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Abstract

With the increase in severity and frequency of natural hazards due to climate change, devel-

oping a holistic understanding of community resilience factors is critically important to disas-

ter response and community support. Our investigation of small business survey responses

about COVID-19 impacts finds that they are conduits of national support to their local com-

munities. Small businesses that have demonstrated high levels of pre-disaster local involve-

ment are more likely to take an active role in community resilience during a disaster,

regardless of their own financial security. In addition, businesses with natural hazard experi-

ence before or during COVID-19 provided help to more community groups than hazard inex-

perienced businesses. While community resilience models often characterize small

businesses as passive actors using variables such as employment or financial security, this

research suggests that small businesses take an active role in community resilience by pro-

viding critical local support. The pandemic presented an opportunity to consider small busi-

ness’ role in community resilience nationally, which was utilized here to identify the multi-

dimensional factors that predict small business operators’ community disaster support. This

study improves upon previous research by studying the small business-community resil-

ience interface at both regional (n = 184) and national (n = 6,121) scales. We predict small

business’ active involvement in community resilience using random forest machine learning,

and find that adding social capital predictors greatly increases model performance (F1 score

of 0.88, Matthews Correlation Coefficient of 0.67).

1. Introduction

Natural hazard impacts worsened by climate change are driving increased interest into con-

tributors to community resilience. To this end, the importance of small businesses to commu-

nities is assumed; however, the relative significance of factors contributing to this positive

relationship is largely unexplored. This study of small businesses and provision of community

support during the COVID-19 pandemic sheds light on existing factors to support community

resilience and provides insights into factors that increase horizontal support networks within

communities. In this paper, we draw new insights into small businesses’ active participation

in, and contributions to, community resilience. Using Random Forest machine learning, we
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identify variables that predict small business’ community disaster support during the COVID-

19 pandemic. Community disaster support (CDS) is based upon previous literature on philan-

thropy and is measured as an empirical dependent binary variable [1–3]. Previous studies have

focused on either in-depth case studies or broader models, this study blends the two to answer

not just “what” but “how” the factors of the small business-community resilience interface

manifest. These findings point to potential opportunities when planning for and 16 respond-

ing to future disasters.

We sought to understand the multi-dimensional nature of the relationships between small

businesses and community resilience (i.e. the small business-community resilience interface).

We chose independent variables that covered potential dimensions of this relationship. Vari-

ables were selected by drawing upon literature from social capital [4–6], economic resilience

[7–9], social relationships [1, 3, 10, 11]), organizational competence [12–14], and place attach-

ment [15, 16].

In community resilience models, small businesses are consistently subsumed within a gen-

eral economic category [9, 17]. Studies have linked microeconomic disaster resilience at the

individual enterprise level using financial capital, level of damage, age, and size [18–21], while

mesoeconomic and macroeconomic resilience are often described in terms of price and supply

adjustments and interdependencies between sectors [8, 20, 22].

While community resilience is acknowledged as multi-dimensional, small businesses’ con-

tribution to community resilience is often distilled to a single variable, such as local employ-

ment, number of businesses, or a combination of these variables [7, 23, 24]. These models treat

small businesses as passive participants in, instead of active contributors to, community resil-

ience. However, small business owners and operators are not simply economic actors, but also

may choose to maintain social, infrastructural, and institutional roles [25]. By treating busi-

nesses as complex community actors, Adekola and Clelland’s (2020) case study of small busi-

ness owners in Scotland found that businesses contribute to each of the community resilience

dimensions identified by Cutter, Burton, and Emrich (2010). Social and economic factors also

created an interdependence between small businesses and household recovery in Lumberton,

North Carolina [26].

Small businesses are able to facilitate and use the flows of social capital. Natural hazards

literature identifies social capital as critical to community resilience [5, 6, 27]. Swinney

(2008) found a correlation between business participation in and sponsorship of communi-

ties and the business’ social capital. This finding demonstrates the horizontal flows of social

capital between businesses and other community members [28]. Existing social capital pre-

disaster facilitated community and business resilience and recovery [27]. Such contribu-

tions to community resilience pair vertical social capital (relationships with other levels of

organizations or government) with horizontal social capital (relationships between commu-

nity actors) [6].

