
Time Synchronization of IEEE P1451.0 and P1451.1.6 Standard-based
Sensor Networks

Hiroaki Nishi
Faculty of Science and Technology

Keio University
Yokohama, Japan

west@sd.keio.ac.jp

Eugene Y. Song
Engineering Laboratory

National Institute of Standards and
Technology (NIST)

Gaithersburg, MD, USA
eugene.song@nist.gov

Yuichi Nakamura
Global Education Center

Waseda University
Shinjuku, Japan

yuichi@aoni.waseda.jp

Kang B. Lee
IEEE Life Fellow

Gaithersburg, MD, USA
Kang.Lee@ieee.org

Yucheng Liu
Department of Electrical Engineering

City University of Hong Kong
Hong Kong, China

yucliu4-c@my.cityu.edu.hk

Kim Fung Tsang
Department of Electrical Engineering

City University of Hong Kong
Hong Kong, China

ee330015@cityu.edu.hk

Abstract—This paper introduces the time synchronization
approaches to the Institute of Electrical and Electronics
Engineers (IEEE) P1451.0 standard-based sensor networks
for Internet of Things (IoT) applications. A time
synchronization architecture of IEEE P1451.0 standard-
based sensor networks is described including two-level time
synchronization systems in IEEE P1451.0 and P1451.1.X
standards-based wide-area network (WAN) and IEEE
P1451.0 and P1451.5.X standards-based local area networks
(LANs). However, this paper mainly focuses on the time
synchronization approach of IEEE P1451.0 and P1451.1.6
standards-based WANs and provides two implementations
of time synchronization of IEEE P1451.0 and P1451.1.6
using wireline and wireless networks with their preliminary
results to verify that the time synchronization approach of
IEEE P1451.1.6 functions properly. In addition, the time
synchronization transducer electronic data sheets (TEDS) of
P1451.1.6 is described.

Keywords—IEEE P1451.0, IEEE P1451.1.6, IoT, LAN,
MQTT, sensor network, standard, time synchronization,
WAN.

I. INTRODUCTION
Internet of Things (IoT) sensors and actuators play a critical

role in providing real-time data for monitoring and control of
physical infrastructure systems. These sensors and actuators can
communicate with the sensor network gateway via standard
protocols such as Bluetooth, ZigBee, 6LowPAN, LoRa, Sigfox,
NB-IoT, and IEEE 802.11 protocols. The sensor network
gateway (sensor data aggregator) provides some functionality,
such as pre-processing or data fusion of the sensor data from
different sensors, forwarding sensor data and data fusion results
to the cloud services, and sharing with IoT applications.
Precision time synchronization to a common time reference
(e.g., global position system (GPS) is often required among
sensors and actuators, the sensor network gateway, cloud
services, and IoT applications. Therefore, time synchronization
of sensor networks is critical to IoT applications. However, most

IoT devices, such as IoT wireless sensors and actuators using
microcontrollers and limited resources, do not have a real-time
clock module. These sensor nodes have low-power, miniature
footprints, and low-cost embedded microcontrollers. Also, time
accuracy and time synchronization requirements are based on
different IoT applications and time synchronization methods
and protocols.

 The Institute of Electrical and Electronics Engineers (IEEE)
1451 family of standards for smart transducer interfaces for
sensors and actuators define specifications for device-level
interfaces ranging from mixed-mode transducers interface
(P1451.4), serial wireline (P1451.2) and wireless interfaces
(P1451.5), and RFID-to-sensor interface (P1451.7) as shown in
Fig. 1. At the network level, the family consists of standards for
P1451.1.4 (P21451-1-4, extensible messaging and presence
protocol (XMPP)), P1451.1.5 (P21451-1-5, simple network
management protocol (SNMP)), and P1451.1.6 (P21451-1-6,
message queue telemetry transport (MQTT)) network
interfaces, as well as a network interface for the harmonization
with other IoT verticals as defined in P1451.99. All of these
interfaces are based on the core family of standards, IEEE
P1451.0 that is a revision of the IEEE 1451.0-2007 standard
based on IoT requirements, such as global identity, security, and
time synchronization for IEEE P1451.0-based sensor networks.
IEEE P1451.0 define a common function and messaging
protocols, common data formats, and metadata such as the
transducer electronic data sheets (TEDS) that enable the access
of sensors and actuators data and information and pass them to
IoT, Industrial Internet of Things (IIoT), and cyber-physical
systems (CPS) applications via various network interfaces,
through both IEEE 1451 and non-IEEE 1451 networks and
systems. The latest revised IEEE P1451.0 standard specifies
common functions, network services, transducer services, and
TEDS formats for members of the IEEE 1451 family of
standards to follow to achieve interoperable with each other in
both network interfaces and transducer interface [1]. It defines
the common functions and characteristics that are to be
performed by a network-capable application processor (NCAP)
working as a 1451 server or gateway of IEEE P1451.0 standard-

