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We present a study of noncritical phasematching behav-
ior in thin-film, periodically poled lithium niobate (PPLN)
waveguides. Noncritical phasematching refers to designing
waveguides so that the phasematching is insensitive to varia-
tions in waveguide thickness, width, or other parameters. For
waveguide thickness (the dimension with greatest nonuni-
formity due to fabrication), we found that phasematching
sensitivity can be minimized but not eliminated. We esti-
mate limits on the acceptable thickness variation and discuss
scaling with device length for second-harmonic generation
and sum-frequency generation in thin-film PPLN frequency
converters.
https://doi.org/10.1364/OL.444846

There is increasing interest in thin-film lithium niobate (LN)
for electro-optic modulation [1], integrated photonics [2,3],
and optical frequency conversion. There have been numer-
ous demonstrations of nonlinear optical frequency conversion
in thin-film LN, including second-harmonic generation (SHG)
in waveguides [4–11] and in resonator structures [12–14],
supercontinuum generation [15], spontaneous parametric down-
conversion [12,16,17], and optical parametric oscillation [18].
Thin-film LN waveguides offer tight optical confinement for
ultra-high conversion efficiencies, estimated to be 20 times
higher than state-of-the-art diffused waveguides [7]. The waveg-
uides also allow dispersion engineering for ultra-broad band-
width conversion [15]. Combined with the electro-optic modu-
lation capabilities of LN, the thin-film LN platform offers great
promise for integrating together photon-pair sources, quantum
information processing [19], and quantum frequency conversion
[20].

Phasematching is required for efficient optical frequency con-
version [21]. Earlier thin-film LN waveguide devices employed
waveguide dispersion and intermodal mixing to achieve phase-
matching [5,6,12]. More recently, periodic poling of thin-film
LN [7–11,13–17] to achieve quasi-phasematching (QPM) [22]
has enabled flexibility in choosing operating wavelengths and
waveguide cross-sections while also accessing the lowest-order
spatial modes for better modal overlap. The waveguide geome-
try has a significant effect on the total dispersion, which affects
phasematching. By using QPM, the choice of waveguide cross
section is no longer tightly coupled to the phasematching wave-
length. Instead, the thin-film LN frequency converter can be

designed by first determining the effective refractive indices
for the interacting spatial modes and wavelengths, then calcu-
lating the phase mismatch (∆β) and the required QPM period
(ΛQPM = 2π/∆β).

The optical properties of the waveguides are sensitive to fab-
rication imperfections, which in turn affect the phasematching.
Variations in waveguide width, height, etch depth and other
parameters can change the local effective index. Nonuniform
effective indices lead to nonuniform phasematching, which is
manifested in shifted or distorted tuning curves, and may limit
the conversion efficiency. It is desirable to design waveguides
to achieve noncritical phasematching [23–25], where the phase-
matching is to first order independent of the waveguide width or
other geometric parameter. Noncritical phasematching will be
particularly important in long waveguides, such as those needed
in quantum frequency conversion to achieve near 100% con-
version efficiency [26]. Although some initial considerations
[17,27] have been given to identifying waveguide geometries
that are more tolerant to fabrication variations, to the best of
the author’s knowledge, a systemic study of noncritical phase-
matching has not been performed for thin-film periodically poled
lithium niobate (PPLN) waveguides. Here, we present such a
study.

Let us first consider SHG. For SHG in a QPM grating with
periodΛQPM, the fundamental and second-harmonic (SH) waves
(at frequencies ω1 and ω2, respectively) should satisfy

ω2 = 2ω1

∆β − 2π/ΛQPM = 0
∆β = β2 − 2β1

(1)

where βi is the propagation constant (βi = ωineff,i/c), c is the
speed of light, and neff,i is the effective refractive index. Here
ΛQPM is fixed during fabrication, but there may be variations
in ∆β due to nonuniformity of the waveguide. The parameter
∆β depends on geometrical parameters of the waveguide, which
we can label fm where fm could represent the waveguide width,
etch depth, etc. Here fm could change along the length of the
device due to fabrication imperfections leading to changes in
∆β. Assuming fm only varies a small amount δfm around fm,0, we
can write

∆β(fm) = ∆β(fm,0) +
∂∆β

∂fm
δfm + O

(︁
(δfm)2

)︁
. (2)
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Fig. 1. (a) Calculated fundamental and SH TE modes in an x-
cut PPLN waveguide; and ∆β for different waveguide widths and
thicknesses with etch depth set to (b) 50 nm and (c) 350 nm.