Small business motivations to contribute to community resilience are complex, though cer-

tain factors are shown to increase their contributions. In a study of non-disaster community

support, Litz and Stewart (2000) found that family-owned businesses were more involved in

their communities and in charitable giving. A sense of obligation to the community can also

motivate small business owners and managers to donate time and money [29]. This perceived

obligation depends on a diverse set of business and personal characteristics, shared experi-

ences, and place attachments [6, 30, 31]. For example during COVID-19, minority-owned

businesses were more likely to offer support to their local communities [32]. Miller and Besser

(2000) categorized small businesses by their level of community value. They found businesses

with high, medium, and low levels of community values had varying characteristics but simi-

larities in terms of their success strategies [33]. Business operators’ tendency toward
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collectivism and market orientation such as attention to customers and communication within

the company are also related to community relations and may influence the community’s

social perceptions of that business [34].

Social and risk perceptions may result in small business owners adjusting their business-

level decisions. In a study of accommodation managers, Wang and Ritchie (2012) found that

subjective social norms, attitudes towards crisis preparation, and previous hazard experience

significantly influenced business disaster planning [35]. These psychological constructs are

adapted from the Theory of Planned Behavior [36]. These constructs, in addition to perceived

control over the outcome of a hazard event, were significant in June studies of individual disas-

ter preparedness [37, 38]. Although each of these studies hypothesize that planned behaviors

impact post-event outcomes, they have only tested the Theory of Planned Behavior pre-event.

Our study is the first to test this in the context of business decisions related to resilience plan-

ning and actualized behavior during and after an event.

This study advances previous research by investigating small business support of commu-

nity resilience at both regional and national scales. The in-depth Coastal Carolinas survey and

shorter National survey investigate the small business-community resilience interface. In con-

trast to previous studies, we treat small businesses as active participants in community resil-

ience by predicting community disaster support by the business. We use random forest

machine learning to identify the most important predictors for determining community disas-

ter support during the COVID-19 pandemic. Principal component analysis (PCA) or categori-

cal PCA have previously been used to study community resilience; however, we found that

using random forest improved result interpretability by providing importance values for indi-

vidual predictors in addition to model accuracy measurements. We then discuss the relation-

ships between identified predictors and community disaster support, and conclude by

identifying promising directions for future research on the small business-community resil-

ience interface.

2. Materials and methods

2.1 Data collection and sample

We conducted a Coastal Carolinas and National Survey (August to October 2020 and Novem-

ber 2020, respectively). The Coastal Carolinas survey focused on small businesses in the coastal

counties of North Carolina and South Carolina and included 60 questions sent via a direct

email list of approximately 7,500 businesses and through local Chambers of Commerce. We

received 275 responses and a full 184 responses.

Our second survey was conducted in partnership with Alignable (More information about

Alignable can be found at www.alignable.com). Alignable is an online small business network-

ing platform with over 4.5 million members across North America. Beginning with the

COVID-19 pandemic, Alignable sent out monthly baseline polls (which they call “pulse” sur-

veys) in addition to short topic-based surveys to their members [39]. Our Alignable survey was

a 15-question poll on natural hazard experience, social networks, and COVID-19 impacts. We

received 7,422 responses of which, after removing non-US businesses and nonprofits, 6,121

responses were usable. This is in line with the Bartik et al. (2020) response rate. It also repre-

sents 66% of the active respondents from the Alignable November 2020 pulse survey.

The survey questions used in this study covered variables previously linked to community

and small business resilience. Both surveys obtained Institutional Review Board exempt status.

By using data from these two surveys, we are able to validate small business responses between

a locally-focused Coastal Carolinas sample and a broader national sample.
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2.2 Coastal Carolinas survey

Businesses with under 200 employees in the coastal counties of North and South Carolina

were contacted using a dataset from the U.S. Business Database (n = 14, 565). Twenty-seven

local Chambers of Commerce were contacted within the coastal counties to deploy the survey,

of whom eight sent it out to their members. Small businesses often have low response rates

with accepted studies ranging from 4% to 40% [40]. To remunerate respondents for their time,

we offered a $5 gift card for completing the survey with a follow up email offering a $10 gift

card. After cleaning the email lists for hard bounces, a total of 7,500 businesses are estimated

to have received the survey.