IE
C

O
N

 2
02

1
- 4

7t
h

A
nn

ua
l C

on
fe

re
nc

e
of

 th
e

IE
EE

 In
du

st
ria

l E
le

ct
ro

ni
cs

 S
oc

ie
ty

 |
97

8-
1-

66
54

-3
55

4-
3/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IE
C

O
N

48
11

5.
20

21
.9

58
99

04

Authorized licensed use limited to: Boulder Labs Library. Downloaded on February 22,2022 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

based sensor networks. It also defines a set of network services
application programming interfaces (API) comprised of requests
and responses to access sensor data and TEDS data from the
NCAP (1451 server) for IoT applications (1451 clients). It also
defines common functions and characteristics that are to be
performed by a transducer interface module (TIM). In addition,
it defines a set of transducer services that include a set of
commands and responses to facilitate the setup and control of
TIMs as well as reading and writing the data used by the sensor
systems. APIs are defined to facilitate communications between
the NCAPs and TIMs, and between applications and NCAPs.
The IEEE P1451.0 also includes specifications for global
identity, security, time synchronization based on IoT
requirements, and security and time synchronization TEDS for
IEEE 1451.0-based sensor networks. The objective of IEEE
P1451.0 is to achieve sensor data interoperability in the network
interface and transducer interface. IEEE P1451.1.6 (or P21451-
1-6) standard defines a method for transporting IEEE P1451.0
network service messages over a network using MQTT to
establish a lightweight, simplified protocol structure to handle
IEEE 1451 communications [2].

Fig. 1. Architecture of IEEE 1451 family of standards.

This paper mainly focuses on the time synchronization of
IEEE P1451.0 and P1451.1.6 standard-based sensor networks
for IoT applications. This paper is organized as follows. Related
works are described in Section II. The time synchronization of
IEEE P1451.0 and P1451.1.6 standard-based sensor networks is
described in Section III. An implementation of time
synchronization of IEEE P1451.0 and P1451.1.6 WANs with
preliminary results to verify functionality is described in Section
IV. Summary and conclusion are provided in Section V.

II. RELATED WORKS
Ramos et al. implemented the NCAP in a personal computer

and using the universal serial bus (USB) to communicate with
the TIM. The IEEE 1588 precision time protocol (PTP) protocol
is used to synchronize the real-time clock of two TIMs
connected to the USB hub. An application to determine the

temporal precision of the two modules obtained with the
protocol is also described in detail [3]. Wobschall and Ma
introduced a method of precise time synchronization of IEEE
1451.0-2007 and 1451.5-6LowPAN standard-based wireless
sensor networks using modified IEEE 1588 protocol. A wireless
TIM (WTIM) was designed and fabricated using the IEEE
802.15.4 transceiver model TI CC2430 which allows access to
a hardware sync signal. The results show that the
synchronization precision is better than 10 μs for short
synchronization intervals but increases to about 100 μs for
longer synchronization intervals [4]. Dueck et al. studied
Ethernet-based time synchronization for Raspberry Pi**
network based on IEEE 1451-based sensor networks using the
IEEE 1588 standard synchronization protocol [5]. As a
supplementary to these existing works, the time synchronization
of IEEE P1451.0 and P1451.1.6 standards-based WANs is
discussed in this paper.

