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ABSTRACT: Speed of sound data measured using a dual-path pulse-echo instrument
are reported for binary mixtures of 1,1,1,2-tetrafluoroethane (R-134a), 2,3,3,3-
tetrafluoropropene (R-1234yf), and trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)).
For each binary mixture, the speed of sound is studied at two compositions of
approximately (0.33/0.67) and (0.67/0.33) mole fraction. The conditions covered in
this study range in temperature from 230 to 345 K and from pressures slightly above the
bubble curve up to a maximum pressure of 51 MPa. However, to avoid potential
polymerization reactions, data for mixtures containing R-1234yf are limited to a
maximum pressure of 12 MPa at temperatures below 295 K and 8 MPa at temperatures
above 295 K. The mean uncertainty of the measured speed of sound is less than 0.1%,
where relative combined expanded uncertainties at individual state points range from
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0.04 to 0.4% of the measured speed of sound value. The greatest combined expanded uncertainties are encountered as the state
point approaches the mixture critical region where weakened echo signals and lower speed of sound values are observed. The
reported data are compared to available REFPROP mixture models, which are not adjusted using the data reported here, with
average absolute deviations ranging from 0.27 to 0.75% with maximum deviations as high as 1.1%. The comparisons to the
REFPROP correlations show that further adjustments to the mixture models are needed to provide a representation of the data

within its experimental uncertainty.

1. INTRODUCTION

The discovery of new refrigerants has been driven by toxicity,
flammability, reactivity with the ozone layer, and global
warming potential (GWP) constraints. Calm' and more
recently McLinden and Huber’ outline the history and
evolution of refrigerants. Presently, fourth-generation refriger-
ants, primarily hydrofluoroolefins (HFOs), are being proposed
as low GWP alternatives to widely used third-generation
refrigerants which are typically hydrofluorocarbons (HFCs). A
couple of examples of widely used HFC refrigerants are R-
410a, a 50/50 wt % blend of difluoromethane (R-32) and
pentafluoroethane (R-125), and 1,1,1,2-tetrafluoroethane (R-
134a). Myhre and Shindell’ provide an extensive list of 100
year GWP values for refrigerants which are 677, 3170, and
1300 for R-32, R-125, and R-134a, respectively. Proposed
fourth-generation refrigerants, HFOs such as 2,3,3,3-tetra-
fluoropropene (R-1234yf) and trans-1,3,3,3-tetrafluoropropene
(R-1234ze(E)), have 100 year GWP values of less than 1.
However, “fourth-generation” refrigerants such as R-1234yf
and R-1234ze(E) exhibit shortcomings in their performance,
are moderately flammable compared to third-generation
refrigerants,”> and as highlighted by Luecken et al. HFOs
such as R-1234yf break down into trifluoroacetic acid at a
much faster rate than HFCs such as R-134a. Therefore, third-
and fourth-generation blends are an alternative used to obtain
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a product with a lower GWP than “third-generation”
refrigerants that is less flammable® than “fourth-generation”
refrigerants while still providing the necessary level of
efficiency for their application.

The design and optimization of refrigeration and air
conditioning components are reliant on accurate equations of
state (EoS) for refri%erants and their mixtures. Studies such as
that by Bobbo et al.” review the available thermodynamic and
transport property data for pure refrigerants and briefly catalog
the properties of refrigerant mixtures. A more recent survey of
refrigerant fluid property data and models for mixtures by Bell
and colleagues® shows that several studies report density,””"”
heat capacity,” vapor—liquid equilibrium,'*"> and critical
property data'®'® for mixtures of HFC and HFO refrigerants.
However, of the available literature, only a single study by
Shimoura et al.'” reports liquid-phase speed of sound data for
refrigerant mixtures. Further, Shimoura et al. report a single
composition for each mixture, limiting the validation possible
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Table 1. Refrigerant Samples Used in This Study Listed with Their CAS Numbers, Molar Mass, Source, Purity, and GWP
Values Reported by Myhre and Shindell’*

chemical name CAS number molar mass/g-mol™ source purity/mole fraction GWP,
1,1,1,2-tetrafluoroethane (R-134a) 811-97-2 102.03 Dupont 0.999 1300
2,3,3,3-tetrafluoropropene (R-1234yf) 754-12-1 114.04 Chemours; Opteron 0.9999 <1
trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) 29118-24-9 114.04 Honeywell 0.9997 <1

“All samples were degassed using a freeze—pump—thaw method prior to preparing mixtures.