If ∂∆β/∂fm = 0, then the phasematching is considered “non-
critical” in the parameter fm, meaning that phasematching is
to first order independent of fm [23]. It is desirable to identify
waveguide geometries that achieve noncritical phasematching,
particularly for the geometrical parameter that has largest vari-
ation. If noncritical phasematching is not possible, then we can
choose geometries that minimize |∂∆β/∂fm |.

In this work, we examine PPLN waveguides made from both
x-cut and z-cut LN wafers. For x-cut PPLN waveguides, the pol-
ing direction and the optical polarizations needed to access LN’s
large d33 = dzzz coefficient lie in the plane of the wafer, whereas
for z-cut waveguides, they are normal to the wafer plane. That is,
x-cut and z-cut PPLN waveguides utilize the transverse electric
(TE) and transverse magnetic (TM) polarizations, respectively.
Generally speaking, it is easier to fabricate x-cut PPLN waveg-
uides because the poling electrodes can be placed adjacent to the
waveguides rather than directly on top of the z-cut waveguides
(where the poling electrodes need to be removed later in order
to perform optical experiments [14]).

We used COMSOL to simulate light propagating in thin-
film LN waveguides. We modeled MgO-doped LN [28] thin
films sitting on a 2-µm-thick SiO2 layer. We varied the total
LN film thickness, etch depth and waveguide top width. For
the x-cut PPLN waveguides, the sidewall angle was taken to be
75◦ [17] and for z-cut waveguides, the sidewall angle was 62◦

[11,14]. We examined SHG with 1570 nm fundamental wave-
length and calculated the effective indices and ∆β for different
waveguide geometries. From ∆β, the required QPM period can
be calculated.

Figure 1(a) shows the calculated fundamental and SH TE
modes for an example x-cut waveguide. Figures 1(b) and 1(c)
are contour plots of ∆β for x-cut PPLN waveguides as a func-
tion of top waveguide width and total LN film thickness with
etch depth of 50 and 350 nm, respectively. Contour lines that
are perfectly horizontal or vertical represent waveguide geome-
tries that are noncritically phasematched in waveguide width or
in LN film thickness, respectively. We see that for the 50-nm
etched waveguides (Fig. 1(b)), the contours are nearly horizon-
tal, which means that the phasematching is quite insensitive to
waveguide width. However, for the 350-nm-deep etch, there is
more curvature in the contours with |∂∆β/∂w| decreasing at
larger widths, w.

In thin-film LN devices, the largest source of dimensional
uncertainty is typically the LN film thickness. This thickness
nonuniformity can be 40 nm [29], whereas the waveguide width
(using e-beam lithography) and etch depth are typically con-
trolled with higher precision. Assuming uniform etching, any
variation in the total LN film thickness is transferred into waveg-
uide height variations. In Fig. 2(a), we fix the waveguide top

Fig. 2. (a) Dependence of ∆β on etch depth and total film thick-
ness for a 1200-nm-wide x-cut waveguide. (b) Calculated slopes
∂∆β/∂t.

Fig. 3. Slopes ∂∆β/∂w for x-cut waveguides with (a) etch depth
fixed to 350 nm and (b) total thickness fixed to 900 nm.

width to 1200 nm and calculate ∆β as a function of etch depth
and total LN film thickness. Plots at other waveguide widths
are qualitatively similar. The black region represents structures
that are not physically possible. Our calculations did not show
any geometries having horizontal contours where ∂∆β/∂t ≈ 0.
Therefore, one tries to minimize the dependence of the phase-
matching on film thickness, t. That is, because ∂∆β/∂t ≠ 0, we
wish to minimize |∂∆β/∂t|. Figure 2(b) plots the slopes ∂∆β/∂t
for different LN thicknesses and etch depths. The slopes are cal-
culated using a polynomial fit to the data and using the fitted
polynomial to calculate the derivatives. For all etch depths, we
see that |∂∆β/∂t| is smaller for larger LN film thicknesses. For
900 nm thickness, |∂∆β/∂t| ≈ 1 × 10−3 µm−1 nm−1. In compar-
ison, the sensitivity to waveguide width shown in Fig. 1(b) is
|∂∆β/∂w| ≈ 5 × 10−5 µm−1 nm−1.

For completeness, we also calculated ∂∆β/∂w, the sensitivity
to waveguide width. In Fig. 3(a), we show ∂∆β/∂w for waveg-
uides with etch depth fixed to 350 nm (same data as Fig. 1(c)). In
Fig. 3(b), we plot ∂∆β/∂w for waveguides with total film thick-
ness fixed to 900 nm. For the 150 nm etch depth (blue curve in
Fig. 3(b)), |∂∆β/∂w| ≈ 5 × 10−5 µm−1 nm−1, which was nearly
constant over the range of widths studied. We note that the red
curves in these two plots represent the same geometries.