III. TIME SYNCHRONIZATION OF IEEE P1451.0 AND
P1451.1.6 STANDARD-BASED SENSOR NETWORKS

A. Architecture of Time Synchronization of IEEE P1451.0
Standard-based Sensor Networks for IoT Applications
Fig. 2 shows an architecture of time synchronization of IEEE

P1451.0 standard-based sensor networks for IoT applications.
As shown in Fig. 2, an IEEE P1451.0 and P1451.1.X standards-
based WAN consists of several IoT applications and NCAPs via
Internet/Intranet (Ethernet or cellular communications). The
communications between IoT applications and NCAPs are
based on IEEE P1451.0 network services and IEEE P1451.1.X
interfaces. Also, an IEEE P1451.0 and P1451.5.X standards-
based wireless local area network (WLAN) consists of a number
of NCAPs and their respective WTIM via wireless mediums
(e.g., 802.11, Bluetooth, ZigBee, 6LowPAN, NB-IoT, SigFox,
and LoRa). The communications between the NCAP and
WTIMs are based on IEEE P1451.0 transducer services and
IEEE P1451.5.X interfaces.

Fig. 2. Architecture of time synchronization of IEEE

P1451.0 standard-based sensor networks.

As shown in Fig. 2, the time synchronization protocols for
IEEE P1451.0 standard-based WANs and WLANs could be the
same or different, depending on application requirements and
protocol implementations. For example, applications may
require time synchronization to a universal coordinated time

• Transducer = Sensor / Actuator
• P1451.1.X = P21451-1-X

To be proposed
Proposed
Published

Application
(1451
Client)

IEEE
1451

Smart
Transducer

(Functionally,
but not

physically
integrated

NCAP
and TIM)

IEEE 1451 Transducer Interface

IEEE 1451 Network Interface

TIM Communication Module

Signal Conditioning and Data Conversion

IEEE P1451.4
Analog Transducer

Transducers
(Sensors & Actuators)

IEEE P1451.7
RFID + Transducer

IEEE P1451.0 Transducer Services, TEDS Formats

Mixed Mode
Interface

RF
Interface

IEEE 21451-001 Signal
Treatment Services (Optional)

IEEE P1451-002 Low-power
Applications (Optional)

NCAP Communication Module

IEEE P1451.0 Network Services, Transducer Services, and
TEDS Formats

P1451.1.1
TCP/UDP
Services

P1451.1.2
HTTP

Services

P1451.1.3
Web

Services

P1451.1.5
SNMP

Services

P1451.1.6
MQTT

Services

P1451.1.4
XMPP

Services

IEEE P1451.99 Bridge

IoT Application
(IEEE P1451.0 and
P1451.1.X Client)

Non-1451 IoT
Application

NCAP
(1451

Server)

TIM
(1451

Sensor/
Actuator)

Intranet/
Internet

Intranet

Internet

P1451.2 Wired & P1451.5 Wireless Interface

Analog/Digital
Interface

Application
(IEEE P1451.0 and
P1451.1.X Client)

• PC-Primary Clock
• SC-Secondary Clock

Application
(IEEE P1451.0 and
P1451.1.X Client)

Application
(IEEE P1451.0 and
P1451.1.X Client)

Sensor Node
(IEEE P1451.0 &

P1451.5.X)

Actuator Node
(IEEE P1451.0
& P1451.5.X)

Sensor & Actuator
Node (IEEE P1451.0

& P1451.5.X)

IEEE P1451.0
P1451.5 Wireless

Local Area Network
(WLAN)

NCAP
(IEEE P1451.0
& P1451.1.X)
(IEEE P1451.0
& P1451.5.X)

IEEE 1451.0 and P1451.1.X Network
and Time Synchronizations Network

Sensor Node
(IEEE P1451.0 &

P1451.5.X)

Actuator Node
(IEEE P1451.0
& P1451.5.X)

Sensor & Actuator
Node (IEEE P1451.0

& P1451.5.X)

IEEE P1451.0 and
P1451.5 Wireless

Local Area Network
(WLAN)

NCAP
(IEEE P1451.0
& P1451.1.X)
(IEEE P1451.0
& P1451.5.X)

