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Abstract—This paper introduces the time synchronization 
approaches to the Institute of Electrical and Electronics 
Engineers (IEEE) P1451.0 standard-based sensor networks 
for Internet of Things (IoT) applications. A time 
synchronization architecture of IEEE P1451.0 standard-
based sensor networks is described including two-level time 
synchronization systems in IEEE P1451.0 and P1451.1.X 
standards-based wide-area network (WAN) and IEEE 
P1451.0 and P1451.5.X standards-based local area networks 
(LANs). However, this paper mainly focuses on the time 
synchronization approach of IEEE P1451.0 and P1451.1.6 
standards-based WANs and provides two implementations 
of time synchronization of IEEE P1451.0 and P1451.1.6 
using wireline and wireless networks with their preliminary 
results to verify that the time synchronization approach of 
IEEE P1451.1.6 functions properly. In addition, the time 
synchronization transducer electronic data sheets (TEDS) of 
P1451.1.6 is described. 

Keywords—IEEE P1451.0, IEEE P1451.1.6, IoT, LAN, 
MQTT, sensor network, standard, time synchronization, 
WAN. 

I. INTRODUCTION 
Internet of Things (IoT) sensors and actuators play a critical 

role in providing real-time data for monitoring and control of 
physical infrastructure systems. These sensors and actuators can 
communicate with the sensor network gateway via standard 
protocols such as Bluetooth, ZigBee, 6LowPAN, LoRa, Sigfox, 
NB-IoT, and IEEE 802.11 protocols. The sensor network 
gateway (sensor data aggregator) provides some functionality, 
such as pre-processing or data fusion of the sensor data from 
different sensors, forwarding sensor data and data fusion results 
to the cloud services, and sharing with IoT applications.  
Precision time synchronization to a common time reference 
(e.g., global position system (GPS) is often required among 
sensors and actuators, the sensor network gateway, cloud 
services, and IoT applications. Therefore, time synchronization 
of sensor networks is critical to IoT applications. However, most 

IoT devices, such as IoT wireless sensors and actuators using 
microcontrollers and limited resources, do not have a real-time 
clock module. These sensor nodes have low-power, miniature 
footprints, and low-cost embedded microcontrollers. Also, time 
accuracy and time synchronization requirements are based on 
different IoT applications and time synchronization methods 
and protocols. 

  The Institute of Electrical and Electronics Engineers (IEEE) 
1451 family of standards for smart transducer interfaces for 
sensors and actuators define specifications for device-level 
interfaces ranging from mixed-mode transducers interface 
(P1451.4), serial wireline (P1451.2) and wireless interfaces 
(P1451.5), and RFID-to-sensor interface (P1451.7) as shown in 
Fig. 1. At the network level, the family consists of standards for 
P1451.1.4 (P21451-1-4, extensible messaging and presence 
protocol (XMPP)), P1451.1.5 (P21451-1-5, simple network 
management protocol (SNMP)), and P1451.1.6 (P21451-1-6, 
message queue telemetry transport (MQTT)) network 
interfaces, as well as a network interface for the harmonization 
with other IoT verticals as defined in P1451.99. All of these 
interfaces are based on the core family of standards, IEEE 
P1451.0 that is a revision of the IEEE 1451.0-2007 standard 
based on IoT requirements, such as global identity, security, and 
time synchronization for IEEE P1451.0-based sensor networks. 
IEEE P1451.0 define a common function and messaging 
protocols, common data formats, and metadata such as the 
transducer electronic data sheets (TEDS) that enable the access 
of sensors and actuators data and information and pass them to 
IoT, Industrial Internet of Things (IIoT), and cyber-physical 
systems (CPS) applications via various network interfaces, 
through both IEEE 1451 and non-IEEE 1451 networks and 
systems. The latest revised IEEE P1451.0 standard specifies 
common functions, network services, transducer services, and 
TEDS formats for members of the IEEE 1451 family of 
standards to follow to achieve interoperable with each other in 
both network interfaces and transducer interface [1]. It defines 
the common functions and characteristics that are to be 
performed by a network-capable application processor (NCAP) 
working as a 1451 server or gateway of IEEE P1451.0 standard-
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based sensor networks. It also defines a set of network services 
application programming interfaces (API) comprised of requests 
and responses to access sensor data and TEDS data from the 
NCAP (1451 server) for IoT applications (1451 clients). It also 
defines common functions and characteristics that are to be 
performed by a transducer interface module (TIM). In addition, 
it defines a set of transducer services that include a set of 
commands and responses to facilitate the setup and control of 
TIMs as well as reading and writing the data used by the sensor 
systems. APIs are defined to facilitate communications between 
the NCAPs and TIMs, and between applications and NCAPs. 
The IEEE P1451.0 also includes specifications for global 
identity, security, time synchronization based on IoT 
requirements, and security and time synchronization TEDS for 
IEEE 1451.0-based sensor networks. The objective of IEEE 
P1451.0 is to achieve sensor data interoperability in the network 
interface and transducer interface. IEEE P1451.1.6 (or P21451-
1-6) standard defines a method for transporting IEEE P1451.0 
network service messages over a network using MQTT to 
establish a lightweight, simplified protocol structure to handle 
IEEE 1451 communications [2].  