Table 2. Binary Mixture Compositions for R-1234yf, R-134a, and R-1234ze(E) Listed with Total Sample Mass Prepared and
the Combined Expanded Uncertainties of the Mole Fractions with a Coverage Factor, k = 2

mixture
R-1234yf/134a
R-1234yf/134a
R-1234yf/1234z¢(E)
R-1234yf/1234ze(E)
R-134a/1234z¢(E)
R-134a/1234ze(E)

composition/mole fraction

0.33634/0.66366
0.66759/0.33241
0.33584/0.66416
0.66660/0.33340
0.32916/0.67084
0.67102/0.32898

U, (x,)/mole fraction
0.00010
0.00010
0.00010
0.00010
0.00010
0.00010

sample mass/g

312.6626
332.2073
335.2690
3429511
110.8245
88.3572

for mixture EoS models. The motivation of the present work is
to expand the experimental knowledge of mixtures with third-
and fourth-generation refrigerants. Therefore, this study
reports new speed of sound data measured for mixtures of
one third-generation refrigerant, R-134a, with two prominent
fourth-generation refrigerants, R-1234yf and R-1234ze(E), at
temperatures from 230 to 345 K and pressures up to 12 MPa
for mixtures containing R-1234yf and pressures up to 51 MPa
for R-134a/1234ze(E) mixtures. Measurements with R-1234yf
were limited to 12 MPa to avoid potential golymerization
reactions previously observed by Richter et al.'

The measurement of caloric thermodynamic properties such
as the heat capacity, which are needed to determine the overall
heat transfer coeflicient of heat exchangers, can be challenging
at high pressures with a low experimental uncertainty.
However, as described by Lin and Trusler,"” speed of sound
data can be fit to an EoS and used to determine a variety of
thermodynamic properties such as the heat capacity, density,
and thermal expansivity within reasonable uncertainties.
Currently, REFPROP (version 10.0)*° is equipped with
mixture Helmholtz-energy-explicit EoS for R-134a,>' R-
1234yf,>* and R-1234ze(E),”> which use binary interaction
parameters and mixing rules described by Bell and Lemmon.”*
Bell et al.” report binary interaction parameters for a variety of
refrigerants including those originally quoted by Lemmon for
R-1234yf/134a, R-1234yf/1234ze(E), and R-134a/1234ze(E)
mixtures. However, due to the absence of experimental speed
of sound data for R-134a, R-1234yf, and R-1234ze(E) binary
mixtures, the performance of the REFPROP refrigerant
mixture models to predict the speed of sound of these
mixtures has remained untested. Therefore, the data reported
in the present study is used to test the performance of the
current mixture Helmholtz-energy-explicit EoS for these
refrigerants.

2. EXPERIMENTAL SECTION

2.1. Materials and Methods. Table 1 lists the refrigerants
used in this study along with their short names, CAS numbers,
molar mass, source, and purity. Prior to preparing mixtures,
each pure component was degassed using a freeze—pump—
thaw method. First, liquid samples, as received from the
manufacturer, were transferred to stainless steel sample
cylinders. The sample cylinders were then connected to a
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Figure 1. Schematic diagram for the main components of the pulse-
echo apparatus.

high-vacuum system with the valve closed and immersed in
liquid nitrogen to freeze the sample. After roughly 2 h, when
the sample was presumed to be frozen, the sample bottle was
exposed to vacuum to remove any volatile impurities. After
evacuating the vapor space, the sample cylinder valve was
closed, detached from the vacuum system, and heated to drive
the remaining volatile impurities into the vapor space. This
process was repeated until the change in the vacuum gauge
pressure was less than 107> Pa when exposing the vapor space
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Figure 2. Isochoric speed of sound measurement sequence. (1)
Initially, the measuring cell is full of liquid and the manifold contains
vapor and the speed of sound data is measured at bubble point
pressures intermediate to the measuring cell temperature and 293 K.
(2) The measuring cell pressure surpasses the dew-point pressure at
approximately 293 K; the manifold is full of liquid and measurements
are carried out to a maximum pressure of SO MPa. (3) Upon
completion of the first isochore, the temperature is dropped to 5 K
above the starting temperature, and the pressure is dropped to a
condition 0.5 MPa above the bubble point pressure, and (4)
measurements for the second isochore are initiated.
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Figure 3. Typical oscilloscope trace for a speed of sound
measurement encompassing 16,000 points inclusive of the first and
second pass of the short-path echo and long-path echoes.

to vacuum. Further details of the freeze—pump—thaw method
are described by Outcalt and Rowane.*®