IEEE
P1451.0 &
P1451.1.X

(WAN)

Authorized licensed use limited to: Boulder Labs Library. Downloaded on February 22,2022 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

(UTC)-traceable source or a local source. The IEEE P1451.0
standard-based sensor networks should be able to adopt any
existing time synchronization standards or protocols, and the
adopted time synchronization standard information should be
defined in the TimeSync TEDS to achieve sensor data
interoperability among these sensor networks. In the IEEE
P1451.0 standard-based WANs, all of the secondary clocks,
including those in the applications and NCAPs are synchronized
to the primary clock (e.g., in one of NCAPs) via one of the
following time signals (e.g., GPS, Inter-Range Instrumentation
Group - Time Code Format B (IRIG-B), pulse-per-second
(PPS), or others). In the IEEE P1451.0 standard-based WLANs
shown in Fig. 2, all of WTIMs (wireless sensor nodes or actuator
nodes) that are secondary clocks should be synchronized with
the NCAP (primary clock), which means that time
synchronization messages should be communicated or
exchanged via the same IEEE P1451.0-based WAN and IEEE
P1451.5-based WLANs.

TEDS are electronic datasheets containing metadata in a
standardized data format that describe the characteristics of
sensors and actuators associated with the TIMs and NCAPs in
the form of transducer channels. The structures of different types
of TEDS are described in the P1451.0 standard [1]. They are
intended to be stored in nonvolatile memory within a TIM or
NCAP. However, there are applications in which this is not
practical, so the standard allows them to be stored in other places
in the user's system. When stored in some location other than the
TIM, they are referred to as "virtual" TEDS. The TimeSync
TEDS is optional. The function of the TimeSync TEDS shall be
to make available at the interface all of the information needed
to gain access to any NCAPs and TIMs/WTIMs. TimeSync
TEDS, defined as a text-based TEDS, describes time
synchronization protocol names and versions in the standard [1].
Table I shows the details.

TABLE I. TIME-SYNC TEDS
Field
type

Field
name Description Data

type # octet M/O
— Length UInt32 4 M/O
0-2 — Reserved — —

3 TEDSID TEDS Identification
Header UInt32 4 M

4-9 — Reserved — —
Time synchronization related information

10 Name Time Synchronization
Protocol Name UInt8 1 M

11 Version version UInt8 1 M

21-127 — Reserved — —
128-255 — Open to manufacturers — —
— Checksum UInt16 2 M

B. Time Synchronization of IEEE P1451.0 and P1451.1.6
standards-based Network
Fig. 3 shows the time synchronization of IEEE P1451.0 and

P1451.1.6 standards-based network that consists of many IoT
applications, an IEEE P1451.1.6 MQTT broker, and many
NCAPs via Internet/Intranet (Ethernet or cellular
communication). The communications between IoT
applications and NCAPs are via the MQTT broker based on

IEEE P1451.0 network services and IEEE P1451.1.6 MQTT
interfaces. In general, any node in the network can be a primary
clock. In Fig. 3, one NCAP is a primary clock, while the other
NCAPs and applications are secondary clocks. All secondary
clocks should be synchronized with the primary clock based on
the time synchronization protocol defined in Clause 6 of IEEE
P1451.1.6 [2].

Fig. 3. Time synchronization of IEEE P1451.0 and P1451.1.6

standards-based WAN.

MQTT systems are based on publisher and subscriber
structure, with data exchanging via the MQTT broker. MQTT
v5 supports a property that enables extensive data inclusion into
a message independent of the original message body. It provides
additional and separated messages filed as a property of the
message. This property can be used as a subchannel
communication line independent from the main message, and it
can be used as a low-cost additional message channel. The IEEE
P1451.1.6 provides a new timestamp property of MQTT v5 that
enables cost-effective time-synchronization and maintains the
timestamps in the IoT devices (e.g., NCAPs or applications in
this case) [2]. By using this method, the IoT devices can
synchronize the local clock with an MQTT broker or other time-
synchronized MQTT clients (NCAPs or applications in this
case). However, microcontrollers may not have a battery-
backup real-time clock (RTC) module. For these IoT devices,
local timestamping is still a big topic to be resolved. These IoT
devices often go to sleep mode to extend battery life, and time
counting for the sleep duration can be done without requiring an
RTC module. For IoT devices used in plant management,
factory automation, and abnormal detection applications,
timestamping on the order of milliseconds might be needed.