 
Fig. 1. Architecture of IEEE 1451 family of standards. 

This paper mainly focuses on the time synchronization of 
IEEE P1451.0 and P1451.1.6 standard-based sensor networks 
for IoT applications. This paper is organized as follows. Related 
works are described in Section II. The time synchronization of  
IEEE P1451.0 and P1451.1.6 standard-based sensor networks is 
described in Section III. An implementation of time 
synchronization of IEEE P1451.0 and P1451.1.6 WANs with 
preliminary results to verify functionality is described in Section 
IV. Summary and conclusion are provided in Section V. 

II. RELATED WORKS 
Ramos et al. implemented the NCAP in a personal computer 

and using the universal serial bus (USB) to communicate with 
the TIM. The IEEE 1588 precision time protocol (PTP) protocol 
is used to synchronize the real-time clock of two TIMs 
connected to the USB hub. An application to determine the 

temporal precision of the two modules obtained with the 
protocol is also described in detail [3]. Wobschall and Ma 
introduced a method of precise time synchronization of IEEE 
1451.0-2007 and 1451.5-6LowPAN standard-based wireless 
sensor networks using modified IEEE 1588 protocol. A wireless 
TIM (WTIM) was designed and fabricated using the IEEE 
802.15.4 transceiver model TI CC2430 which allows access to 
a hardware sync signal. The results show that the 
synchronization precision is better than 10 μs for short 
synchronization intervals but increases to about 100 μs for 
longer synchronization intervals [4]. Dueck et al. studied 
Ethernet-based time synchronization for Raspberry Pi** 
network based on IEEE 1451-based sensor networks using the 
IEEE 1588 standard synchronization protocol [5]. As a 
supplementary to these existing works, the time synchronization 
of IEEE P1451.0 and P1451.1.6 standards-based WANs is 
discussed in this paper. 

III. TIME SYNCHRONIZATION OF IEEE P1451.0 AND 
P1451.1.6 STANDARD-BASED SENSOR NETWORKS  

A. Architecture of Time Synchronization of IEEE P1451.0 
Standard-based Sensor Networks for IoT Applications 
Fig. 2 shows an architecture of time synchronization of IEEE 

P1451.0 standard-based sensor networks for IoT applications. 
As shown in Fig. 2, an IEEE P1451.0 and P1451.1.X standards-
based WAN consists of several IoT applications and NCAPs via 
Internet/Intranet (Ethernet or cellular communications). The 
communications between IoT applications and NCAPs are 
based on IEEE P1451.0 network services and IEEE P1451.1.X 
interfaces. Also, an IEEE P1451.0 and P1451.5.X standards-
based wireless local area network (WLAN) consists of a number 
of NCAPs and their respective WTIM via wireless mediums 
(e.g., 802.11, Bluetooth, ZigBee, 6LowPAN, NB-IoT, SigFox, 
and LoRa). The communications between the NCAP and 
WTIMs are based on IEEE P1451.0 transducer services and 
IEEE P1451.5.X interfaces. 

