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Abstract. The cyberworld being threatened by continuous imposters
needs the development of intelligent methods for identifying threats while
keeping in mind all the constraints that can be encountered. Advanced
Persistent Threats (APT) have become an important national issue as
they secretly steal information over a long period of time. Depending on
the objective, adversaries use different tactics throughout the APT cam-
paign to compromise the systems. Therefore, this kind of attack needs
immediate attention as such attack tactics are hard to detect for being
interleaved with benign activities. Moreover, existing solutions to detect
APT attacks are computationally expensive, since keeping track of every
system behavior is both costly and challenging. In addition, because of
the data imbalance issue that appears due to few malicious events com-
pared to the innumerable benign events in the system, the performance
of the existing detection models is affected. In this work, we propose
novel machine learning (ML) approaches to classify such attack tactics.
More specifically, we convert APT traces into a graph, generate nodes,
and eventually graph embeddings, and classify using ML. For ML, we
use proposed advanced approaches to address class imbalance issues and
compare our approaches with other baseline models and show the effec-
tiveness of our approaches.

Keywords: Advanced Persistent Threat · Online Metric Learning · Data
Imbalance

1 Introduction

Advanced Persistent Threats (APT) are specifically well-known for their mas-
querading characteristics and damaging power. In the recent era of cyber warfare,
it has become a powerful process to systematically damage or conduct espionage
against competitors. Without proper knowledge of what is going on behind the
scenes, e.g. in system-level interactions and operations, these threats can be
disguised for a long time and can remain undetected even after they have com-
pleted their target tasks. Due to the heavy use of computational systems, it is
challenging to keep track of each and every system behavior. Moreover, identi-
fying these types of threatening phenomena is also computationally expensive.
Different stages of APTs have been defined [23] over the span of research in
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recent times. Different attack vectors are used at the beginning of the pene-
tration of the system by the adversarial entities. These different stages can be
achieved by using different tactics. Such tactics have corresponding techniques
which execute the final task for the completion of the goals. For instance, writing
malicious commands to the bash profile and .bashrc system files is a technique
that falls under the ‘Persistence’ tactic from the MITRE [1] framework. Figure
1a illustrates the overall system entity interaction for this technique that shows
any process can use system calls ‘read’ and ‘write’ to access bash profile and
.bashrc system files and eventually write malicious commands to them.

With time, adversarial behavior evolves and so are their ways of compromis-
ing systems. Newly adopted tactics and techniques are continuously chased by
security professionals to make intrusion detection frameworks and other security
ensuring platforms more robust. Nevertheless, APTs are stealthy in nature and
can easily avoid detection [23]. To detect such types of attacks, it is imperative
to obtain low-level system traces to identify suspicious activities in a system.
Take for example the Sykipot attack, in which the attackers targeted U.S. and
U.K. organizations [34]. The attackers used the spear-phishing technique to send
emails that contained malicious contents within. If such malicious content is
clicked, a system can be harmed in ways that the malicious content establishes
a foothold in the system which needs to be immediately tracked down after such
email content has been received or executed. Therefore, these attack events based
on different techniques, such as writing malicious commands in bash profile or
bashrc (system configuration files in Ubuntu), need to be inspected to classify
or identify such phenomena as an attack tactic.

Adversaries use both benign and malicious tools to complete their target
tasks. In both of these use cases, it is important to capture the system behavior
or interaction information in order to detect such event. Collecting logs is a
well-adopted and old technique for ensuring system performance. Nowadays,
it is popular to keep track of system events which are also useful for security
purposes [27]. That is why in recent times, data provenance based detection
of attack campaigns have become very popular [13, 17, 20, 22, 29]. Using system
level raw data which are collected during system operation or interaction with
the system, a meaningful depiction of the whole scenario is represented through
a graph, which is known as a provenance graph [13]. But due to the fact that the
bulk of provenance data is heavy to handle, it is necessary to process the data
in a meaningful and efficient way. Moreover, attacks semantics are not platform
invariant, thus significant domain knowledge is necessary to detect attacks on a
specific platform (e.g. Linux, Windows, macOS). In our approach, we leverage
domain-specific attack knowledge to simultaneously reduce noise from logs and
create multiple versions of the same attack instance trace to incorporate limited
attack traces in the learning process.

In this paper, we propose machine learning-based approaches to classify ad-
versary tactics from provenance graphs. Generally, few tactics do not possess
enough representative techniques which only yield a minority number of prove-
nance graphs for those tactics. As a result, a class imbalance issue may emerge
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(a) Sample Provenance Graph for a
Technique under ‘Persistence’ Tactic

(b) Sample Log and Generated Prove-
nance Graph

Fig. 1: Provenance Graphs

which weakens the performance of the learning model. We propose novel ma-
chine learning algorithms to efficaciously alleviate the class imbalance problem.
To classify tactic, we first convert APT traces into a graph, and then using
GraphSAGE [12], we generate node and eventually graph embeddings which
will be treated as instances to train the machine learning models. Finally, we
perform the prediction using advanced approaches to address the class imbal-
ance issue. We compare our approaches with other baseline models and show
the effectiveness of our approach. To the best of our knowledge, this is the first
known approach to address class imbalance issue in identifying tactics of APT
and to limit the attack traces for computational ease well before a provenance
graph is generated.

To summarize, in this paper, we propose the following contributions.

– We identify different tactics using advanced machine learning models, e.g. Set-
Conv [10] which is defined in section 4.2 and OAML [9] which is defined in section
4.1, to address class imbalance issue, and show the superiority of these models over
the baseline models.