The Carolinas survey included 63 multiple choice questions with written response options

and took respondents an average of ten minutes to complete. From these questions, we deter-

mined 15 independent variables to be used in the random forest algorithm based conceptually

on previous literature studying small businesses, natural hazards, and community resilience

(Table 1). We received 275 responses of which 184 were usable for the final model analysis.

This represents a 3.6% response rate [41].

2.3 National survey

The National Survey was an abbreviated version of the Coastal Carolinas Survey. Due to the

smaller n (184) for the Coastal Carolinas Survey, we chose to use the National Survey to vali-

date the findings from the Carolinas. The National Survey did not include all of the variables

and so is not a perfect reflection; however, the similarities in findings for the variables that do

overlap allows for validation from the regional to national levels. It also indicates that further

work should be completed to test the additional Carolinas variables at the National scale.

The survey was conducted in partnership with Alignable. Alignable is an online small busi-

ness referral network with over 4.5 million small business members based in 30,000 communi-

ties and every country in North America. During the COVID-19 pandemic, they conducted

monthly pulse surveys [36]. We partnered with Alignable to conduct a topic-based survey two

weeks after their November pulse survey. The survey included 15 multiple choice questions on

natural hazards experience and community disaster support. Respondents had the opportunity

to write in responses to questions using the “Other” category. We received 7,422 responses of

which 6,121 were US-based for-profit businesses. This represents 66% of the respondents from

the Alignable November 2020 pulse survey, a reasonable conversion rate [42].

2.4 Statistical analysis

Machine learning has contributed to a revolution in social science statistical analysis allowing

for the analysis of many predictors and their interactions. This dataset was analyzed using Ran-

dom Forest, a machine learning classifier that grows many decision trees from bootstrapped

samples to minimize the overfitting issues that exist with single decision trees. Random forest

allows for categorical data and datasets with many weak inputs [43]. It has been previously

applied to independent social capital investigations and to disaster studies employing survey

data [44, 45]. We chose Random Forest over other classifiers as it is generally recognized to be

one of the best classification methods [46].

In the random forest classification, the dependent variable was a binary measurement of

small business’ community disaster support, an indicator of active community resilience sup-

port (0 = Did not give to the community, 1 = Gave to at least one community organization) for

both the Carolinas and National datasets. McKnight and Linnenluecke (2016) identified dona-

tions of cash, cash-like resources, and in-kind materials as potential pathways for corporate

giving. We expanded on this to include donation of time and expertise, as written responses
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from small businesses indicated that the corporate giving definition was too narrow. Examples

of non-monetary or disaster-specific in-kind materials include, “We added a holiday shopping

page to our website for the sole benefit of our vendors, hoping to help them make money into

Table 1. Variables used in the final random forest model. Additional discussion of the variables can be found in the S1 Text.

Variable Survey Question(s) Carolinas Survey Question (s) National1 Related Literature

Community Disaster

Support (CDS)

Who has your business supported/donated to during

COVID-19?

Who has your business supported/donated to during

COVID-19?

Hurricane

Preparation Attitude

(HA)

“I see preparing for hurricanes at this business as. . .

very negative/very positive, very useless/very useful,

very harmful/very beneficial, very difficult/very easy”

Theory of Planned Behavior

(Ajzen, 2012 [47];

Daellenbach et al., 2018 [37])

Hurricane

Preparation Social

Norms (HSN)

“My close friends, family, and colleagues think that my

business should prepare for hurricanes”, “It is expected

that my business prepares for hurricanes”, “I feel under

social pressure as a business operator to prepare for

hurricanes”

Theory of Planned Behavior

(Ajzen, 2012 [47];

Daellenbach et al., 2018 [37])