 
Fig. 2. Architecture of time synchronization of IEEE 

P1451.0 standard-based sensor networks. 

As shown in Fig. 2, the time synchronization protocols for 
IEEE P1451.0 standard-based WANs and WLANs could be the 
same or different, depending on application requirements and 
protocol implementations. For example, applications may 
require time synchronization to a universal coordinated time 

• Transducer = Sensor / Actuator
• P1451.1.X = P21451-1-X

To be proposed
Proposed
Published

Application
(1451 
Client)

IEEE 
1451

Smart 
Transducer 

(Functionally, 
but not 

physically  
integrated 

NCAP 
and TIM)

IEEE 1451 Transducer Interface

IEEE 1451 Network Interface

TIM Communication Module

Signal Conditioning and Data Conversion

IEEE P1451.4
Analog Transducer

Transducers
(Sensors & Actuators)

IEEE P1451.7
RFID + Transducer

IEEE P1451.0 Transducer Services, TEDS Formats 

Mixed Mode
Interface

RF
Interface

IEEE 21451-001 Signal 
Treatment Services  (Optional)

IEEE P1451-002 Low-power 
Applications  (Optional)

NCAP Communication Module

IEEE  P1451.0 Network Services, Transducer Services, and 
TEDS Formats

P1451.1.1
TCP/UDP
Services

P1451.1.2
HTTP

Services

P1451.1.3
Web

Services

P1451.1.5
SNMP

Services

P1451.1.6
MQTT

Services

P1451.1.4
XMPP

Services

IEEE P1451.99 Bridge

IoT Application
(IEEE P1451.0 and 
P1451.1.X Client)

Non-1451 IoT
Application

NCAP
(1451 

Server)

TIM
(1451 

Sensor/
Actuator)

Intranet/
Internet

Intranet

Internet

P1451.2 Wired & P1451.5 Wireless Interface

Analog/Digital
Interface

Application 
(IEEE P1451.0 and 
P1451.1.X Client)

• PC-Primary Clock
• SC-Secondary Clock

Application 
(IEEE P1451.0 and 
P1451.1.X Client)

Application 
(IEEE P1451.0 and 
P1451.1.X Client)

Sensor Node
(IEEE P1451.0 & 

P1451.5.X)

Actuator Node
(IEEE P1451.0 
& P1451.5.X)

Sensor & Actuator
Node  (IEEE P1451.0 

& P1451.5.X)

IEEE P1451.0
P1451.5 Wireless 

Local Area Network
(WLAN)

NCAP
(IEEE P1451.0 
& P1451.1.X)
(IEEE P1451.0 
& P1451.5.X)

IEEE 1451.0 and P1451.1.X Network  
and  Time Synchronizations Network

Sensor Node
(IEEE P1451.0 & 

P1451.5.X)

Actuator Node
(IEEE P1451.0 
& P1451.5.X)

Sensor & Actuator
Node  (IEEE P1451.0 

& P1451.5.X)

IEEE P1451.0 and
P1451.5 Wireless 

Local Area Network
(WLAN)

NCAP
(IEEE P1451.0 
& P1451.1.X)
(IEEE P1451.0 
& P1451.5.X)

IEEE
P1451.0 & 
P1451.1.X 

(WAN)

Authorized licensed use limited to: Boulder Labs Library. Downloaded on February 22,2022 at 04:25:42 UTC from IEEE Xplore.  Restrictions apply. 



(UTC)-traceable source or a local source. The IEEE P1451.0 
standard-based sensor networks should be able to adopt any 
existing time synchronization standards or protocols, and the 
adopted time synchronization standard information should be 
defined in the TimeSync TEDS to achieve sensor data 
interoperability among these sensor networks. In the IEEE 
P1451.0 standard-based WANs, all of the secondary clocks, 
including those in the applications and NCAPs are synchronized 
to the primary clock (e.g., in one of NCAPs) via one of the 
following time signals (e.g., GPS, Inter-Range Instrumentation 
Group - Time Code Format B (IRIG-B), pulse-per-second 
(PPS), or others). In the IEEE P1451.0 standard-based WLANs 
shown in Fig. 2, all of WTIMs (wireless sensor nodes or actuator 
nodes) that are secondary clocks should be synchronized with 
the NCAP (primary clock), which means that time 
synchronization messages should be communicated or 
exchanged via the same IEEE P1451.0-based WAN and IEEE 
P1451.5-based WLANs.   