– We address the problem of overlapping common noisy system interaction behavior
in different attack traces and process those traces to build a robust model.

– We propose to incorporate domain knowledge in attack trace processing which
eventually produces different versions of attack traces.

The paper is organized as follows. Section 2 presents some background on MITRE
framework and GraphSAGE. Section 3 talks about the data collection in details, and
how the collected data is converted to graph. Section 4 provides the details of our ma-
chine learning models. Section 5 explains the experimental setup in detail and discusses
the results. Finally, section 6 presents related work and concludes our work.

2 Background

2.1 MITRE ATT&CK Framework
In recent years, several frameworks have been proposed to evaluate the defense of
existing systems against adversarial cyberattacks. Some such notable frameworks for
attack detection and trace collection are Red Team Automation (RTA) [8], Metta,
CALDERA [4], and Atomic Red Team [2]. MITRE ATT&CK framework provides a
knowledge base of threat models and practices by investigating real-world scenarios of
different adversarial behavior. It provides an adversary tactic and technique taxonomy
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that could be utilized to assess a system’s threat detection, response mechanism, and
risk calculation and hence improve the effectiveness of cybersecurity solutions.

The framework contains a comprehensive matrix of tactics and techniques for multi-
ple platforms. Some of the tactics are Defense Evasion, Discovery, Persistence, Privilege
Escalation, Reconnaissance, and so on. Each of the tactics contains a list of techniques
that refer to the method or type of attack. For instance, the Privilege Escalation tactic
includes techniques such as Access Token Manipulation, Hijack Execution Flow, Pro-
cess Injection, and the like. Each technique contains information on how to deploy the
attack such as required platforms, required permissions, defenses bypassed, etc., and
how to detect attacks from processes and mitigate the attacks with different strategies.
The attack payloads are defined as TTP (Techniques, Tactics, & Procedures) and are
numerically followed by mostly four digits to point to a specific type of technique. For
example, T1046 refers to the attack or vulnerability technique named Network Service
Scanning from the Discovery tactic class.

Moreover, each technique includes sub-techniques that explain different methods
to implement that particular technique. For example, T1136 (i.e., Create Account)
technique falls under the tactic class ‘Persistence’. To maintain access to the victim
system, adversaries may create accounts in the local system, within a domain, or in the
cloud. Therefore, the technique T1136 contains sub-techniques Local Account, Domain
Account, and Cloud Account. Thus all the sub-techniques under this TTP generate
instances for the tactic ‘Persistence’ since they correspond to the same tactic class that
the technique belongs to.

The Atomic Red Team framework supplies a collection of scripts for detection tests
of certain attack techniques mapped to the MITRE ATT&CK Framework. It consists
of the techniques and sub-techniques for the TTPs to be executed in Linux, Windows,
or the macOS platform. In this paper, we incorporate the definition of the TTPs from
the MITRE ATT&CK framework and emulate the attacks using Atomic Red Team’s
framework.

2.2 Graph Embedding and GraphSAGE

Graph embedding has become a well-known approach as graphs are adopted as a very
popular data structure in different types of problem domains, such as protein-protein
interaction systems, supply chains, knowledge graphs, social-network, and so on. A
graph is a pair G = (V, E) where V is a set whose elements are called vertices, and
E is a set of paired vertices, whose elements are called edges. A neural network ar-
chitecture that operates on graph structures is known as the Graph Neural Network
(GNN). Generally, GNNs are used for node classification purposes; that is, every node
of the graph is assigned some features and a label and the GNN predicts the labels
of the unseen nodes by leveraging the seen node information within a neighborhood.
GNNs propose to address the challenging forecasting problem including both spatial
and temporal dependencies and its recent advances greatly boost the ability of mod-
eling data from the non-Euclidean space such as the graph structures [19]. Inspired
by the mechanism of message passing in a graph, a variant of GNN known as Graph
Convolutional Networks (GCN) is proposed that aggregates up to the n-hop spatial
neighborhood to each location in the data.

In recent years, many algorithms for learning node representations of graphs have
been proposed such as DeepWalk [30] and GraphSAGE [12]. GraphSAGE leverages
graph structure to produce node embeddings in an inductive way. That is, GraphSAGE
trains aggregator functions that aggregate a node’s neighborhood rather than directly
embedding vectors of nodes individually. This strategy makes it easy to generalize to
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Fig. 2: System Architecture

unseen nodes given their features and neighborhood and avoids re-training the model
for new nodes. The n-hop is used for controlling the coverage range of aggregation
functions from selected neighbors. GraphSAGE is most appropriate for dynamic graphs,
where the structure of the graph is always growing or changing. In this paper, we
leverage GraphSAGE to generate node embeddings of the provenance graphs, which is
then used with a global aggregator (which is usually permutation and order invariant)
to generate a single graph embedding for the overall graph.

3 Architecture & Approach
The overall architecture of our system is illustrated in Figure 2 and the approach can
be summarized as given in the Algorithm 1. First, we execute the attack payloads in
the victim’s host network (more details can be found at subsection 3.1). Second, we
capture the provenance information (i.e., logs) against the deployed attacks. Third, we
generate provenance graphs from the captured logs (lines 1-2 of Algorithm 1). Fourth,
we encode the provenance graphs using GraphSAGE (line 3 of Algorithm 1; more
details can be found at subsection 3.2) and use aggregator followed by it to generate
a single vector embedding for each graph (line 4 of Algorithm 1). Finally, we classify
the events using both OAML [9] and SetConv [10] for detecting the output event type
(lines 5-7 of Algorithm 1; more details about these models are provided in section 4).