Hurricane

Preparation Perceived

Control (HPC)

“I am confident that my business is prepared for

hurricanes”, “The effectiveness of my business’

hurricane preparations is beyond my control”, and

“Whether or not my business takes any hurricane

preparations is completely up to me”

Respondent who had experienced a hurricane

indicated “I feel there is nothing I can do” under

natural hazards

Theory of Planned Behavior

(Ajzen, 2012 [47];

Daellenbach et al., 2018 [37])

Pre-Disaster

Community

Involvement (CI)

Involvement from “Not involved to “Very involved

(e.g. provide leadership, serve on boards, act as

community representative)” in Business associations,

community service organizations, and disaster relief

organizations pre-COVID-19

Respondents indicated that before COVID-19 they

had a “Strong business community”, “Maintained

relationships with law enforcement and local

government”, or “Help others that are in worse

shape”

Litz and Stewart, 2000 [1]

Business Age (BA) 2020 minus Reported year of establishment Sydnor et al., 2017 [20]

Employee Total (ET) Reported employment as of Fall 2020 Sydnor et al., 2017 [20]

Ownership Type (OT) Reported demographics of the business owner(s) 3 Dua et al., 2020 [32]; Litz and

Stewart, 2000 [1]

Customer Location

(CL)

Three options: the majority of customers came from

either the same city, the same state, or out of state

Zwiers, 2016 [16]

Location Ownership

(LO)

Owned or rented/leased (entirely remote answers were

excluded)

Zwiers, 2016 [16]

Essential Business

(EB)

Essential and partially essential were coded together or

non-essential

Kong and Prinz, 2020 [60];

Storr et al., 2021 [61]

Community Support

Received (CSR)

Received any support from one of the following

groups: Local government, customer support, support

from other businesses, rent or mortgage relief, no

support received, or other. “Other” responses were not

included in the binary variable and any respondents

who answered “No support received” were coded as

not receiving support

“Who has provided this support for your business

during COVID-19?” Only the following options were

included: local government, non-profit organizations,

local businesses, landlord(s), and customers

Murphy, 2007 [6]

Financial Security

(FS)

Currently had excess funds to cover less than six

months of expenses or seven months to over one year

Level of financial impact of COVID-19 on their

business. If they indicated a negative impact, they

were coded as a zero. If they indicated a positive

impact or no change, they were coded as a one.

Alesch et al., 2001 [18];

Chang and Rose; 2012 [17];

Kroll et al., 1990 [62]

Government Support

Received (GSR)

Received or did not receive federal, state, or local

government assistance

“Who has provided this support for your business

during COVID-19?” Answers used: federal, state, or

local government

Alesch et al., 2001 [18];

Chang and Rose 2012 [17];

Kroll et al., 1990 [62]

Disaster Planning

(DP)

Business had (or did not have) a hurricane plan,

pandemic plan, or business continuity plan before

March 2020

Indicated they “create detailed crisis plans.” Fink, 1986 [63]; Quarantelli,

1998 [64]; Spillan and

Hough, 2003 [65]

Rural Location (RL) Rural or suburban/urban based on the Federal Office

of Rural Health Policy’s rural Zip Code Designation

Rural or suburban/urban based on the Federal Office

of Rural Health Policy’s rural Zip Code Designation

Adekola and Clelland, 2020

[25]; FORHP, 2021 [54];

Manzoor et al, 2021 [23]

1 If a question is not included in the National Survey column, it was not tested in the abbreviated survey.

https://doi.org/10.1371/journal.pclm.0000155.t001
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the holiday season”, “[We helped] anyone seeking information”, and “Just offered support to

my networking groups in terms of encouragement and planning.” Those who did not donate

wrote about financial difficulties, lack of awareness of giving opportunities, or not receiving

support themselves. Representative quotes from both surveys include, “We can’t support our-

selves, let alone any other businesses,” “Help is not wanted or we are unknown,” and “We

didn’t get support.”