Each mixture sample was prepared in the vapor phase, and
the composition was determined gravimetrically using the
double substitution method.”® The double substitution
method mitigates errors inherent to the balance used and
accounts for the impact of air buoyancy on the sample cylinder.
The standard deviation for each weighing was between 0.0006
and 0.0054 g, which translates into composition uncertainties
between 5 X 107° and 4.4 X 107° mole fraction if only
uncertainties associated with the gravimetric preparation are
considered. However, additional sources of uncertainty may
include contamination of the outside of the cylinder with dirt
or moisture, expansion of the cylinder when filling, sorption of
the sample onto the inner cylinder walls and valves as
described by McLinden and Richter,”” and loading un-
certainties described in the next section. Nevertheless,
including these additional sources of uncertainty, the overall
composition uncertainty is no greater than 0.00010 mole
fraction. Table 2 lists molar compositions, total sample
volumes, and mole fraction uncertainties.

2.2. Dual-Path Pulse-Echo Instrument. The dual-path
pulse-echo instrument is described in detail elsewhere by our
group,zs’29 Ball and Trusler,’ and Meier and Kabelac;*
therefore, only the major features and details are described
here. Figure 1 is a schematic diagram of the dual-path pulse-
echo instrument showing the major components of the
apparatus, which consists of a measurement cell contained
within a pressure vessel that is housed in a precision
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Figure 4. Relationship between the speed of sound, ¢, and
temperature, T, for binary mixtures of R-134a, R-1234yf, and R-
1234ze(E): (a) R-1234yf/134a (0.33634/0.66366), (b) R-1234yf/
134a (0.66759/0.33241), (c) R-1234yf/1234ze(E) (0.33584/
0.66416), (d) R-1234yf/1234ze(E) (0.66660/0.33340), (e) R-
134a/1234ze(E) (0.32916/0.67084), and (f) R-134a/1234ze(E)
(0.67102/0.32898) along several pseudo-isochores. Symbols repre-
sent experimental data points, while lines represent the speed of
sound calculations using REFPROP for each pseudo-isochore.

thermostatted liquid bath (Fluke Hart Scientific, 7341 High
Precision Bath) that can operate over the temperature range
from 228 to 423 K. The measuring cell features a quartz crystal
disk with a diameter of 24 mm, a thickness of 0.36 mm, and a
resonant frequency of 8.00 MHz. The quartz crystal functions
as an ultrasonic transducer and is “X-cut”, so its thickness
expands and contracts when a voltage is applied between
electrodes on its opposing faces. Located between either face
of the quartz crystal and reflectors on either end of the cell are
two tubular ceramic spacers with lengths of approximately 12
and 30 mm that determine the length of the short and long
echo paths, respectively. During an experiment, the quartz
crystal functions as both a signal transmitter and receiver. The
crystal is connected to a high-speed switch, which toggles its
input between an arbitrary function generator (Agilent
33250A, 80 MHz) and a three-stage amplifier (Stanford
Research Systems Inc., SR455A, SX per stage for a total of
125X) that feeds into a digital storage oscilloscope (Keysight
Infiniivision DSOX4022A, 200 MHz, S GSa/s). During a
typical measurement sequence, the crystal is excited using the
arbitrary function generator with a 10-cycle sinusoidal tone
burst at 8 MHz, and then, after a 6 us delay, the high-speed
switch connects the crystal output to the three-stage amplifier
and then to the digital storage oscilloscope. The echoes
recorded by the oscilloscope are then analyzed off-line using
the procedure described in the next section.

The pressure vessel is rated to 93 MPa and is configured
with an electrical feedthrough from the top and tubing from
the top and bottom of the vessel to the filling manifold (not
pictured here). The filling manifold is also connected to a

https://doi.org/10.1021/acs.jced.2c00037
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Figure 5. Deviaition graphs comparing the experimental speed of
sound values, c., to the speed of sound values calculated with
REFPROP using the Helmholtz-energy-explicit EoS and binary
interaction parameters reported by Bell et al.’, ¢, as a function of
Cepr Comparisons are for R-134a, R-1234yf, and R-1234ze(E) binary
mixtures: (a) R-1234yf/134a (0.33634/0.66366), (b) R-1234yf/134a
(0.66759/0.33241), (c) R-1234yf/1234ze(E) (0.33584/0.66416), (d)
R-1234yf/1234ze(E) (0.66660/0.33340), (e) R-134a/1234ze(E)
(0.32916/0.67084), and (f) R-134a/1234ze(E) (0.67102/0.32898)
at temperatures open circle: tracing saturation, solid black triangle:
255 K, solid black diamond: 260 K, solid black square: 265 K, solid
blue circle: 270 K, solid blue triangle: 275 K, solid blue diamond: 280
K, solid blue square: 285 K, solid orange circle: 290 K, :solid orange
triangle: 295 K, solid orange diamond: 300 K, solid orange square:
305 K, solid green circle: 310 K, solid green triangle: 315 K, solid
green diamond: 320 K, solid green square: 325 K, solid yellow circle:
330 K, solid yellow triangle: 335 K, solid yellow diamond: 340 K, and
solid yellow square: 345 K.