Algorithm 1: Steps of our Overall Approach

Input: Graph
Output: Label for the Graph as ‘Benign’ or of any of the Tactics

1 Take raw log as input
2 Generate provenance graph from the log
3 Using GraphSAGE, generate the embedding for the overall graph
4 Using Aggregator, generate a single vector space embedding for each graph
5 Split the graphs into train and test set
6 Train the Machine Learning algorithms (Baseline Models including ‘SetConv’

and ‘OAML’) using the training set and test the models on the test set
7 Analyze the performance of the models

3.1 Data Collection

3.1.1 Attack Generation As discussed in section 2.1, MITRE ATT&CK frame-
work provides a knowledge base of tactics and techniques generated from actual obser-
vations of adversarial behavior. Moreover, the Atomic Red Team provides a library that
can be leveraged to execute disparate adversarial attacks that follow the tactic/tech-
nique taxonomy of MITRE ATT&CK framework to test system robustness against
cyberattacks. Therefore, to emulate attacks in the victim’s host network in our work,
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we exploit the attacks defined in the MITRE ATT&CK framework and execute them
with the help of the Atomic Red Team framework.

3.1.2 Provenance Graph Generation After the execution of attack payloads,
we collect the log data of the attack traces that resembles the data provenance of the
machine activities. To collect the log data, we use Sysdig, which is a system monitoring
service. An example of the captured log data is represented in Figure 1b. Next, we gen-
erate the provenance graphs from these captured logs by using Apache TinkerPop [35].
In the graph generation procedure, we follow a set of rules to achieve limited attack
traces as well as ensure removal of noise from the logs (more details in section 5.1.2).
We write the rules with Groovy and execute these Groovy scripts using the Gremlin
Console, which is a terminal that allows users to create and traverse graphs with the
Apache TinkerPop. Later, the generated graphs are streamed to the graph visualiza-
tion tool Gephi [11], which allows us to import a graph’s nodes and edges as separate
CSV files. These CSVs are then used to create our final provenance graphs.

We first convert the different versions of the logs to provenance graphs. A very
generic definition of such provenance graphs would be to include only the processes,
files, and sockets as nodes of the graph. But we also incorporate the different system
calls and how different processes make use of those different system calls into the
graph. For file-level nodes, read and write type system calls are emphasized, whereas
for network-level nodes special types of network-level system calls are handled such as
socket, connect, and bind.

To generate the edges in the graph, we connect the nodes in the following ways:
a process node responsible for a system call is connected by an edge with the system
call node; a process node is connected by an edge with a filepath node if that process
accesses that filepath; a filepath node is connected by an edge with a system call node
if that system call node is either read or write type and thus is used for accessing
that filepath by the process. A glimpse of the generated provenance graph is shown in
Figure 1b.

It is crucial to incorporate the edge weights in the graph as well. For this purpose,
we identify attack trace windows using the start and end of events ( using > and <
symbols) from the field Event Direction of the log data. Then, we extract how many
bytes are read or written for corresponding read and write system calls from the Event
Arguments field of the log data for that trace window. The calculated byte amounts
are then used as edge weights in the provenance graphs.

3.2 Graph Embedding using GraphSAGE

From the provenance graphs, we need to create suitable representations that we can
feed into the machine learning models for classification. As discussed in section 2.2, we
can utilize GraphSAGE to generate node embeddings of graphs. Although, in our work,
we need graph embeddings rather than node embeddings. Therefore, we implement a
global aggregator following the original GraphSAGE to create graph embeddings. That
is, after the GraphSAGE creates node embeddings of a graph, these node embeddings
are feed into the global aggregator that generates a single graph vector embedding for
the whole graph. This aggregator could be permutation and order invariant.

Because of the supervised learning setting, we also need the embedding encoder to
be trainable using labels. Therefore, we use a very simple neural network following the
graph encoder. After the encoder training phase, we discard the simple neural network
and keep the encoder only for following training phases and testing. Therefore, we
can produce valuable embeddings from the generated provenance graphs for the given
classification task.
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4 Models

Supervised learning is utilized to incrementally learn from the data. For supervised
learning, we learn accurate models by leveraging attack and benign data, which are
initially gleaned from benign data, synthetic attacks and existing APT attack traces,
and later from live attack detection for detecting the novel type of APT attack. We
adopt two models from our previous works to be the classifiers, which are OAML [9] and
SetConv [10]. The details of these two algorithms are in the Section 4.1 and Section 4.2.

4.1 Online Metric Learning

Online Metric Learning (OML) or otherwise said, Online Adaptive Metric Learning
(OAML) [9] is based on a deep learning architecture that transforms an instance feature
from an original feature space to a latent feature space. By transforming to a latent
feature space, the metric distance between dissimilar instances is increased and distance
between similar classes is reduced. The work leverages methods which use pairwise
and triplet constraints. Our OAML method learns a non-linear similarity metric unlike
others which use a pre-selected linear metric (e.g., Mahalanobis distance [36]). Our
OAML method overcomes bias to a specific dataset by using an adaptive learning
method. Our OAML leverages neural networks where the hidden layer output is passed
to an independent metric-embedding layer (MEL). The MELs then generates an n-
dimensional embedding vector as output in different latent space.

