converge
to the new dataset. Figure 13 shows how the MAEmetric converges
as the epochs increase from 25 to 5000 for 10, 20, and 50 shots. The
MAE converged around 5000 epochs for 10-shot and 20-shot
models. In contrast, convergence occurred around 2000 epochs
for the 50-shot model. This can be explained as with a small
number of samples, the learning rate is slow and the model takes
many epochs to converge. However, since the few-shot learning
sample size is small, it took less than 10 min for 5000 epochs
with training on a Macbook Pro computer with 8 GB of memory
and an Intel® Core™ i5 processor.
In summary, even though different model structures lead to dif-

ferent performances, the variance among them is relatively small.
Also, the best model for our dataset has similar numbers of layers
and basis functions as the model reported in Ref. [27], while our
model features multivariate regression and is applied to a
completely different scenario than the image recognition problem
in Ref. [27]. Admittedly, there is not a logical way to determine
the best model structure. The model structure in this paper provides
a rule-of-thumb configuration and can be used as a starting model
for other learning tasks.

5 Conclusion
This paper presented a data-driven method to learn a FRF under

dynamic steady state with a sparse function basis. More specifically,
a multivariate few-shot regression method was proposed in this
paper to learn an implicit FRF that represents the relationship
between inputs and outputs for spindles under operating conditions.
The proposed FRF model can effectively learn a general FRF model
that includes speed-dependent effects and the nonlinearities of the
system at different operating conditions.
The learning methods were applied to a spindle testbed that uses

accelerations measured from on-machine sensors to estimate
real-time machining forces. It was shown that the proposed

Table 3 Model prediction and 50-shot prediction results

Metric Original model 50-shot model

MAE (N) 9.296± 5.829 [4] 1.212± 1.147
MRMSE (N) 4.954± 4.076 [5] 0.504± 0.794
MME (N) 31.196± 19.279 [6] 4.592± 3.928

Table 4 Model width comparison

Model width 32 64 128 256

MAE (N) 1.341 [7] 0.994 1.306 2.839
MRMSE (N) 0.303 [8] 0.268 0.388 2.193
MME (N) 5.304 [9] 3.681 5.075 10.858

Table 5 Model depth comparison

Model depth (5, 4) (6, 4) (6, 5) (9, 4) (10, 4) (12, 4)

MAE (N) 1.25 1.22 1.28 1.07 [10] 0.994 1.71

Fig. 13 Few-shot convergence results
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method can predict dynamic cutting forces with high accuracy. In
the case of model migration to a new machine, a few-shot learning
strategy can be applied. It was shown that with a small number of
few-shot learning samples from a new machine, the model can
learn a new FRF. It is worth noting that although the model in
this paper is developed for FRF learning, the learning framework
on regression can be applied for vector regression or to a general
multiple-input and multiple-output system.
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