 Although MQTT is widely used for these resource-limited
microcontrollers, it does not provide time synchronization
functions. However, when it is required, MQTT clients and
MQTT broker (server) may use external time synchronization
protocols, such as network time protocol (NTP) [6], PTP [7],
GPS [8], and radio clock such as the National Institute of
Standards and Technology (NIST)’s WWV [9]. Time
synchronization between the MQTT client and server can be
achieved by exchanging MQTT messages via a special
synchronization topic. There is an existing study that describes
time synchronization using MQTT [10].

IEEE P1451.1.6 provides two types of network
communication methods for time synchronization: request-
response synchronization (RR-Sync) and broadcasting
synchronization (BR-Sync) [2]. This paper mainly focuses on
the request-response time synchronization method based on the

• PC-Primary Clock
• SC-Secondary Clock

Application
(IEEE P1451.0 &
1451.1.6 Client)

Application
(IEEE P1451.0 &
P1451.1.6 Client)

NCAP
(IEEE P1451.0 &
1451.1.6 Server)

NCAP
(IEEE P1451.0 &

P1451.1.6 Server)

IEEE
P1451.0 & P1451.1.6

MQTT Broker

Authorized licensed use limited to: Boulder Labs Library. Downloaded on February 22,2022 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

client and server operation mode of NTP of RFC 958, RFC
5905, and RFC 7822. It does not consider the stratum of NTP;
however, it can additionally compensate for the delay jitter in
an MQTT broker [2].

Fig. 4. Time synchronization protocol of IEEE P1451.1.6.

A request-response method-based time synchronization
protocol of IEEE P1451.1.6 shown in Fig. 4 is based on the
client and server operation mode of NTP. The protocol operates
as follows:

a) Synchronization request (SRQ) message: SRQ
message is published from the secondary clock client. SRQ
message has the timestamp of the secondary clock (𝑇𝑇1). The
topic name has to end with TIME/SRQ. The primary clock
client subscribes to the topic in advance and memories both the
timestamp of the secondary clock (𝑇𝑇1) in SRQ message and the
timestamp of its primary clock (𝑡𝑡2). As an option of a
transparent clock function, the MQTT broker can add the actual
processing time of the SRQ message in the "Correction"
property as a millisecond unit for MQTT v3.

b) Synchronization response (SRS) message: The
primary clock client sends an SRS message with the timestamp
of the primary clock (t3). The parameters in the SRS message
are 𝑇𝑇1, 𝑡𝑡2, and 𝑡𝑡3. The topic name of this message has to end
with TIME/SRS. As an option of a transparent clock function,
the MQTT broker can add the actual processing time of the SRS
message in the "Correction" property as a millisecond unit for
MQTT v3. The correction of SRQ and SRS will have a similar
value. More precise time synchronization can be achieved by
compensating the 𝑡𝑡2 − 𝑇𝑇1 value by SRQ correction and 𝑇𝑇4 − 𝑡𝑡3
value by SRS correction because the message processing delay
variability of the broker server can be compensated.

c) Estimation: The secondary clock client receives the
SRS message by subscribing to the topic for SRS and memories
of the timestamp of its secondary clock (𝑇𝑇4). Then, the round
trip time (RTT), delay time, and offset can be calculated using
the following equations:

𝑅𝑅𝑇𝑇𝑇𝑇 = (𝑡𝑡2 − 𝑇𝑇1) + (𝑇𝑇4 − 𝑡𝑡3)

𝑂𝑂𝑂𝑂𝑂𝑂 −𝑊𝑊𝑊𝑊𝑊𝑊 𝐷𝐷𝑂𝑂𝐷𝐷𝑊𝑊𝑊𝑊 =
(𝑡𝑡2 − 𝑇𝑇1) + (𝑇𝑇4 − 𝑡𝑡3)