Problem Setting Let S = {(xt, x+t , x−t )}Tt=1 be a sequence of triplet constraints
sampled from the data, where {xt, x+t , x−t } ∈ Rd, and xt (anchor) are similar to x+t
(positive) but dissimilar to x−t (negative) (see Figure 3). The goal of online adaptive

metric learning is to learn a model F : Rd 7→ Rd
′

such that ||F (xt) − F (x+t )||2 �
||F (xt) − F (x−t )||2. Given these parameters, the objective is to learn a metric model
with adaptive complexity while satisfying the constraints. The complexity of F must
be adaptive so that its hypothesis space is automatically modified.

Fig. 3: Data instance before applying OML (left) and data instance after projec-
tion using OML (right).

Overview Consider a neural network with L hidden layers, where the input layer
and the hidden layer are connected to an independent MEL. Each embedding layer
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learns a latent space where similar instances are clustered and dissimilar instances are
separated.

Figure 4 illustrates our Artificial Neural Network (ANN). E` ∈ {E0, . . . , EL} denote
the `th metric model in OAML (i.e., the network branch from the input layer to the
`th MEL). The simplest OAML model E0 represents a linear transformation from the
input feature space to the metric embedding space. A weight α(`) ∈ [0, 1] is assigned
to E`, measuring its importance in OAML.

At time t, the metric embedding f (`)(x∗t ) of an arrived triplet constraint (xt, x
+
t , x

−
t )

generated by E` is
f (`)(x∗t ) = h(`)Θ(`) (1)

where h(`) = σ(W (`)h(`−1)), with ` ≥ 1, ` ∈ N, and h(0) = x∗t . We use x∗t to denote
a anchor (xt). It might be positive (x+t ), or negative (x−t ) instance. For the activation
of the `th hidden layer, we use h(`) to denote. To reduce the search space and accel-
erate training, we limit theLearned metric embedding f (`)(x∗t ) to a unit sphere (i.e.,
||f (`)(x∗t )||2 = 1)

In the training step, for every arriving triplet (xt, x
+
t , x

−
t ), we first retrieve the

metric embedding f (`)(x∗t ) from the `th metric model using Eq. 1. A local loss L(`) for
E` is evaluated by calculating the similarity and dissimilarity errors based on f (`)(x∗t ).
Thus, the overall loss is defined by following:

Loverall(xt, x
+
t , x

−
t ) =

L∑
`=0

α(`) · L(`)(xt, x
+
t , x

−
t ) (2)

L( 0
)

E1

E2

L0

L0 L1

Constraint Stream Adaptive Metric Network Loss

Total
Loss

Hedge

Hedge

Hedge

E0

L( 1
)

L( 2
)

α0

α1

α2

Fig. 4: OAML network structure consists of Li linear layer and Embedding layers
Ei layer.

Parameters Θ(`), α(`), and W (`) are learned during the online learning phase. The
final optimization problem to solve in OAML at time t is therefore:

minimize
Θ(`),W (`),α(`)

Loverall

subject to ||f (`)(x∗t )||2 = 1, ∀` = 0, . . . , L.
(3)
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We evaluate the similarity and dissimilarity errors using an adaptive-bound triplet loss
(ABTL) constraint [9] to estimate L(`) and update parameters Θ(`), W (`) and α(`).

(a)

(b) (c)

Fig. 5: Overview of the proposed approach. (a) The training procedure of Set-
Conv. At each iteration, SetConv is fed with an episode to evaluate the classifi-
cation loss for model update. Each episode consists of a support set and a query
set. The support set is formed by a group of samples where the imbalance ratio is
preserved. The query set contains only one sample from each class. (b) The post
training step of SetConv, which is performed only once after the main training
procedure. In this step, we extract a representative for each class from the train-
ing data and later use them for inference. Here we only perform inference using
the trained model and do not update it. (c) The inference procedure of SetConv.
Each query data is compared with every class representative to determine its
label.

4.2 SetConv: A New Approach for Learning from Imbalanced Data

Machine Learning method finds its use in broad domains of applications. However,
when the data Imbalance Ratio (IR) is high, most existing machine learning methods
are biased towards the majority class and their performance deteriorates seriously. We
use the set convolution (SetConv) [10] operation and a new training strategy named
as episodic training to assist learning from imbalanced class distributions. SetConv is
designed to alleviate the class imbalance by explicitly learning the weights of convolu-
tion kernels based on the intra-class and inter-class correlations, and uses the learned



10 F. Author et al.

kernels to extract a single representative for each class. Thus, the subsequent classi-
fier, which takes these class representatives as input, always perceives a balanced class
distribution. As a naturally permutation-invariant operation, SetConv guarantees the
uniqueness of the learned class representatives despite the order of input samples.

As shown in Fig. 5a, our model is composed of a SetConv layer and a classification
layer. For simplicity, we first consider a binary classification problem and later extend
it to the multi-class scenario. At each iteration during training, the model is fed with an
episode sampled from the training data, which is composed of a support set and a query
set. The support set preserves the imbalance ratio of training data, and the query set
contains only one sample from each class. Once the SetConv layer receives an episode,
it extracts features for every sample in the episode and produces a representative for
each class in the support set. Then, each sample in the query set is compared with
these class representatives in classification layer to determine its label and evaluate
the classification loss for model update. We refer this training procedure as episodic
training.

After training, a post training step is performed only once to extract a representa-
tive for each class from the training data, which later be used for inference (Fig. 5b). It
is conducted by randomly sampling a large subset of training data (referred as Spost)
and feeding them to the SetConv layer. Note that we only perform inference using the
trained model and do not update it in this step. We can conduct this operation because
the SetConv layer has learned to capture the class concepts, which are insensitive to
the episode configuration during training.