TEDS are electronic datasheets containing metadata in a 
standardized data format that describe the characteristics of 
sensors and actuators associated with the TIMs and NCAPs in 
the form of transducer channels. The structures of different types 
of TEDS are described in the P1451.0 standard [1]. They are 
intended to be stored in nonvolatile memory within a TIM or 
NCAP. However, there are applications in which this is not 
practical, so the standard allows them to be stored in other places 
in the user's system. When stored in some location other than the 
TIM, they are referred to as "virtual" TEDS. The TimeSync 
TEDS is optional. The function of the TimeSync TEDS shall be 
to make available at the interface all of the information needed 
to gain access to any NCAPs and TIMs/WTIMs. TimeSync 
TEDS, defined as a text-based TEDS, describes time 
synchronization protocol names and versions in the standard [1]. 
Table I shows the details. 

TABLE I. TIME-SYNC TEDS 
Field 
type 

Field 
name Description Data 

type # octet M/O 
—   Length UInt32 4 M/O 
0-2 — Reserved — —  

3 TEDSID TEDS Identification 
Header UInt32 4 M 

4-9 — Reserved — —  
Time synchronization related information  

10 Name Time Synchronization 
Protocol Name UInt8 1 M 

11 Version version UInt8 1 M 
      
21-127 — Reserved — —  
128-255 — Open to manufacturers — —  
—   Checksum UInt16 2 M 

 

B. Time Synchronization of IEEE P1451.0 and P1451.1.6 
standards-based Network 
Fig. 3 shows the time synchronization of IEEE P1451.0 and 

P1451.1.6 standards-based network that consists of many IoT 
applications, an IEEE P1451.1.6 MQTT broker, and many 
NCAPs via Internet/Intranet (Ethernet or cellular 
communication). The communications between IoT 
applications and NCAPs are via the MQTT broker based on 

IEEE P1451.0 network services and IEEE P1451.1.6 MQTT 
interfaces. In general, any node in the network can be a primary 
clock. In Fig. 3, one NCAP is a primary clock, while the other 
NCAPs and applications are secondary clocks. All secondary 
clocks should be synchronized with the primary clock based on 
the time synchronization protocol defined in Clause 6 of IEEE 
P1451.1.6 [2].  

 
Fig. 3. Time synchronization of IEEE P1451.0 and P1451.1.6 

standards-based WAN.  

MQTT systems are based on publisher and subscriber 
structure, with data exchanging via the MQTT broker. MQTT 
v5 supports a property that enables extensive data inclusion into 
a message independent of the original message body. It provides 
additional and separated messages filed as a property of the 
message. This property can be used as a subchannel 
communication line independent from the main message, and it 
can be used as a low-cost additional message channel. The IEEE 
P1451.1.6 provides a new timestamp property of MQTT v5 that 
enables cost-effective time-synchronization and maintains the 
timestamps in the IoT devices (e.g., NCAPs or applications in 
this case) [2]. By using this method, the IoT devices can 
synchronize the local clock with an MQTT broker or other time-
synchronized MQTT clients (NCAPs or applications in this 
case). However, microcontrollers may not have a battery-
backup real-time clock (RTC) module. For these IoT devices, 
local timestamping is still a big topic to be resolved. These IoT 
devices often go to sleep mode to extend battery life, and time 
counting for the sleep duration can be done without requiring an 
RTC module. For IoT devices used in plant management, 
factory automation, and abnormal detection applications, 
timestamping on the order of milliseconds might be needed. 

 Although MQTT is widely used for these resource-limited 
microcontrollers, it does not provide time synchronization 
functions. However, when it is required, MQTT clients and 
MQTT broker (server) may use external time synchronization 
protocols, such as network time protocol (NTP) [6], PTP [7], 
GPS [8], and radio clock such as the National Institute of 
Standards and Technology (NIST)’s WWV [9]. Time 
synchronization between the MQTT client and server can be 
achieved by exchanging MQTT messages via a special 
synchronization topic. There is an existing study that describes 
time synchronization using MQTT [10].  