vacuum system to evacuate the measuring cell and lines before
loading new samples and a vibrating-quartz-crystal transducer
(Paroscientific, Model# 420 K-HHT-101, 0—138 MPa) to
measure the system pressure with a standard uncertainty of
0.014 MPa. Prior to loading the sample, the system is
evacuated for at least 12 h to remove any residual sample from
the previous run or solvent used to clean the system. As
mentioned previously, the mixture samples are prepared in the
vapor phase. Therefore, to ensure that the pressure vessel and
measurement cell volumes are full of liquid, they must be
cooled to a temperature at which the sample cylinder pressure
exceeds the mixture dew-point pressure. The temperature of
the pressure vessel and measurement cell is regulated using the
liquid bath. The filling process is performed at 228 K to fill the
pressure vessel with liquid.

As shown in Figure 1, filling lines from the top and the
bottom of the pressure vessel extend from the filling manifold
down into a bath. While filling the pressure vessel, the valves
on the manifold are opened and closed in such a fashion that
during the filling process, the vapor sample is forced through
the bottom of the pressure vessel. Initially, the pressure vessel,
the manifold, and filling lines are at vacuum pressure, while the
sample cylinder pressure far exceeds both the bubble and dew-
point pressures at 228 K. Initially, there is a possibility that the
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sample could fractionate as the sample begins to condense in
the filling lines and pressure vessel. However, the system
pressure quickly approaches the sample cylinder pressure
forcing the sample to condense at the prepared sample
composition. The entire filling process is given up to 2 h to fill
the volumes of the system with liquid that are cooled to 228 K.
Further, to confirm that no composition gradients remain and
the sample is sufficiently remixed, the speed of sound is
measured 12 times over a duration of 33 min and the standard
deviation of these measurements was always well within the
uncertainty of the speed of sound measurement. It is important
to note that the manifold, which remains at room temperature,
initially remains vapor-filled until the liquid expands to also fill
the manifold.

Figure 2 demonstrates the isochoric measurement procedure
for the speed of sound. The blue arrow in Figure 2 shows the
measurements performed, while vapor resides in the manifold.
As described previously, the system pressure is initially at
bubble point pressures at temperatures intermediate to the cell
temperature and 293 K. As the temperature of the system is
increased, the fluid within the measurement cell expands and is
pushed into the manifold. Eventually, once sufficient fluid is
pushed into the manifold and the system pressure exceeds the
dew-point pressure at T = 293 K, the vapor in the manifold
begins to condense. Once all the vapor condenses to fill the
manifold with liquid, the system enters the compressed-liquid
region shown by the green arrow where increasing the
temperature results in sharp pressure increases. In this study,
data points along an isochore are taken in 5 K increments to a
maximum pressure of 12 MPa for mixtures containing R-
1234yf and 50 MPa for R-1234ze(E)/134a mixtures. Once the
isochore is complete, the temperature is reduced to a condition
S K above the starting temperature as shown by the red arrow.
The pressure is then reduced by venting the sample to a
condition 0.5 MPa above the bubble point estimated using
REFPROP. This process is repeated until a data point just
above the bubble point at 345 K is measured. In this study, our
“isochores” are actually pseudo-isochores since the system
volume varies slightly with changes in pressure and temper-
ature due to the effect of compressibility and thermal
expansion.

The bath temperature was measured with a 25 € reference
standard platinum resistance thermometer (SPRT) located
adjacent to the measuring cell. The resistance of the SPRT was
ratioed with an AC resistance bridge to a standard resistor
contained within a thermostatted enclosure. The SPRT,
standard resistor, and resistance bridge system were calibrated
with five ITS90 fixed point cells (mercury, water, indium, tin,
and zinc) from 234.316 to 692.677 K. The standard
uncertainty of the SPRT, standard resistor, and resistance
bridge system was estimated to be 0.003 K. The experiment
control was accomplished using a custom control program
written in Visual Basic 6. The program performed a
temperature and pressure scan of the system every 30 s,
providing the information used to measure the system
equilibration and stability. Three criteria were used to establish
that the system was at equilibrium which are as follows: (1) the
difference of the average of the previous eight temperature
scans from the setpoint; (2) the standard deviation of the
previous eight temperature scans; and (3) the rate of pressure
change with time computed with a linear fit of the last eight
pressure readings. When all three of the equilibrium criteria
were within preset tolerances, a converged flag was set in the

https://doi.org/10.1021/acs.jced.2c00037
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Table 3. Experimental Speed of Sound Data for R-1234yf/134a Mixtures with a Molar Composition of (0.33634/0.66366)“"