The inference procedure of the proposed approach is straightforward (Fig. 5c). For
each query sample, we extract its feature via the SetConv layer and then compare it
with those class representatives obtained in post training step. The class that is most
similar to the query is assigned as the predicted label.

4.2.1 SetConv Layer In many real-world applications, the minority class in-
stances often carry important and useful knowledge that need intensive attention by
the machine learning models [6, 16, 33]. Based on this prior knowledge, we choose to
design the SetConv layer in a way such that the feature extraction process focuses
on the minority class. We achieve it by estimating the weights of the SetConv layer
based on the relation between the input samples and a pre-selected minority class an-
chor. This anchor can be freely determined by the user. We adopt a simple option,
i.e., average-pooling of the minority class samples. As shown in Figure 6, this weight
estimation method assists the SetConv layer in capturing not only the intra-class cor-
relation of the minority class, but also the inter-class correlation between the majority
and minority classes.

Suppose Et = {St,Qt} is the episode sent to the SetConv layer at iteration t,
where St =

(
Xmaj ∈ RN1×d, Xmin ∈ RN2×d

)
is the support set and Qt =

(
qmaj ∈

R1×d, qmin ∈ R1×d) is the query set. In general, Xmaj , Xmin, qmaj and qmin can
be considered as a sample set of size N1, N2, 1 and 1 respectively. For simplicity, we
abstract this sample set intoX ∈ RN×d, N ∈ {N1, N2, 1}. We define the set convolution
(SetConv) operation as:

h[Y ] =
1

N

N∑
i=1

Xi · g(Y −Xi)

=
1

N

(
X ◦ g(Y −X)

) (4)
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Fig. 6: Relations between the input samples and a pre-selected minority class
anchor are used by SetConv to estimate both intra-class correlations and inter-
class correlations.

Fig. 7: The computation graph of the SetConv layer. Here Y is a minority class
anchor. W ∈ Rd×do is a weight matrix to learn that records the correlation
between the input and output variables. Specifically, the ith column of g2(W )
gives the weight distribution over input features for the ith output feature. It is
indeed a feature-level attention matrix. In addition, we estimate another data-
sensitive weight matrix g1(Y − X) from the input data. The final convolution
weight tensor is simply the Khatri-Rao product of g1(Y −X) and g2(W ).
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where Y ∈ R1×d, g(Y −X) ∈ RN×d×do and h[Y ] ∈ R1×do denote the minority class
anchor, kernel weights and the output embedding respectively. Here, ◦ is the tensor
dot product operator, i.e., for every i ∈ {1, 2, . . . , do}, we compute the dot product of
X and g(Y −X)[:, :, i].

Unfortunately, directly learning g(Y −X) is memory intensive and computationally
expensive, especially for large-scale high-dimensional data. To overcome this issue, we
introduce an efficient method to approximate these kernel weights. Instead of taking
X as a set of d-dimensional samples, we stack these samples and consider it as a giant
dummy sample X ′ = Concat(X) ∈ R1×Nd. Then, Eq. 4 is rewritten as

h[Y ] =
1

N

(
X ′ · g′(Y −X)

)
(5)

where g′(Y −X) ∈ RNd×do is the transformed kernel weights. To efficiently compute
g′(Y − X), we propose to approximate it as the Khatri-Rao product3 [31] of two
individual components, i.e.,

g′(Y −X) = g1(Y −X) ~ g2(W )

= MLP(Y −X; θ) ~ SoftMax(W, 0)
(6)

where W ∈ Rd×do is a weight matrix that represents the correlation between input and
output variables. g2(W ) takes softmax over the first dimension of W , and is indeed a
feature-level attention matrix. The ith column of g2(W ) provides the weight distribution
over input features for the ith output feature. On the other hand, g1(Y − X) is a
data-sensitive weight matrix estimated from input data via a Multilayer Perceptron
(MLP) by considering their relation to the minority class anchor. Similar to data-level
attention, g1(Y − X) helps the model customize the feature extraction process for
input samples, which potentially improves the model performance. Figure 7 shows the
detailed computation graph of the SetConv layer.

4.2.2 Classification Suppose the feature representation obtained from the layer
for Xmaj , Xmin, qmaj and qmin in the episode are denoted by vsmaj , v

s
min, vqmaj and

vqmin respectively. The probability of predicting vqmaj or vqmin as the majority class is
given by

P (c = 0|x) =
exp(x� vsmaj)

exp(x� vsmaj) + exp(x� vsmin)
(7)

where � represents the dot product operation and x ∈ {vqmaj , v
q
min}.

Similarly, the probability of predicting vqmaj or vqmin as the minority class is

P (c = 1|x) =
exp(x� vsmin)

exp(x� vsmaj) + exp(x� vsmin)
(8)

where x ∈ {vqmaj , v
q
min}.

We adopt the well-known cross-entropy loss for error estimation and use the Adam
optimizer to update model.

4.2.3 Extension to Multi-Class Scenario Extending SetConv for multi-class
imbalance learning is straightforward. We translate the multi-class classification prob-
lem into multiple binary classification problems, i.e., we create a one-vs-all classifier
for each of the N classes. Specifically, for a class c, we treat those instances with la-
bel y = c as positive and those with y 6= c as negative. The anchor is hence computed

3 https://en.wikipedia.org/wiki/Kronecker product
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based on the smaller one of the positive and negative classes. The prediction probability
P (y = c|x) for a given instance x is computed in a similar way as Eq. 7,

P (y = c|x) =
exp(x� vsy=c)

exp(x� vsy 6=c) + exp(x� vsy=c)
(9)

Therefore, the predicted label of the instance x is argmaxcP (y = c|x).