IEEE P1451.1.6 provides two types of network 
communication methods for time synchronization: request-
response synchronization (RR-Sync) and broadcasting 
synchronization (BR-Sync) [2]. This paper mainly focuses on 
the request-response time synchronization method based on the 
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client and server operation mode of NTP of RFC 958, RFC 
5905, and RFC 7822. It does not consider the stratum of NTP; 
however, it can additionally compensate for the delay jitter in 
an MQTT broker [2].   

 
 

Fig. 4. Time synchronization protocol of IEEE P1451.1.6. 

A request-response method-based time synchronization 
protocol of IEEE P1451.1.6 shown in Fig. 4 is based on the 
client and server operation mode of NTP. The protocol operates 
as follows: 

a) Synchronization request (SRQ) message: SRQ 
message is published from the secondary clock client. SRQ 
message has the timestamp of the secondary clock (𝑇𝑇1). The 
topic name has to end with TIME/SRQ. The primary clock 
client subscribes to the topic in advance and memories both the 
timestamp of the secondary clock (𝑇𝑇1) in SRQ message and the 
timestamp of its primary clock ( 𝑡𝑡2 ). As an option of a 
transparent clock function, the MQTT broker can add the actual 
processing time of the SRQ message in the "Correction" 
property as a millisecond unit for MQTT v3. 

b) Synchronization response (SRS) message: The 
primary clock client sends an SRS message with the timestamp 
of the primary clock (t3). The parameters in the SRS message 
are 𝑇𝑇1, 𝑡𝑡2, and 𝑡𝑡3. The topic name of this message has to end 
with TIME/SRS. As an option of a transparent clock function, 
the MQTT broker can add the actual processing time of the SRS 
message in the "Correction" property as a millisecond unit for 
MQTT v3. The correction of SRQ and SRS will have a similar 
value. More precise time synchronization can be achieved by 
compensating the 𝑡𝑡2 − 𝑇𝑇1 value by SRQ correction and 𝑇𝑇4 − 𝑡𝑡3 
value by SRS correction because the message processing delay 
variability of the broker server can be compensated. 

c) Estimation: The secondary clock client receives the 
SRS message by subscribing to the topic for SRS and memories 
of the timestamp of its secondary clock (𝑇𝑇4). Then, the round 
trip time (RTT), delay time, and offset can be calculated using 
the following equations: 

 
𝑅𝑅𝑇𝑇𝑇𝑇 =  (𝑡𝑡2 − 𝑇𝑇1) + (𝑇𝑇4 − 𝑡𝑡3) 

 

𝑂𝑂𝑂𝑂𝑂𝑂 −𝑊𝑊𝑊𝑊𝑊𝑊 𝐷𝐷𝑂𝑂𝐷𝐷𝑊𝑊𝑊𝑊 =
(𝑡𝑡2 − 𝑇𝑇1) + (𝑇𝑇4 − 𝑡𝑡3)

2
 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 =
(𝑡𝑡2 − 𝑇𝑇1)− (𝑇𝑇4 − 𝑡𝑡3)

2
 

IV. IMPLEMENTATION OF TIME SYNCHRONIZATION OF IEEE 
P1451.1.6 

A. Implementation of Time Synchronization of IEEE 
P1451.1.6 
A time synchronization protocol of IEEE P1451.1.6 was 

implemented using MQTT networks and Python 3.8.5. The 
architecture of the implemented networks for testing is shown in 
Fig. 5(a), which consists of an MQTT broker and two MQTT 
clients – an application and an NCAP. The application had a 
primary clock, and the NCAP had a secondary clock. The NCAP 
secondary clock was synchronized with the application’s 
primary clock. Fig. 5(b) shows a time synchronization 
implementation of IEEE P1451.1.6 using a wireless network 
(Wi-Fi). The Intel Compute Stick m3 with Core m3-6Y30 
(without Ethernet Ports), 4 GB RAM, 64 G eMMC, and Ubuntu 
20.04 were the microcontrollers used for the MQTT network. 
Application, NCAP, and MQTT broker were separately 
implemented into three different microcontrollers. All of the 
microcontrollers were connected via a Wi-Fi router. 