The selected predictors fit within five constructs related to previous research 1) Institu-

tional Resilience (Hurricane Experience, Disaster Planning, and Business Age, 2) Economic

Resilience (Financial Security, Location Ownership, Government Financial Support

Received, and Employee Total), 3) Organizational Resilience (Ownership Type, Essential

Business, and Rural Location), 4) Social Capital (Pre-Disaster Community Involvement,

Customer Location, and Community Support Received), and 5) Hurricane Planned Behav-

ior (Preparation Social Norms, Preparation Attitude, and Preparation Control). Disaster

preparation attitudes, subjective social norms, and perceived behavioral control variables

were derived from the Theory of Planned Behavior [47] and have been proven to success-

fully predict disaster preparation in individuals [37, 38] and business managers [35]. To

understand the flow of vertical and horizontal support provided during the COVID-19 pan-

demic, we asked both the Carolinas and National respondent groups a series of questions

on support sources where they could select multiple options. The respondents were also

asked about the type of support received including federal financial assistance (e.g., loans,

grants, delayed payments, etc.) and in-kind support (e.g., personal protection equipment,

food, signage, information sharing, etc.).

We conducted exploratory analysis on the predictor variables and independent variable

using Spearman Rank Choice Correlations (ρ) for both the Coastal Carolinas and National

survey data to check for multicollinearity. To avoid the Accuracy Paradox caused by imbal-

anced datasets and to better compare the two surveys that had different ratios of the binary

dependent variable options, we use oversampling to bring both ratios to 50% [48]. We then

use the final dataset to run a random forest classification analysis, employing the SciKit Learn

RandomForestClassifer Python implementation with default settings using gini to measure the

quality of the split with the RandomSearchCV function for hyperparameter optimization [45].

We made 40 random selections with replacement for a 25%/75% training and testing data split

to reduce the risk of a training bias [44]. The RandomForestClassifer class allows for variables

of varying scale and number of categories which could otherwise cause bias in a more classical

statistical analysis such as PCA [49]. RandomSearchCV performs a randomized search with

cross-validation of the hyperparameter space (trees grown, tree depth, minimum samples

required for split and leaf nodes, etc.) in order to optimize the F1 score and MCC. We used the

package’s default values except to increase the iterations and cross validation folds to 100 and

10, respectively, to avoid overfitting. The F1 score is the harmonic mean of the model’s preci-

sion and recall and varies between a score of 0 and 1 (Eq 1). It is known to be biased by unbal-

anced datasets that favor positive predictions; however, it is widely used within the machine

learning literature [50]. Precision is a measurement of false positives (FP) compared to true

positives (TP), when the model places a business in “Giving” when they did not give support.

Recall is a measurement of false negatives (FN) in comparison to true negatives (TN), when

the model incorrectly places a business in “Did not give” when they did give support (Eq 2).

MCC varies between -1 and 1 and is a more reliable measure as it requires a model to predict

well in all four quadrants of the confusion matrix and is not biased by unbalanced datasets (Eq

190 3) [51]. MCC can be interpreted similar to other correlation coefficients where a strong
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191 relationship is greater than |0.6| [52].

F1 ¼
2

recall� 1 þ precision� 1
¼ 2�

precision� recall
precisionþ recall

ð1Þ

precision ¼
TP

TP þ FP
; recall ¼

TP
TP þ FN

ð2Þ

TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð3Þ

3. Ethics statement

Both surveys obtained University of South Carolina Institutional Review Board exempt status.

The data from the surveys were kept separate due to differences in measurement; however,

their parallel analysis allows for validation between the findings and suggests areas for future

work.

4. Results

4.1 Respondent characteristics

Respondents to the Coastal Carolinas survey are broken down into South Carolina (56%) and

North Carolina (36%). Respondents represented 16 out of 23 coastal counties in the region.