5 Experiments
5.1 Experiment Setting

5.1.1 Dataset In our experiments, we use two datasets to evaluate our approach
in the paper: DAPT 2020 [24] and the Graph dataset that we collect following the
procedure described in section 3.

DAPT 2020 is an APT dataset, which covers all attack stages of different aspects
of the real-world APT. In this dataset, a total of 4 different APT phases are involved.
Hence, it contains 5 different classes including the benign class. Although, two APT
phases, which are the lateral movement and data exfiltration, only contain 6 and 4
malicious instances, respectively. Therefore, we discard these two classes, since their
malicious instances only constitute 0.1 % and 0.23 % of the total instances, respectively.
We run our experiments on the rest of the data with the other 3 classes. Table 1 shows
the statistic information of the DAPT 2020 dataset, including the number of instances
in each file and the percentages of malicious instances.

Graph Dataset includes different variations. It contains the graph embeddings
generated from the collected original unmodified logs. Based on the original log file,
three variations are constructed after filtering each log file leveraging the domain knowl-
edge (filtering procedure is described in section 5.1.2). This procedure extracts 1) one-
third, 2) half and 3) two-third of the whole log file. The graph embeddings of these log
variations are then generated and included with the graph embeddings of the original
log files to make the entire graph dataset. This is how we achieve limited attack traces
for each log executed against the techniques.

Table 2 provides the Graph dataset statistics. We have one benign tactic and the
other nine being malicious tactics totaling ten classes. It is evident from the number
of instances for each class that this dataset is imbalanced.

5.1.2 Filtration of Logs For the filtering of logs, first, we generate keywords for
each of the TTP that specify the TTP characteristics. For example, the attack payload
T1546 accesses the bash profile or .bashrc system files and eventually read or write
them. Therefore, some keywords for T1546 would be bash profile, bashrc, open, write,
dup, etc. Some sample keywords for some select TTPs are provided in Table 3. Thus
leveraging domain knowledge, we generate a large number of keywords for each of the
TTP which are considered constituents of a whole sentence. We define this sentence
as the Base Sentence and use it to filter the logs. We consider each of the log lines as
an individual sentence by taking three specific columns in the log file namely: process
name, filepath, and system call. We generate sentence embeddings for every log line as
well as the Base Sentence using the Universal Sentence Encoder [5]. Next, we calculate
the sentence similarity score between each of the sentences generated from the log lines
and the Base Sentence. We then sort the similarity scores and based on the sorted
results, four different copies of each log file are generated. The schematic depiction of
this whole process is provided in figure 8.

This filtration not only allows to generate graph instances with limited attack
traces but also removes noise from the logs as we eliminate the part of logs that are
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Fig. 8: Generating Different Version of Logs

less related to the particulars of some attack. The log lines which are not necessarily
critical to some attack are discarded as the similarity scores are calculated against the
Base Sentences which is generated using keywords crucial to the attack techniques.

Table 1: DAPT 2020 Dataset Statistics
File Name Total No. Malicious No. Benign No. Malicious % Benign %

custom reconnaissance.csv 29254 4405 24849 15.06% 84.94%

custom foothold.csv 17486 8632 8854 50.63% 49.37%

custom lateralmovement.csv 4051 4 4047 0.1% 99.9%

custom dataexf.csv 2617 6 2611 0.23% 99.77%

All Files 53408 13047 40361 24.43% 75.57%

First Two Files 46740 13037 33703 27.89% 72.11%

Table 2: Graph Dataset Statistics - Benign class is the 10th class
Class 0 1 2 3 4 5 6 7 8 9 10 Total

Number 32 16 84 44 476 16 16 32 112 124 408 1360

Percentage 2.35% 1.18% 6.18% 3.24% 35% 1.18% 1.18% 2.35% 8.24% 9.12% 30% 100%

Table 3: Example Keyword Collection for TTPs

TTPs Keywords

T1546 bash profile bashrc open write dup

T1485 dd dev zero var log syslog open read write

T1529 shutdown reboot halt poweroff writev

T1049 access var run utmpx netstat who

T1148 HIST CONTROL echo export whoami

5.1.3 Baseline We compare our algorithm with several traditional and state-of-
the-art ML-based models for evaluation. For traditional ML-based methods, we utilize
Decision Tree and Support Vector Machine. We briefly discuss the other utilized state-
of-the-art models here.

EasyEnsemble [21] is an algorithm based on ensemble and under sampling. The
random under sampling method is used to produce balanced bootstrap samples. Then,
it utilizes AdaBoost learners to get a final ensemble model.

Multilayer Perceptron (MLP) [15] is a feedforward Artificial Neural Network
(ANN). It comprises multiple layers, and each layer contains a number of perceptrons.
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Being a widely used model in the machine learning area, MLP shows competitive
performance in many different practical applications.

KMeans-SMOTE [7] is a oversampling method to relieve the class imbalance
problem. This method is based on kmeans clustering algorithm and SMOTE over
sampling. The major advantage is generating effective instance avoided noise. We use
a Support Vector Machine (SVM) to be a classifier after oversampling. We also use
SVM itself to be a baseline. In both two settings, we use polynomial kernel in the SVM
classifiers.
5.1.4 Evaluation Metric There are many different metrics to evaluate classifi-
cation problems like accuracy. For binary classification, precision, recall, and F1 score
are very popular metrics to evaluate the performance of a model. However, they are
not a credible metric for multi-class classification problems, although there exist vari-
ants of these metrics to deal with such problems. For a given class c, we have True
Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). The
precision (P), recall (R), and F1 score (F1) are defined by following:

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

F1 =
2× Precision×Recall
Precision+Recall

(12)

Then, we choose the the Macro Averaging variants to evaluate multi-class classification
problems.