2

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 =
(𝑡𝑡2 − 𝑇𝑇1)− (𝑇𝑇4 − 𝑡𝑡3)

2

IV. IMPLEMENTATION OF TIME SYNCHRONIZATION OF IEEE
P1451.1.6

A. Implementation of Time Synchronization of IEEE
P1451.1.6
A time synchronization protocol of IEEE P1451.1.6 was

implemented using MQTT networks and Python 3.8.5. The
architecture of the implemented networks for testing is shown in
Fig. 5(a), which consists of an MQTT broker and two MQTT
clients – an application and an NCAP. The application had a
primary clock, and the NCAP had a secondary clock. The NCAP
secondary clock was synchronized with the application’s
primary clock. Fig. 5(b) shows a time synchronization
implementation of IEEE P1451.1.6 using a wireless network
(Wi-Fi). The Intel Compute Stick m3 with Core m3-6Y30
(without Ethernet Ports), 4 GB RAM, 64 G eMMC, and Ubuntu
20.04 were the microcontrollers used for the MQTT network.
Application, NCAP, and MQTT broker were separately
implemented into three different microcontrollers. All of the
microcontrollers were connected via a Wi-Fi router.

Fig. 5. Time synchronization implementation of IEEE

P1451.0 and P1451.1.6 standards-based network.

Fig. 5(c) shows a time synchronization implementation
using a wireline network. Raspberry Pi 3+ and Raspberry Pi
operating system (OS) were used for the application and NCAP
implementations, respectively. Raspberry Pi 4 and Ubuntu 20.04
were used for the implementation of the MQTT broker. In both
wireline and wireless network implementations, the Mosquitto
MQTT broker server v1.6.12, which supports both MQTT v5.0

Application
(Primary Clock)

NCAP
(Secondary Clock)

MQTT
Broker

Network
Switch

MQTT Broker

NCAP
(Secondary Clock)Application

(Primary Clock)
Wi-Fi

Router

(a) Architecture of time synchronization implementation

(b) Time synchronization implementation using wireless network

(c) Time synchronization implementation using wired network

Authorized licensed use limited to: Boulder Labs Library. Downloaded on February 22,2022 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

and v3.11, was deployed. These configurations are suitable for
typical sensor networks. In these two types of implementations,
it is possible to adjust the NCAP secondary clock to synchronize
it with the primary clock; however, in our implementations, we
only showed the time delays and offsets, but we did not adjust
the NCAP secondary clock to synchronize it with the
application’s primary clock. The implementation of the
P1451.1.6 MQTT time synchronization protocol based on NTP
was tested and evaluated by running the installed system
described in Fig. 4. All measured parameters such as 𝑇𝑇1, 𝑡𝑡2, 𝑡𝑡3,
𝑇𝑇4, one-way delays, offsets, and RTTs between the primary and
secondary clock time are captured in a computer screenshot and
shown in Fig. 6.

Fig. 6. Screenshot of time synchronization implementation

of IEEE P1451.1.6.

We have also evaluated the average of 100, 200, 500, 1000,
2000, and 5000 measurements of time synchronization using the
setup of Fig. 5. The results are shown in Table II. The
implementation of the IEEE P1451.1.6 time synchronization
protocol has achieved microseconds (𝜇𝜇𝑂𝑂)-level of uncertainty
according to the precision of “gettimeofday” system calls of
Linux, and the returned values of the function calls were used
for the measurements of delays, offsets, and RTTs. The
uncertainty of one-way delays, offsets, and RTTs includes the
cumulative results of the uncertainty of primary and secondary
clocks, MQTT broker delay, and wireless and wireline network
delays. As shown in Table II, the magnitudes of one-way delays,
offsets, and RTTs of the wireline network are less than that of
the wireless network, so that the time synchronization
uncertainty of the wireline network is considered to be better
than that of the wireless network.

Fig. 7 shows the histogram of the offset values of 5000
measurement data points. In the wireless network
implementation, 95% of the measured offsets (2-sigma standard
deviation) are within the range from 230,160 to 239,169 𝜇𝜇𝑂𝑂. In
the wireline network implementation, that is within the range
from 3,582 to 5,425 𝜇𝜇𝑂𝑂. The wireless network case shows a very

large offset mean value of 234,327 𝜇𝜇𝑂𝑂 is primarily due to the
time offset between the primary and secondary clocks.