T/K p/MPa ¢/ms™! 100-U,(c) T/K p/MPa
230.013 0.353 790.84 0.04 279.999 4.586
235.007 0.658 769.59 0.04 285.000 7.981
240.004 0.678 746.67 0.04 290.003 11.378
245.004 0.690 723.74 0.04 279.998 0.890
250.005 0.704 700.89 0.05 285.000 4.124
254.995 1.231 682.11 0.05 290.003 7.359
259.987 5.247 689.09 0.05 294.998 10.590
264.996 9.178 695.40 0.04 284.998 1.183
254.993 0.651 677.79 0.05 290.001 4259
259.986 4.420 683.24 0.05 294.997 7.347
264.996 8.392 690.07 0.04 299.998 10.440
269.993 12.399 697.15 0.04 290.000 1.199
259.986 1.278 659.86 0.05 294.997 4.134
264.995 5.122 666.92 0.05 299.999 7.087
269.993 9.068 674.67 0.05 304.998 10.041
274.996 12.964 681.96 0.04 294.996 1213
264.994 1.260 637.06 0.05 299.998 4.004
269.991 4977 644.66 0.05 304.998 6.801
274.995 8.710 65221 0.05 310.000 9.603
279.999 12.442 659.66 0.05 299.997 1313
269.991 1.167 613.65 0.08 304.996 3.957
274.995 4.716 62141 0.05 309.999 6.613
280.000 8.276 629.11 0.05 314.995 9.266
285.001 11.853 636.78 0.05 304.995 1.397
274.993 1.193 591.14 0.06 309.998 3.908

314.995 6.420

¢/m s} 100-U(c) T/K p/MPa ¢/m s} 100-U.(c)
599.13 0.06 320.004 8.941 48125 0.08
606.95 0.05 309.997 1.503 431.03 0.11
614.61 0.05 314.994 3.859 440.71 0.10
565.36 0.06 320.004 6.236 450.01 0.09
573.74 0.06 325.009 8.608 458.78 0.09
581.87 0.06 314.992 1.733 409.82 0.12
589.77 0.05 320.002 3.960 419.66 0.11
54528 0.07 325.008 6201 429.07 0.10
553.65 0.06 330.000 8.441 437.99 0.09
561.90 0.06 320.002 1.827 386.04 0.14
569.91 0.06 325.008 3.924 396.35 0.13
522.32 0.07 330.000 6.023 405.99 0.11
531.05 0.07 335.004 8.112 414.85 0.11
539.59 0.06 325.006 2.025 363.70 0.16
547.87 0.06 329.999 3.980 37421 0.14
499.13 0.08 335.002 5.935 383.73 0.13
508.17 0.07 340.007 7.905 392.88 0.12
516.85 0.07 329.998 2229 341.01 0.19
52524 0.07 335.002 4,041 351.53 0.17
476.73 0.09 340.007 5.877 361.47 0.15
485.96 0.08 345.013 7.718 370.79 0.13
494.84 0.08 335.001 2.392 317.01 023
503.35 0.07 340.006 4.087 328.15 0.20
453.89 0.10 345.013 5.792 338.36 0.17
463.47 0.09 340.006 2.607 293.45 0.28
472.55 0.08 345.012 4.167 304.49 0.24
345.012 2910 271.59 0.34

“Listed are the temperature, T, pressure, P, speed of sound, ¢, and relative combined expanded uncertainty of the speed of sound, U.(c); speed of
sound values listed are averaged from up to 12 measurements at each state point. “The combined expanded uncertainty of the composition is
U.(x;) = 0.00010 mole fraction, and the standard uncertainties for temperature and pressure are u,(T) = 0.004 K and u(p) = 0.014 MPa,
respectively. Expanded uncertainties are specified with a coverage factor, k = 2.

control program. After an additional 30 min equilibration time,
the speed of sound measurements were initiated. At each state
point investigated, 12 replicate speeds of sound measurements
were performed. The short-term temperature fluctuations
(minute-to-minute) were 0.002 K with negligible long-term
temperature variations. Temperature gradients in the oil bath
surrounding the pressure vessel were less than 0.0025 K,
resulting in a combined standard uncertainty for the entire
system of 0.004 K.