Pmacro =
1

m

m∑
i=1

Pi (13)

Rmacro =
1

m

m∑
i=1

Ri (14)

F1Macro =
2× Pmacro ×Rmacro
Pmacro +Rmacro

(15)

where m is the number of classes. The macro averaging uses the same weight to every
class even the instance numbers are imbalanced among different classes.
5.1.5 Experiment Setup For DAPT 2020 and graph datasets, we design differ-
ent setups to run the experiments due to different data structures. For DAPT 2020,
we utilize the embedding method from the original paper [24]. Then, we normalize the
feature vectors as the ranges of different features are very different. Because most of the
algorithms are designed for taking feature vectors to be the inputs, graph data is hard
to feed in these models directly. To solve this problem, we have two phases to train
and predict data in graph format. The first phase is the embedding encoder. We utilize
GraphSAGE [12] to convert the data from graphs to their feature embeddings. Second,
we train a GraphSAGE model with GCN [19] to be the aggregator, and it produces
node embeddings. The feature embedding of a given graph is the average value of its
node embeddings. Third, we concatenate the GraphSAGE model with a simple MLP
model to train with the training set. Finally, we discard the simple MLP part and use
the intermediate output (graph embedding from GraphSAGE) to encode training and
testing datasets for future works.

The imbalance of datasets is a general property in the cybersecurity scenario. Al-
though some of the methods are designed to handle this problem, the embedding
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encoder still suffers from this problem because they are separate phases. Therefore,
we design two different experiment setups. The first one keeps the same ratios among
classes to train an encoder. Next, the dataset is balanced by re-sampling. An embed-
ding encoder is trained based on the balanced dataset. Then, the training and testing
datasets are encoded by the encoder, but it remains original inter-class instance ratios.
In this way, the feature embeddings are more robust, and the evaluation focuses more
on the following classifier rather than the encoder.
5.2 Result
In this subsection, we briefly discuss and compare the experimental results for both
dataset.

5.2.1 Graph Dataset The experiment results of the graph dataset are shown in
Table 4 and Table 5. Table 4 shows the results when embedding encoder is trained
without re-sampling and Table 5 shows the performances of models when embedding
encoder is trained with re-sampling.

It is apparent from the Table 4 that SetConv achieves the best result compared
to other methods in terms of the macro accuracy, precision, recall, and F1 score with
0.9228, 0.8022, 0.7163, and 0.7161 values, respectively. KMeans-SMOTE achieves an
impressive accuracy of 0.9007, although it shows lower performance for other metrics
with macro precision, recall, and F1 score of 0.7022, 0.7047, and 0.6894, respectively.
Due to the data imbalance influence, OAHU shows substandard results. The accuracy
is 0.8732 and the macro precision, recall, and F1 score are 0.674, 0.6448, and 0.6528,
respectively. Overall, SetConv is better than other models under this experimental
setup.

If we use a better embedding encoder (with re-sampling), absolute performances of
every model are improved, but the relative performances do not exhibit much changes,
as shown in Table 5. SetConv demonstrates that it exceeds other methods in terms
of performance no matter which experiment setup is adopted. It achieves an accuracy
of 0.9449 and obtains scores of 0.9674, 0.9196, and 0.9406 for macro precision, recall,
and F1 score, respectively. MLP and KMeans-SMOTE still produce reasonable per-
formances. On the other hand, the EasyEnsemble displays relatively low performance
with an accuracy of just 0.864, and the macro precision, recall, and F1 score of 0.9047,
0.8479, and 0.8602, respectively.

Table 4: Results for the Graph dataset
Feature embedding encoder is trained without re-sampling method

DecisionTree SVM KmeansSMOTE EasyEnsemble MLP OAHU SetConv

Accuracy 0.8971 0.9136 0.9007 0.8088 0.8915 0.8732 0.9228

Macro Precision 0.633 0.6162 0.7022 0.5475 0.4881 0.674 0.8022

Macro Recall 0.6265 0.6212 0.7047 0.5617 0.5302 0.6448 0.7163

Macro F1 0.6292 0.6174 0.6894 0.526 0.5058 0.6528 0.7161

Table 5: Results for the graph dataset
Feature embedding encoder is trained with re-sampling method

DecisionTree SVM KmeansSMOTE EasyEnsemble MLP OAHU SetConv

Accuracy 0.9136 0.9063 0.9283 0.864 0.9357 0.8382 0.9449

Macro Precision 0.9305 0.9576 0.9149 0.9047 0.9638 0.7346 0.9674

Macro Recall 0.9076 0.8515 0.9511 0.8479 0.9182 0.7923 0.9196

Macro F1 0.9171 0.8963 0.9281 0.8602 0.9357 0.7488 0.9406
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5.2.2 DAPT 2020 In these experiments, we discard the severe imbalance classes.
The dataset has few classes as compared to the graph dataset and easier to classify. As a
result, most of the algorithms exhibit good performances on this dataset, as represented
in Table 6. Even OAHU does not have a strong design for an imbalanced dataset, yet
it achieves competitive performance with an accuracy of 0.9633. EasyEnsemble also
shows a strong performance in this experiment setup, but SetConv slightly performs
better than most of the algorithms with an accuracy of 0.986, and the macro precision,
recall, and F1 score of 0.9779, 0.98, and 0.9789, respectively.