The national survey responses were normalized by state and compared with the US Small Busi-

ness Administration’s 2020 state profiles [53]. There was an oversampling of Arizona, Colo-

rado, and the Pacific Northwest (2%) and an undersampling of Texas (3%) (Fig 1). Using the

Fig 1. Proportion of business respondents in the National survey compared to SBA’s 2020 state profiles. Green (1) indicates oversampling while brown

(-1) indicates undersampling. The state shape file and base map layers come from the U.S. Census Bureau (https://www.census.gov/geographies/mapping-files/

time-series/geo/carto-boundary-file.html) and U.S. Geological Survey (USGS https://basemap.nationalmap.gov/arcgis/rest/services/USGSTopo/MapServer),

respectively.

https://doi.org/10.1371/journal.pclm.0000155.g001
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Federal Office of Rural Health Policy’s definition of rural ZIP codes [54], we assigned each

respondent who provided a ZIP code a rural or urban/suburban designation. Nationally there

were 11% rural small business respondents, and in the Carolinas there were 15% rural

respondents.

The Coastal Carolinas survey included more questions about the characteristics of small

businesses and demographics of the owners, which were compared with the US Census 2018

Annual Economics Survey [55]. Definitions of small business size range from under 200 to

under 500 employees [56–58]. This research used a threshold of 200 though very few of the

final sample (n = 10) businesses were above 100 employees. When considering respondents

from the Carolinas survey (U.S. Census values in parentheses), 9% (13%) identified as minor-

ity-owned, and 27% (24%) identified as woman-owned. There was an over representation of

businesses with 20 to 49 employees, and businesses functioning for over 16 years. Both owner-

ship by gender and minority status are relatively representative (Fig 2). Overall, the samples

provided acceptable population representation.

4.2 Community disaster support

The Coastal Carolinas and National surveys both asked about types of support businesses pro-

vided to their communities in times of a disaster. The Coastal Carolinas survey included more

inquiry into factors previously identified as being related to the small business-community

resilience interface (see supplemental material for survey questions). Many small businesses

demonstrated community disaster support to at least one group. Both the Coastal Carolinas

(67%) and National (91%) respondents reported high levels of disaster-giving to local recipient

groups. Within their communities, small businesses reported providing support to a variety of

Fig 2. Comparison of Coastal Carolinas Survey responses and US Census 2018 Annual Economics Survey data by (a) Gender, (b) Employee count, (c) Age of

Business, and (d) Minority status.

https://doi.org/10.1371/journal.pclm.0000155.g002
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local institutions and groups including local charities, other businesses, and both working and

non-working employees (Fig 3). Small businesses were innovative with their community sup-

port and found synergistic support mechanisms. For example, one event-focused small busi-

ness donated their tents to a local hospital to be used for COVID-19 patient triage.

Most of the predictors of giving had insignificant or negligible correlations with community

disaster support. Only Pre-COVID-19 Community Involvement (ρ = 0.27, p< 0.001), Owner-

ship Type (ρ = 0.28, p< 0.001), Employee Care Metric (ρ = 0.34, p< 0.001), Disaster Planning

(ρ = 0.29, p< 0.001), Community Support Received (ρ = 0.22, p = 0.003), and Government

Financial Support Received (ρ = 0.2, p = 0.038) were significantly correlated with community

disaster support at the 95% level. Each of these predictors had low correlation strength

(rho < 0.4) which Random Forest Classification can address [43].

Fig 3. Percent of small businesses that gave support during the COVID-19 pandemic by recipient group (Question allowed multiple selections).

https://doi.org/10.1371/journal.pclm.0000155.g003
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4.3 Machine learning

Random Forest is a common method for predicting behavior in many fields, with the F1 score

and Matthews Correlation Coefficient (MCC) (see Statistical Analysis Section) consistently used

as a primary metric for model performance with values ranging from 0 (low) to 1 (high) [51].

This is the first application of this methodology for predicting community disaster support.

In comparing the Coastal Carolinas and National models, we find that both result in low F1

scores for the two variables (Financial Security and Government Financial Support Received)

through five variable iterations (Community Support Received, Disaster Planning, Rural Loca-

tion, respectively) (Fig 4). This suggests that the success of our final model is truly a result of

Fig 4. Model F1 scores with iterations from two to eight variables illustrating the trend similarity between the Coastal Carolinas and National datasets.

https://doi.org/10.1371/journal.pclm.0000155.g004
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more robust predictor variables, and is not simply due to an increase in the number of predic-

tor variables. At the sixth variable (Hazard Experience), there is an increase in the National

level and a slight decrease at the Coastal Carolinas level, this may be due to differences in haz-

ard types as the Coastal Carolinas survey focused on hurricane experiences. There are then

consistent increases for the seventh variable (Hurricane Preparation Perceived Control) and

eighth variable (Pre-Disaster Community Involvement).