2.3. Measurement Principle. The speed of sound
measurement is initiated by exciting a piezoelectric element
(in this case, an X-cut quartz crystal) with an arbitrary function
generator to generate a tone burst at its resonant frequency.
The tone burst traverses the fluid in two different directions
along short and long paths and returns from the flat reflectors.
The quartz crystal is switched from the “transmit” mode to the
“receive mode” to record the echoes from both the short and
long paths. Figure 3 shows the voltage recorded from the
oscilloscope as a function of time for a single pulse-echo event.
The data shown in Figure 3 encompasses 16,000 data points,
which includes the first and second passes for the short-path
echo and the long-path echo. The speed of sound, ¢, is
determined from the relationship

_ 2’(Llong - Lshort)
B At (1)

4

where Ly, and Ly, are the distances of the short and long
paths, respectively, and At is the time delay between the arrival
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of the short-path and long-path echoes. As described in a
previous study,”*’ the quantity (Liong = Lyhore) is determined
as a function of temperature and pressure by calibration with a
reference fluid, which in this case was liquid propane. Notice in
Figure 3 that the short- and long-path echoes exhibit virtually
the same shape with different amplitudes. The amplitude of the
long-path echo is damped in comparison to the short path due
to the greater degree of attenuation encountered. Therefore,
with a scaling factor for the amplitude, the short- and long-path
echoes can be superimposed. The initial guess for Af is
determined by finding the maximum amplitude for both
echoes and is then optimized using linear regression. Also
included in the data analysis is a diffraction correction which
accounts for phase advance as the sound wave propagates
through the fluid. A more in-depth explanation describing the
method used here to determine At and the diffraction
correction is described elsewhere.””

2.4. Measurement Uncertainty. Eq 2 was used to
estimate the relative combined expanded uncertainty of the
speed of sound measurement.

Ule)
%

=2 X 100

2
dc

dp

C

x % \/{uz(c) + [:—Trul(T) +

u*(p) +

dc ’ )
6_x,] u (xi)}
()

The “2” on the right-hand side of the equation represents a
coverage factor of k = 2 needed to obtain an expanded

https://doi.org/10.1021/acs.jced.2c00037
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Table 6. Experimental Speed of Sound Data for the R-1234yf /1234ze(E) Mixture with a Molar Composition of (0.66660/

0.33340)“"
T/K p/MPa ¢/ms™! 100-U,(c) T/K p/MPa
229.998 0.450 777.99 0.04 274.993 1.123
235.008 0.591 756.13 0.04 279.999 4282
240.004 0.607 733.50 0.04 285.000 7.446
245.003 0.616 710.97 0.04 290.002 10.608
250.005 0.624 688.51 0.05 279.997 1.130
254.994 0.792 667.55 0.05 285.000 4.140
259.987 4.524 674.41 0.05 290.003 7.161
269.993 11.961 687.78 0.04 294.997 10.166
259.986 1.160 648.25 0.05 284.999 1.148
265.003 4.628 654.24 0.05 290.001 4.005
269.990 8.269 661.67 0.08 294.998 6.873
274.995 11.836 668.41 0.05 299.999 9.747
264.994 1.127 625.75 0.05 290.000 1.030
269.991 4.572 633.05 0.05 294.997 3.758
274.995 8.070 640.62 0.05 299.998 6.487
280.000 11.531 647.83 0.05 304.998 9.212
269.991 1.128 603.60 0.06 294.995 1.070
274.994 4.428 611.11 0.05 299.998 3.690
280.000 7.740 618.59 0.05 304.997 6.300
285.001 11.049 625.95 0.05 309.998 8.904

¢/m s} 100-U(c) T/K p/MPa ¢/m s} 100-U.(c)
581.33 0.06 299.996 1.030 467.14 0.09
589.10 0.06 304.996 3.494 476.27 0.09
596.77 0.06 310.000 5.961 485.01 0.08
604.28 0.05 314.993 8.401 493.16 0.08
559.12 0.06 304.995 1.196 446.00 0.10
567.06 0.06 309.998 3.530 455.33 0.09
574.92 0.06 314.994 5.869 464.26 0.09
582.50 0.06 320.004 8211 472.78 0.08
536.92 0.07 309.997 0.984 41891 0.12
545.01 0.07 314.993 3.165 428.60 0.11
552.95 0.06 320.005 5351 437.71 0.10
560.75 0.06 325.008 7.532 446.32 0.09
513.07 0.08 314.991 1.535 403.52 0.13
521.57 0.07 320.002 3.623 41331 0.12
529.78 0.07 325.008 5715 422.57 0.11
537.70 0.06 329.999 7.793 431.19 0.10
490.76 0.08 320.002 1.614 380.30 0.15
499.76 0.08 325.008 3.572 390.39 0.13
508.33 0.07 329.999 5.527 399.80 0.12
516.52 0.07 335.004 7.472 408.44 0.11