 
Fig. 5. Time synchronization implementation of IEEE  

P1451.0 and P1451.1.6 standards-based network. 
 

Fig. 5(c) shows a time synchronization implementation 
using a wireline network.  Raspberry Pi 3+ and Raspberry Pi 
operating system (OS) were used for the application and NCAP 
implementations, respectively. Raspberry Pi 4 and Ubuntu 20.04 
were used for the implementation of the MQTT broker. In both 
wireline and wireless network implementations, the Mosquitto 
MQTT broker server v1.6.12, which supports both MQTT v5.0 
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and v3.11, was deployed. These configurations are suitable for 
typical sensor networks. In these two types of implementations, 
it is possible to adjust the NCAP secondary clock to synchronize 
it with the primary clock; however, in our implementations, we 
only showed the time delays and offsets, but we did not adjust 
the NCAP secondary clock to synchronize it with the 
application’s primary clock. The implementation of the 
P1451.1.6 MQTT time synchronization protocol based on NTP 
was tested and evaluated by running the installed system 
described in Fig. 4. All measured parameters such as 𝑇𝑇1, 𝑡𝑡2, 𝑡𝑡3, 
𝑇𝑇4, one-way delays, offsets, and RTTs between the primary and 
secondary clock time are captured in a computer screenshot and 
shown in Fig. 6.  

 
Fig. 6. Screenshot of time synchronization implementation 

of IEEE P1451.1.6. 

We have also evaluated the average of 100, 200, 500, 1000, 
2000, and 5000 measurements of time synchronization using the 
setup of Fig. 5. The results are shown in Table II. The 
implementation of the IEEE P1451.1.6 time synchronization 
protocol has achieved microseconds (𝜇𝜇𝑂𝑂)-level of uncertainty 
according to the precision of “gettimeofday” system calls of 
Linux, and the returned values of the function calls were used 
for the measurements of delays, offsets, and RTTs. The 
uncertainty of one-way delays, offsets, and RTTs includes the 
cumulative results of the uncertainty of primary and secondary 
clocks, MQTT broker delay, and wireless and wireline network 
delays. As shown in Table II, the magnitudes of one-way delays, 
offsets, and RTTs of the wireline network are less than that of 
the wireless network, so that the time synchronization 
uncertainty of the wireline network is considered to be better 
than that of the wireless network.  

Fig. 7 shows the histogram of the offset values of 5000 
measurement data points. In the wireless network 
implementation, 95% of the measured offsets (2-sigma standard 
deviation) are within the range from 230,160 to 239,169  𝜇𝜇𝑂𝑂. In 
the wireline network implementation, that is within the range 
from 3,582 to 5,425 𝜇𝜇𝑂𝑂. The wireless network case shows a very 

large offset mean value of 234,327 𝜇𝜇𝑂𝑂 is primarily due to the 
time offset between the primary and secondary clocks. 

TABLE II. RESULT OF EVALUATIONS 

 

 
Fig. 7. Offset histogram of 5000 samples. 

B. Time Synchronization TEDS of IEEE P1451.1.6 
The time synchronization TEDS or TimeSync TEDS in the 

NCAPs was used to describe time synchronization-related 
information between NCAP and applications. The TimeSync 
TEDS parameters of IEEE P1451.1.6 are shown in Table III. 