Our optimized Coastal Carolinas model with all variables produced an F1 score of 0.88 and

an MCC of 0.67, which suggests our model successfully predicts community disaster support

[51]. We see that there is a further increase in F1 score by adding the predictors only included

in the Coastal Carolinas survey (those that predict business ownership and age), indicating

that active support of community resilience is a multi-dimensional decision for small busi-

nesses, which is nevertheless reliably predicted by a Random Forest methodology.

One advantage of the Random Forest classifier is its inherent ability to rank the relative

importances (I) of the features used as predictors. The four most important predictors are

related to the perceptions of hurricane preparation and social capital (I> 0.1), while previously

used indicators of the significance of small business to community resilience, such as

Employee Total and Financial Security, have an importance of less than 0.06 (Fig 5). Although

variable importance varies between models with values between zero and one, the ranking of

importance is reasonably stable [59]. For interpretation, we focus on the relative ranking of

predictors.

5. Discussion

This is the first study to empirically demonstrate the factors that determine active business par-

ticipation in community resilience. The most important predictors of CDS (I > 0.1) are the

three constructs of the Theory of Planned Behavior and Pre-Disaster Community Involve-

ment. Constructs related to disaster preparation, especially perceived social norms, have been

previously shown to impact decisions to take hazard-related actions [37, 38]. However, these

studies did not connect these behaviors to community resilience. Studies on business

Fig 5. Random forest predictor importance. Importance distribution is determined by implementing a randomized hyperparameter search with cross-

validation on 40 randomly selected (25%) test and (75%) training datasets. Predictors are listed in the order of importance in the final model.

https://doi.org/10.1371/journal.pclm.0000155.g005
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community giving demonstrated the relationship with community involvement, though these

are not related to disaster response [1, 23]. Our findings suggest that locally involved and disas-

ter prepared small businesses could be a component of relief planning to facilitate community

support during a disaster.

Ownership Type is the next most important predictor of community disaster support. Fur-

ther analysis of the predictor identifies that minority woman-owned businesses give to an aver-

age (μ) of more recipient groups than non-minority non-woman owned businesses (μ = 3

groups vs. 1.3 groups, respectively) indicating increased horizontal social capital and active

support of community resilience (Table 2). Other ownership types such as women-owned (μ =

1.5 groups), family-owned (μ = 1.8 groups), and non-female minority-owned (μ = 1.9 groups)

businesses also demonstrate these increased horizontal social capital connections. Using a

Mann-Whitney U Test, we find that the ownership categories are significantly different

(p< 0.004). These results are in line with previous research which has found greater giving

among family-owned businesses and minority-owned businesses [1, 32].

The predictors with mid-range importance (0.06 to 0.08) include variables from literature on

institutional resilience and economic resilience. Two were previously used to represent passive

small business impact on community resilience: Employee Total and Financial Security [17]. Haz-

ards Experience is significantly correlated with community disaster support during COVID-19

(Carolinas: ρ = 0.14, p = 0.063; National: ρ = 0.21, p< 0.001). At the national scale, businesses

gave to more groups when they had experienced a hazard previously (μ = 2.3 groups), compared

to those who had never experienced a hazard (μ = 1.6 groups). This may suggest that hazard expe-

rience builds lasting horizontal social capital. Two measures of social capital were included in this

section: Customer Location and Location Ownership. They may be less important in this study

due to changing customer purchasing behaviors during the pandemic and should be investigated

for future disaster events, especially natural hazards that are geographically localized.

Community disaster support does not appear to be a self-serving economic decision. While

they gave to more groups, the majority of all minority-owned businesses estimated they had

less than six months of operating expenses saved, while the majority of non-minority, non-

woman-owned businesses estimated that they had a year or more of operating expenses saved.