Table 6: Results for the DAPT 2020 dataset
DecisionTree SVM KmeansSMOTE EasyEnsemble MLP OAHU SetConv

Accuracy 0.9988 0.9795 0.9721 0.8688 0.9583 0.9633 0.986

Macro Precision 0.9983 0.9659 0.9507 0.9415 0.9467 0.9429 0.9779

Macro Recall 0.999 0.9751 0.9667 0.7632 0.896 0.9643 0.98

Macro F1 0.9987 0.9704 0.9585 0.7897 0.9169 0.9531 0.9789

6 Related Works

There have been several works that exploit TTPs from the MITRE ATT&CK matrix
to identify the tactics and stages of an APT attack. One such work is the RapSheet [14]
that makes use of the rule matching capability of an endpoint detection response (EDR)
tool to discover TTPs in system logs. From there, they build provenance graph, named
initial infection point (IIP) provenance graph, that highlights the threat alerts discov-
ered by the EDR tool. A tactical provenance graph is then generated that contains
only the alerts, and a threat score is assigned to the graph. In our work, we attempt
to identify different tactics of an APT attack through the use of TTPs, rather than
an entire APT attack. Furthermore, we propose a method for identifying TTPs rather
than relying on an EDR (Endpoint Detection and Response) tool. In addition, our
approach does not rely on manually set rules in an EDR tool for discovering TTPs in
system logs.
Holmes [23] generates a high-level compact graph to summarize ongoing attack cam-
paign. The key technique is to map activities from the host logs which corresponds to
the kill chain. Contrary to that, our approach focuses on cropped or trimmed parts of
a system level log or scenario to identify the tactics. In a real time setting, the window
for capturing provenance might shift in an unwanted way, which could result in missing
information that can lead to false identification or no identification of attack tactics.
Our approach shows that we can detect specific attack tactics with cropped provenance
capture. Our approach also differs from this work in that it does not need a rule-based
scheme to generate high-level scenario (HSG) graphs to map low-level activities to
high-level attack tactics; rather it utilizes simple domain knowledge to learn a robust
model and identify attack tactics. As such, the extension of our model is simple and
easy with new evolving tactics and techniques.
Unicorn [13] generates a fixed sized graph sketch periodically through building a run-
time in-memory histogram in a sequential process. It needs to process the graph se-
quentially to extract crucial information about an attack campaign. Ayoade et. al. [3]
propose an approach that adopts a provenance capture-based approach to detect dif-
ferent versions or parts of advanced persistent threats. To capture provenance, they use
the Camflow [26] and CamQuery [28] tool. The limitation of their approach is that the
data collection is limited in platform and also the provenance definition is not compat-
ible with the notion of graph embedding for generating data instances. Our approach
addresses this problem and also works on identifying different tactics of an advanced
persistent threat attack campaign.
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Sheyner et al. [32] introduce an automated way of generating attack graphs using sym-
bolic model checking algorithms. In another work [18], a backtracking technique is used
to identify processes and files which may have an impact on the detection point. This
approach attempts to find out the chain of events which essentially leads to the intru-
sion from the entry point. Our approach adopts simple steps for generating provenance
graph without any necessity of backtracking and generates data instances which are
used for training the machine learning models.

Harmful Episode Reconstruction by Correlating Unsuspicious Logged Events (HER-
CULE) [29] uses multiple log in the system to generate a multi-dimensional weighted
graph to run community detection algorithm on it. It is built on the observation of
attack related log entries being heavily and densely connected. Our system only uses a
single source log to identify different APT tactics which might or might not be inter-
leaved with benign traces. Made: Security analytics for enter-prise threat detection [25]
detects new malicious activities in enterprise networks and for addressing the issue of
large data, they adopt a filtration process on the network communications data. But
as this approach only attempts to see the start of a whole attack, e.g. detection of
malicious domains which can cause the system to be compromised at the first place, it
cannot detect whether a system has already been compromised and is in any interme-
diary tactical phase of an APT campaign.

7 Conclusion & Future Work

Our work mainly focuses on identifying different tactics of Advanced Persistent Threat
based on logs that are reduced to make noise free, which also yields limited attack traces
for such identification. Our approach generates single vector space embedding for each
of the graphs necessary for supervised training setting of machine learning models.
The data imbalance being prominently present in the Graph dataset, SetConv method
performs well in handling this issue compared to other machine learning methods.

In the future, we plan to explore our approach for windows-based attacks. In addi-
tion, we plan to devise techniques to map appropriate responses to alerts of different
attack tactics for the ease of system monitoring. To address the cropping or trimming
problem of important provenance graphs (or otherwise said, important part of host
logs), our future endeavor would be to incorporate a shifting window-based approach
to accommodate crucial aspects of an attack into consideration while detecting an at-
tack. Moreover, our future work will focus on incorporating diversified attribution of
a graphical depiction into the embedding scheme so that the learning process can be
aided for machine learning models.

Our approach can also detect novel attacks if the filtration of the logs is performed
based on the common ‘keywords’ for all the attacks. More specifically, the log lines
related to common system calls for each of the Linux commands can be discarded and
from those filtered logs, provenance graphs can be generated. We intend to apply our
approach to identify novel techniques under the tactics in the future.

Disclaimer Commercial products are identified in order to adequately specify
certain procedures. In no case does such identification imply recommendation or en-
dorsement by the National Institute of Standards and Technology, nor does it imply
that the identified products are necessarily the best available for the purpose.
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