TABLE II. RESULT OF EVALUATIONS

Fig. 7. Offset histogram of 5000 samples.

B. Time Synchronization TEDS of IEEE P1451.1.6
The time synchronization TEDS or TimeSync TEDS in the

NCAPs was used to describe time synchronization-related
information between NCAP and applications. The TimeSync
TEDS parameters of IEEE P1451.1.6 are shown in Table III.

No. of Samples Delay(𝜇𝜇s) Offset(𝝁s) RTT(𝜇𝜇s)
100 Ave. 5,475 4,314 10,950

Std. Dev. 142 413 285
200 Ave. 5,484 4,315 10,969

Std. Dev. 146 402 291
500 Ave. 5,523 4,339 11,047

Std. Dev. 195 457 391
1000 Ave. 5,525 4,314 11,050

Std. Dev. 194 463 388
2000 Ave. 5,500 4,354 11,000

Std. Dev. 195 464 389
5000 Ave. 5,521 4,394 11,041

Std. Dev. 214 469 428

No. of Samples Delay(𝝁s) Offset(𝝁s) RTT(𝝁s)
100 Ave. 9,459 233,374 18,919

Std. Dev. 4,869 3,038 9,737
200 Ave. 8,006 233,037 16,012

Std. Dev. 3,769 2,408 7,538
500 Ave. 8,553 232,220 17,105

Std. Dev. 4,765 3,646 9,530
1000 Ave. 8,154 232,706 16,307

Std. Dev. 5,366 3,132 10,731
2000 Ave. 7,560 233,215 15,120

Std. Dev. 4,104 2,693 8,208
5000 Ave. 7,294 234,327 14,588

Std. Dev. 3,067 2,478 6,133

a) Wireless network

b) Wireline network

Wireless

Offset (𝜇𝜇s) in 5000 samples

95%

Mean
(234,327)230,160 239,169

Wireline

Offset (𝜇𝜇s) in 5000 samples

Mean
(4,394)3,582 5,425

95%

Authorized licensed use limited to: Boulder Labs Library. Downloaded on February 22,2022 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

TimeSync TEDS consists of a number of fields, such as TEDS
identifier (TEDSID), time synchronization protocol name, and
version. Table IV shows a list of time synchronization protocols
that can be used with IEEE P1451.1.6, such as NTP, PTP, and
GPS. Table V shows the version of the IEEE P1451.1.6 time
protocol.

Table III shows an example of TimeSync TEDS that
includes the TEDSID, protocol name, and version of current
time synchronization implementation in this paper. The
TEDSID field value is 16, 17, 1, and 1. The value of 16 means
IEEE P1451.1.6 in Table IV. The value of 17 means the
TimeSync TEDS access code in P1451.0. The value of 1 means
that the version number of IEEE P1451.1.6 is 1.0. The value of
1 means that the tuple length is 1. The field value of the time
synchronization protocol name in Table III corresponds to the
enumerated value of 1 in Table 4, which means IEEE P1451.1.6.
The version value 1 in Table III means version 1 of IEEE
P1451.1.6, as shown in Table V.

TABLE III. AN EXAMPLE OF AN IEEE P1451.6 TIMESYNC
TEDS

Field
type

Field
name Description Data

type

octet M/O Field

Value
Field
Description

— Length UInt32 4
0-2 — Reserved — —

3 TEDSID
TEDS
Identification
Header

UInt32 4

16
17
1
1

16:P1451.1.6
17: access code
1:Version
1: Tuple length

4-9 — Reserved — —
Time synchronization related information

10 Name
Time
Synchronization
Protocol Name

UInt8 1 M
1 IEEE

P1451.1.6
Standard

11 Version version UInt8 1 M 1 V1

21-
127 — Reserved — —

128-
255 — Open to

manufacturers — —

TABLE IV. TIME SYNCHRONIZATION PROTOCOLS FOR IEEE
P1451.1.6.