One might ask how the sensitivity ∂∆β/∂t (or ∂∆β/∂w) trans-
lates to distortions in the SHG tuning curve. Following theory
outlined in [22], the SH electric field, E2, in a QPM grating
grows as

dE2

dz
= Γdeff exp(−i∆β′z), (3)

where Γ = iω1E2
1/neff,2c, deff = 2d/π is the effective nonlinearity

for QPM interactions, d is the nonlinear coefficient, ∆β′ = ∆β −
KQPM, and KQPM = 2π/ΛQPM. For constant ∆β′, Eq. (3) can be
integrated over the device length, L, to obtain

E2(L) = ΓdeffL exp (−i∆β′L/2) sinc (∆β′L/2) . (4)
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A simple model of position-dependent phase mismatch is

∆β′(z) = ∆β0 + αz − KQPM = ∆β
′

0 + αz, (5)

where the constant α is the chirp parameter, which we assume
arises from a linear variation in t. If the difference in thickness
between one end of the grating and the other is ∆t, then

α =
∂∆β

∂t
∆t
L

. (6)

Inserting Eq. (5) into Eq. (3) and integrating, we obtain

E2(L)=Γdeff (F(L) − F(0))

F(z)=A0Erfi
(︃
(−1)3/4(∆β′0 + 2αz)

2
√
α

)︃
A0=

−(−1)1/4
√
π exp(i∆β′0

2/4α)
2
√
α

(7)

where Erfi(x) = −iErf(ix) and Erf(x) is the error function.
Numerically, we found that Eq. (7) reproduces Eq. (4) for
αL2 ⪅ 0.1 and showed distorted curves for αL2>0.1. However,
for very small αL2 (<10−6), Eq. (7) deviates from the expected
sinc2 curves, which may be due to numerical errors in our
computation.

Using this model of the effect of linearly varying LN film
thickness, we can calculate the SHG tuning curves. In Fig. 4,
we plot SH intensity, |E2(L)|2, for the ideal waveguide (Eq. (4))
and the waveguide with nonuniform thickness (Eq. (7)). We set
|ΓdeffL| = 1 and the length to 5 mm. We compare the ideal cases
to waveguides having different amounts of thickness variation
∆t. We examined two waveguide geometries: (a) 300 nm total
thickness, 50 nm etch depth, and 1240 nm top width (Ref. [17]),
and (b) 900 nm total thickness, 150 nm etch depth, and 1200
nm top width, which are marked in Fig. 2(b) by the red circle
and blue star, respectively. The calculations show that small
|α | values shift the tuning curve (to shorter wavelengths for
α<0 shown here because ∂∆β/∂t<0, and to longer wavelengths
for α>0). Larger |α | values produce larger shifts, decrease the
maximum conversion efficiency, and distort and broaden the
tuning curve. The red curves in Fig. 4 represent devices where
the peak intensity is half of the ideal value. For the 300- and 900-
nm-thick waveguides, ∆t that produces the red curves are 0.54
and 2.2 nm, respectively. These values of ∆t represent estimates
of the acceptable thickness variation. Note that this model also
gives the equivalent change in effective QPM period. Taking
the example in Fig. 4(b), the designed QPM period is 2π/∆β0 =

6.331 µm, and∆t = 2.2 nm results in∆β = ∆β0 + (∂∆β/∂t)∆t =
2π/6.345 µm−1, a 14-nm change in effective QPM period.

The amount of distortion to the SHG tuning curves is governed
by the dimensionless quantity αL2 where

αL2 =
∂∆β

∂t
∆tL. (8)

For the red curves in Fig. 4, αL2 = 11. Equation (8) implies that
the amount of allowed thickness variation scales as 1/L assum-
ing αL2 and ∂∆β/∂t are fixed. This scaling behavior agrees
with analyses presented in [30]. We note for waveguides, the
conversion efficiency scales as L2 and the bandwidth scales as
1/L.

We also examined SHG in z-cut PPLN waveguides. We found
that thin z-cut waveguides (≈300 nm thickness) and those with

Fig. 4. SHG tuning curves in the presence of different amounts
of ∆t for 5-mm-long, x-cut PPLN waveguides with (a) 300 nm total
thickness, 50 nm etch depth, and 1240 nm top width [17] and with
(b) 900 nm total thickness, 150 nm etch depth, and 1200 nm top
width.