“Listed are the temperature, T, pressure, P, speed of sound, ¢, and relative combined expanded uncertainty of the speed of sound, U.(c); speed of
sound values listed are averaged from up to 12 measurements at each state point. ®The combined expanded uncertainty of the composition is
U.(x;) = 0.00010 mole fraction, and the standard uncertainties for temperature and pressure are u(T) = 0.004 K and u(p) = 0.014 MPa,
respectively. Expanded uncertainties are specified with a coverage factor, k = 2.

uncertainty with a 95.45% confidence interval. The standard
uncertainty of the speed of sound, temperature, and pressure is
determined from the standard deviation of up to 12
measurements and systematic uncertainties (0.004 K, 0.014
MPa, and 0.00010 mole fraction). The partial derivative terms
capturing the sensitivity of the speed of sound with respect to
temperature, pressure, and composition were estimated using
the Helmholtz-energy-explicit EoS*'™** embedded in RE-
FPROP.”® The u?(¢c) term is inclusive of uncertainties
attributed to the calibration of the instrument path length
and further contributions associated with temperature,
pressure, and the time delay between short- and long-path
echo arrivals. The relative combined expanded uncertainty of
the measurement is determined at each individual state point
since it varies significantly with the magnitude of the speed of
sound. As the system approached the mixture critical region,
lower speed of sound values and weaker echo signals were
encountered, which increased the uncertainty in At. The
oscilloscope recorded 16,000 data points from the start of the
short-path echo to the end of the long-path echo including the
time between the echoes. The decrease in the speed of sound
results in a greater distance between the short- and long-path
echo signals, which reduces the number of data points that can
be superimposed to determine At. Consequently, this reduced
number of data points increases the relative combined
expanded uncertainty in c. Weaker echo signals also contribute
to greater uncertainties in ¢ due to a larger signal to noise ratio
encountered when determining At. This greater signal to noise
ratio increases the variance in the regression procedure since
the echo signals cannot be exactly superimposed cycle for
cycle.
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3. EXPERIMENTAL RESULTS

3.1. Measured Data. Figure 4a—f shows the relationship
between the speed of sound and temperature for several
pseudo-isochores and several T-c points near saturation for
binary refrigerant mixtures. Only select isochores are depicted
in Figure 4a—f to reduce clutter on the plots. Densties
calculated using REFPROP show that for a given psuedo-
isochore, the densities do not vary by more than 10 kg m™.
Lines drawn on the plots in Figure 4a—f are REFPROP*
calculations using available Helmholtz-energy-explicit EoS for
R-1234yf,”* R-134a,”" and R-1234ze(E)** and independently
reported binary interaction parameters® for each binary
mixture. It is important to note that the EoS used in this
study developed by Lemmon and Akasaka is not included in
REFPROP version 10.0 which by default uses the EoS of
Richter et al."® In this study, the REFPROP models were used
for comparison, and no adjustments were made to the binary
interaction parameters. Tables 3—8 list the pressure, temper-
ature, speed of sound, and relative combined expanded
uncertainty of the speed of sound for the averaged speed of
sound measurements. As mentioned in the previous section, up
to 12 measurements were taken at each state point to quantify
the reproducibility and uncertainy of the technique. Data files
containing the raw unaveraged data are available in the
Supggrting Information and are also deposited at data.nist.
gov.”

3.2. Comparison with REFPROP Models. Figure Sa—f
shows deviation graphs comparing the speed of sound data
reported in this study to the current REFPROP mixture
models. Dashed lines in each figure are smoothed curves of the
relative combined expanded experimental uncertainty of each
measurement, which as described previously increases as the
magnitude of the speed of sound decreases. The overall
comparison of the data from the present study to the current

https://doi.org/10.1021/acs.jced.2c00037
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Table 8. continued

Listed are the temperature, T, pressure, P, speed of sound, ¢, and relative combined expanded uncertainty of the speed of sound, U.(c); speed of sound values listed are averaged from up to 12

a

0.00010 mole fraction, and the standard uncertainties for temperature and pressure are u (T)

ombined expanded uncertainty of the composition is U.(x,)

b
The ¢
0.004 K and u.(p) = 0.014 MPa, respectively. Expanded uncertainties are specified with a coverage factor, k

measurements at each state point.