Community Support Received and community disaster support are weakly correlated (Caroli-

nas: ρ = 0.2, p = 0.003; National: ρ = 0.3, 314 p< 0.001). This suggests multi-directional hori-

zontal social capital in addition to business’ access to vertical capital.

Receiving support is significantly correlated with providing support for other community

members (Carolinas: ρ = 0.2, p = 0.04; National: ρ = 0.2, p< 0.001). Twice as many small busi-

nesses who received support gave to at least one community recipient group if they had

received at least one type of support. This indicates that the small businesses that are able to

access vertical capital then distribute it horizontally to other local businesses, nonprofits, and

individuals, making them a potentially significant component of disaster aid redistribution at

the community-level. However, receiving government support, in addition to Essential Busi-

ness and Rural Location, are in the least important variable group (I< 0.04). This may be due

Table 2. Coastal Carolinas survey: Mean number of recipient groups supported by ownership type (Mutually exclusive).

n Mean (μ) STD (σ) SE Min Max

Non-Minority Non- Woman owned 111.0 1.3 1.6 0.15 0.0 6.0

Woman- owned 23.0 1.5 1.3 0.3 0.0 4.0

Family- owned 28.0 1.8 1.7 0.3 0.0 6.0

Minority- owned 8.0 1.9 2.0 0.7 0.0 6.0

Minority woman- owned 7.0 3.0 2.0 0.8 1.0 6.0

https://doi.org/10.1371/journal.pclm.0000155.t002
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to relatively low levels of government support received overall. In both surveys, only about

50% of small businesses received support during the pandemic. The primary financial support

mechanism was federal aid through the Paycheck Protection Program and other grant and

loan programs. This relationship between financial access and community is in agreement

with previous research on community economic growth [23].

6. Conclusion

This research is the first to identify an expanded set of social factors behind the small business-

community resilience interface and suggests that pre-disaster social capital characteristics of

businesses are an important component of community disaster support. Previous studies have

sought to model small business’ role in community resilience through passive variables such as

employment or financial security and often look at these businesses in isolation from the larger

communities. We suggest that indicators of active community resilience engagement by small

businesses through community disaster support may provide a more appropriate measure for

small business importance during disaster response and recovery.

Resilience is a latent quality making it difficult to quantify pre-event. COVID-19 presented

an opportunity to observe the latent factors of the small business-community resilience inter-

face more broadly and over a long period compared with previous discrete disaster events.

Our machine learning results suggest that the role of small businesses in community resilience

would be more accurately measured by evaluating pre-disaster involvement and pre-disaster

planned behaviors than previously used proxy variables, such as total employment.

Individual predictor analysis further indicates that targeting minority women-owned busi-

nesses would increase small business-community disaster resilience, as they provided active

support to the most recipient groups, strengthening community resilience. Although receiving

federal financial support is of low importance for predicting the act of giving, twice the num-

ber of businesses who received support provided community support compared to those who

did not receive financial support.

Small businesses have generally low survey response rates which may be mitigated by offer-

ing remuneration. In conducting online surveys with incentives, we provide several security

recommendations. We received over 10,000 false survey responses from a social media post

about the survey and used IP address and response validation to remove false responses. We

recommend that surveys use multiple links if there will be a social media post or if the link

may be posted by a partner. We also recommend that financial incentives be manually pro-

vided to prevent online bots from automatically receiving rewards for false responses. These

security features are built into the Qualtrics and Research Rewards software.

Our results suggest a promising avenue for community resilience research to inform plan-

ning for natural hazards which are increasing due to climate change. This is the first study to

understand the multi-dimensional predictors for small business community disaster support

and active support of community resilience. The research is limited by the relatively small sam-

ple size of the Coastal Carolinas survey and abbreviated National survey. Further research

should investigate social capital and planned behavior variables identified as important in this

research to determine the broader significance of the predictors. Additional research into

these predictors is needed to understand the differences between a global disaster and more

spatially discrete natural hazards.
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