No. of Samples Delay(𝜇𝜇s) Offset(𝝁s) RTT(𝜇𝜇s)
100 Ave. 5,475 4,314 10,950

Std. Dev. 142 413 285
200 Ave. 5,484 4,315 10,969

Std. Dev. 146 402 291
500 Ave. 5,523 4,339 11,047

Std. Dev. 195 457 391
1000 Ave. 5,525 4,314 11,050

Std. Dev. 194 463 388
2000 Ave. 5,500 4,354 11,000

Std. Dev. 195 464 389
5000 Ave. 5,521 4,394 11,041

Std. Dev. 214 469 428

No. of Samples Delay(𝝁s) Offset(𝝁s) RTT(𝝁s)
100 Ave. 9,459 233,374 18,919

Std. Dev. 4,869 3,038 9,737
200 Ave. 8,006 233,037 16,012

Std. Dev. 3,769 2,408 7,538
500 Ave. 8,553 232,220 17,105

Std. Dev. 4,765 3,646 9,530
1000 Ave. 8,154 232,706 16,307

Std. Dev. 5,366 3,132 10,731
2000 Ave. 7,560 233,215 15,120

Std. Dev. 4,104 2,693 8,208
5000 Ave. 7,294 234,327 14,588

Std. Dev. 3,067 2,478 6,133

a) Wireless network 

b) Wireline network 

Wireless

Offset (𝜇𝜇s) in 5000 samples

95%

Mean 
(234,327)230,160 239,169

Wireline

Offset (𝜇𝜇s) in 5000 samples

Mean 
(4,394)3,582 5,425

95%
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TimeSync TEDS consists of a number of fields, such as TEDS 
identifier (TEDSID), time synchronization protocol name, and 
version. Table IV shows a list of time synchronization protocols 
that can be used with IEEE P1451.1.6, such as NTP, PTP, and 
GPS. Table V shows the version of the IEEE P1451.1.6 time 
protocol. 

Table III shows an example of TimeSync TEDS that 
includes the TEDSID, protocol name, and version of current 
time synchronization implementation in this paper.  The 
TEDSID field value is 16, 17, 1, and 1. The value of 16 means  
IEEE P1451.1.6 in Table IV. The value of 17 means the 
TimeSync TEDS access code in P1451.0. The value of 1 means 
that the version number of IEEE P1451.1.6 is 1.0. The value of 
1 means that the tuple length is 1. The field value of the time 
synchronization protocol name in Table III corresponds to the 
enumerated value of 1 in Table 4, which means IEEE P1451.1.6. 
The version value 1 in Table III means version 1 of IEEE 
P1451.1.6, as shown in Table V. 

TABLE III.  AN EXAMPLE OF AN IEEE P1451.6 TIMESYNC 
TEDS 

Field 
type 

Field 
name Description Data 

type 
# 
octet M/O Field 

Value 
Field 
Description 

—  Length UInt32 4    
0-2 — Reserved — —    

3 TEDSID 
TEDS 
Identification 
Header 

UInt32 4  

16  
17  
1  
1 

16:P1451.1.6 
17: access code  
1:Version 
1: Tuple length 

4-9 — Reserved — —    
Time synchronization related information    

10 Name 
Time 
Synchronization 
Protocol Name 

UInt8 1 M 
1 IEEE  

P1451.1.6 
Standard 

11 Version version UInt8 1 M 1 V1 
        
21-
127 — Reserved — —    

128-
255 — Open to 

manufacturers — —    

TABLE IV. TIME SYNCHRONIZATION PROTOCOLS FOR IEEE 
P1451.1.6. 

No. Time Synchronization Protocol for IEEE P1451.1.6 
0 None 
1 IEEE P1451.1.6  
2 NTP 
3 PTP 
4 GPS 
5-127 Reserved for manufacturer 

TABLE V. VERSION OF IEEE P1451.1.6  
Version No. Year 
0 Reserved 
1 2021 
2-127 Reserved for manufacturer 

 

V. CONCLUSION AND FUTURE WORK 
This paper describes the time synchronization approaches of 

IEEE P1451.0 standard-based sensor networks for IoT 
applications, which includes two-level time synchronizations in 
IEEE P1451.0 and P1451.1.X standards-based wide area 

networks (WANs) and IEEE P1451.0 and P1451.5.X standards-
based local area networks (LANs). This paper focuses on the 
time synchronization of IEEE P1451.0 and P1451.1.6 standards-
based WANs. Two implementations of time synchronization of 
IEEE P1451.0 and P1451.1.6 using wireline and wireless 
networks and their preliminary results are provided to verify the 
time synchronization approaches of IEEE P1451.1.6. Also, an 
example of time synchronization TEDS of P1451.1.6 is 
described. 

Future work will focus on hardware-assisted technologies to 
improve time synchronization uncertainty. 
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