=2.
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Figure 6. Comparison of the R-1234yf/134a mixture with a molar
composition of (0.33634/0.66366). Speed of sound data reported in
this study at temperatures: open circle: tracing saturation, open
triangle: 255 K, open diamond: 260 K, open square: 265 K, solid blue
circle: 270 K, solid blue triangle: 275 K, solid blue diamond: 280 K,
solid blue square: 285 K, solid orange circle: 290 K, solid orange
triangle: 295 K, solid orange diamond: 300 K, solid orange square:
305 K, solid green circle: 310 K, solid green triangle 315 K, solid
green diamond: 320 K, solid green square: 325 K, open yellow circle:
330 K, open yellow triangle: 335 K, open yellow diamond: 340 K, and
open yellow square: 345 K, and comparison of R-1234yf/134a
(0.3736/0.6264) speed of sound data of Shimoura et al. at
temperatures:solid black circle: 283, solid black triangle: 293, solid
black diamond: 298, solid black square: 303, and black x: 313 K, Cexpr
to the speed of sound calculations using REFPROP, c_,..

REFPROP Helmholtz-energy-explicit EoS is characterized
using the average absolute deviation, A,,p, given by eq 3.
The A,p values range from 0.27 to 0.75% for the six mixtures
studied here. Additionally, when comparing REFPROP to all
six mixtures, the maximum deviation, A, given by eq 4 is
1.12%. The quantity c;.,, is an experimental speed of sound
data point, ¢, is a speed of sound value calculated using
REFPROP, and N is the number of data points. Positive
systematic deviations are seen for all six mixtures studied. The
deviation graphs in Figure Sa—f show that the REFPROP
models underpredict the speed of sound for all six mixtures. It
is important to reiterate that no adjustments were made to the
REFPROP Helmholtz-energy-explicit EoS using the data
reported in the present study. Therefore, in further studies,
the data reported here will be used to improve the R-134a/
1234yf, R-1234yf/1234z¢(E), and R-134a/1234ze(E) mixture
EoS.

1 al Ciexp — Gicale
Agpp = 100-— Z e hele
N 4 G
i=0 i,exp (3)

[on — C;
_ i,exp i,calc
A, = max]100-| =2 =

irexp )

The data of Shimoura et al.'” is the only literature data set

that allows for a meaningful comparison to the data obtained
in this study. However, Shimoura et al. only report R-1234yf/
134a mixture data at a single composition of (0.3736/0.6264)
mole fraction from 283 to 313 K up to a pressure of 20 MPa.
Figure 6 is a deviation plot comparing the R-1234yf/134a
(0.33634/0.66366) mole fraction data reported in this study
and the R-1234yf/134a (0.3736/0.6264) mole fraction data
reported by Shimoura et al. to the Helmholtz-energy-explicit
EoS included in REFPROP. The speed of sound data reported
in the present study exhibits only positive deviations from the
REFPROP EoS consistent with the other five mixtures studied

https://doi.org/10.1021/acs.jced.2c00037
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here. Conversely, the data of Shimoura et al. exhibit only
negative deviations from the REFPROP EoS. The A,,p values
relative to the REFPROP EoS are 0.61% for this study and
0.43% for the study of Shimoura et al. However, Figure 6
shows that Shimoura’s data exhibits a larger systematic
deviation with temperature than the data of the present
study. It is important to note that there is more than a 1%
offset between the R-1234yf/134a speed of sound data
reported in this study and the speed of sound data of
Shimoura et al. where the data are reported at similar
temperatures, pressures, and composition.

4. CONCLUSIONS

The liquid-phase speed of sound data are reported for binary
mixtures of R-1234yf, R-134a, and R-1234ze(E) over the
temperature range of 230—345 K to a maximum pressure of 51
MPa. For each binary mixture, data are reported for two
nominal compositions of (0.33/0.67) and (0.67/0.33) mole
fraction. The present study greatly expands the thermodynamic
property database for the speed of sound of refrigerant blends.
The data are compared to available Helmholtz-energy-explicit
EoS mixture models without any adjustments. However,
despite the lack of fine-tuning of the REFPROP models
needed to provide accurate correlations for the present data,
the A,p values are reasonable, ranging from 0.27 to 0.75%.
Further adjustments to the available Helmholtz-energy-explicit
EoS mixture models are needed to improve speed of sound
calculations for the R-1234yf/134a, R-1234yf/1234z¢(E), and
R-134a/1234ze(E) mixtures. In future studies, the new speed
of sound data along with bubble point and density data
measured for the same mixtures by our group will be used to
tune the current REFPROP mixture models. Of the available
literature, the study of Shimoura et al. is the only study that
reports speed of sound data that can be compared to the data
reported in this study and only for a single mixture. The two
data sources differ by more than 1%.
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