No. Time Synchronization Protocol for IEEE P1451.1.6
0 None
1 IEEE P1451.1.6
2 NTP
3 PTP
4 GPS
5-127 Reserved for manufacturer

TABLE V. VERSION OF IEEE P1451.1.6
Version No. Year
0 Reserved
1 2021
2-127 Reserved for manufacturer

V. CONCLUSION AND FUTURE WORK
This paper describes the time synchronization approaches of

IEEE P1451.0 standard-based sensor networks for IoT
applications, which includes two-level time synchronizations in
IEEE P1451.0 and P1451.1.X standards-based wide area

networks (WANs) and IEEE P1451.0 and P1451.5.X standards-
based local area networks (LANs). This paper focuses on the
time synchronization of IEEE P1451.0 and P1451.1.6 standards-
based WANs. Two implementations of time synchronization of
IEEE P1451.0 and P1451.1.6 using wireline and wireless
networks and their preliminary results are provided to verify the
time synchronization approaches of IEEE P1451.1.6. Also, an
example of time synchronization TEDS of P1451.1.6 is
described.

Future work will focus on hardware-assisted technologies to
improve time synchronization uncertainty.

ACKNOWLEDGMENT
The research work on sensors is supported by MEXT/JSPS

KAKENHI Grant (B) Number JP20H02301, and sensor
hardware design is supported JST CREST Grant Number
JPMJCR19K1. The standardization processes are supported
under the commissioned research by the National Institute of
Information and Communications Technology (NICT, Grant
Number 22004).

** Certain commercial products or company names are identified here to
describe our study adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor is it intended to imply that the products or names identified are
necessarily the best available for the purpose.

References
[1] IEEE P1451.0 - Standard for a Smart Transducer Interface for Sensors,

Actuators, Devices, and Systems - Common Functions, Communication
Protocols, and Transducer Electronic Data Sheet (TEDS) Formats,
[Online]. Available: https://standards.ieee.org/project/1451_0.html.

[2] IEEE P21451-1-6 - Standard for a Smart Transducer Interface for
Sensors, Actuators, and Devices - Message Queue Telemetry Transport
(MQTT) for Networked Device Communication, [Online]. Available:
https://standards.ieee.org/project/21451-1-6.html.

[3] Helena Maria Ramos, Pedro M. Ramos, Pavel Paces, Development of a
IEEE 1451 Standard Compliant Smart Transducer Network with Time
Synchronization Protocol, Instrumentation and Measurement,
Technology Conference - IMTC 2007, Warsaw, Poland, May 1-3, 2007.

[4] Darold Wobschall and Yuan Ma, Synchronization of Wireless Sensor
Networks Using a Modified IEEE 1588 Protocol, 2010 IEEE
International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication, Portsmouth, New
Hampshire, Sept. 29 - Oct. 1, 2010,

[5] Marcel DUECK, Mario SCHLOESSER, Stefan van WAASEN, Michael
SCHIEK, Ethernet based time synchronization for Raspberry Pi network
improving network model verification for distributed active turbulent
flow control, Control Theory Tech, Vol. 13, No. 2, pp. 204–210, May
2015.

[6] Network time protocol (NTP), [Online]. Available: http://www.ntp.org/
[7] Precision time protocol (PTP), [Online]. Available:

https://standards.ieee.org/standard/1588-2019.html.
[8] GPS, [Online]. Available: https://www.gps.gov/.
[9] The National Institute of Standards and Technology (NIST)’s WWV,

[Online]. Available: https://www.nist.gov/pml/time-and-frequency-
division/radio-stations/wwv/wwv-and-wwvh-digital-time-code-and-
broadcast.

[10] Adnan Shaout and Brennan Crispin, Using the MQTT Protocol in Real
Time for Synchronizing IoT Device State, The International Arab Journal
of Information Technology, Vol. 15, No. 3A, Special Issue 2018,
[Online]. Available:
https://iajit.org/PDF/Special%20Issue%202018,%20No.%203A/17406.p
df.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on February 22,2022 at 04:25:42 UTC from IEEE Xplore. Restrictions apply.