Fig. 5. (a) Dependence of ∆β on etch depth and total film thick-
ness for a 1200-nm-wide z-cut waveguide. (b) Calculated slopes
∂∆β/∂t.

more shallow etch depths (<200 nm) did not support TM waveg-
uide modes. For geometries that do support TM modes, the
dependence of phasematching on waveguide width was simi-
lar to that for moderately etched x-cut waveguides (Fig. 1(c))
where larger widths are associated with smaller ∆β and more
horizontal contours (smaller |∂∆β/∂w|). Figure 5(a) plots the
dependence of ∆β on etch depth and total LN film thickness
for z-cut waveguides with the waveguide width fixed to 1200
nm. The sensitivity of phasematching to thickness, ∂∆β/∂t,
is shown in Fig. 5(b) where, similar to x-cut PPLN waveg-
uides, larger LN thicknesses have lower sensitivity to thickness
variations.

It is likely that the most demanding application for thin-
film LN waveguides will be near 100% conversion efficiency
sum-frequency generation (SFG) and difference-frequency gen-
eration needed for quantum frequency conversion. Achieving
high absolute conversion efficiency will require long waveg-
uide lengths and/or high pump powers. Longer waveguides will
likely be more sensitive to fabrication imperfections. We exam-
ined SFG of 1550 nm + 1900 nm −→ 854 nm in x-cut thin-film
PPLN waveguides. Figure 6(a) plots the dependence of ∆β for
SFG on etch depth and total LN film thickness for 1200-nm-wide
x-cut waveguides. Figure 6(b) shows the sensitivity to thickness,
∂∆β/∂t. Using a geometry with low sensitivity to thickness,
marked by the blue star in Fig. 6(a) having |∂∆β/∂t| = 1 × 10−3

µm−1 nm−1, we calculated the distortion to the SFG tuning
curves caused by a linearly varying thickness. We assumed
the 1900-nm beam is fixed in wavelength and looked at the
tuning near the 1550-nm signal. Here |E3(L)|2 is the intensity
of the generated sum-frequency beam. These curves are cal-
culated in the low conversion regime (in a similar fashion to
Eqs. (4) and 7). The PPLN waveguide length is taken to be 5
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Fig. 6. (a) Dependence of∆β for SFG on etch depth and total film
thickness for an x-cut PPLN waveguide with 1200 nm top width and
5 mm length. (b) Calculated slopes ∂∆β/∂t. (c) SFG tuning curve
distortion caused by thickness variation for waveguides with 900
nm total thickness, 200 nm etch depth, and 1200 nm top width
(indicated by blue star in (b)).

mm. The calculation shows that ∆t = 2.2 nm will cause the SFG
conversion efficiency to drop by half compared with the ideal
case. Longer SFG devices will have tighter constraints on ∆t
(∝ 1/L).

In conclusion, we have presented a study of noncritical phase-
matching behavior in thin-film, PPLN waveguides. Geometries
exist where the sensitivity to waveguide width and etch depth are
very low, but we found that the sensitivity to waveguide thick-
ness (the dimension with highest variation due to fabrication)
is nonzero for all the waveguide geometries studied (LN thick-
nesses between 300 and 900 nm, waveguide widths between
800 and 2000 nm, and etch depths between 50 nm and the full
LN film thickness). Thicker waveguides have the lowest sensi-
tivity to thickness variations. Etch depth has a smaller impact
than thickness on ∂∆β/∂t. To understand the effect of nonzero
∂∆β/∂t, we calculated the output spectra assuming a linear
chirp in the phase mismatch. We found that for devices with
small thickness sensitivity (|∂∆β/∂t| = 1 × 10−3 µm−1 nm−1),
SHG in a 5-mm-long device was reduced by 50% for a 2.2
nm variation in thickness. Waveguides with thicknesses greater
than 900 nm will exhibit lower sensitivity of the phasematching
to thickness variations, but these are generally not commer-
cially available. We did extend the numerical studies show in
Fig. 6(b) to thicker SFG devices and found that ∂∆β/∂t never
reached zero; |∂∆β/∂t| reached a minimum value of 4.5 × 10−4

µm−1 nm−1 for 1.7 µm LN film thickness (with 600 nm etch
depth and 1200 nm top width). This study highlights the impor-
tance in controlling the uniformity of the LN film thickness for
producing high-quality frequency-conversion devices. One pos-
sible strategy to circumvent the tuning curve distortions caused
by LN thickness variations will be to incorporate high-Q res-
onators, such as in Refs. [13,14]. The resonator can both enhance
conversion efficiency and produce a sharply defined spectral
response.
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