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Abstract
The nonlinear energy response of cryogenic microcalorimeters is usually corrected 
through an empirical calibration. X-ray or gamma-ray emission lines of known 
shape and energy anchor a smooth function that generalizes the calibration data and 
converts detector measurements to energies. We argue that this function should be 
an approximating spline. The theory of Gaussian process regression makes a case 
for this functional form. It also provides an important benefit previously absent from 
our calibration method: a quantitative uncertainty estimate for the calibrated ener-
gies, with lower uncertainty near the best-constrained calibration points.

Keywords Microcalorimeters · Detector calibration · Superconducting detectors

1 Introduction

Cryogenic microcalorimeters have been used to measure x-ray and gamma-ray emis-
sion in many diverse settings. Considering only existing x-ray spectrometers based 
on the transition-edge sensor (TES), these applications include [1] synchrotron 
beamlines, astrophysical telescopes, exotic atom measurements at particle accel-
erators, computed tomography with spectral discrimination, and even metrological 
study of fluorescence energies. One requirement these applications share is accurate 
energy estimation for each photon detected, a difficult challenge given that the meas-
urements are made with sensors whose energy response is inherently nonlinear.

Users of such devices generally employ an empirically estimated calibration 
curve, a function that converts each measured pulse height to a photon energy. The 
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pulse height is typically estimated by statistically optimal filtering, corrected for 
confounding effects such as slow drifts in system gain or for a bias that depends 
on the relative arrival time of a photon and the system’s sampling clock [2]. We 
will call this optimal, corrected value simply the pulse height (PH, or p in equa-
tions). The calibration curve is “anchored” by a small number of spectral features. 
These features must have an absolute energy that is known a priori, and they must be 
detected with high enough intensity that their representative pulse height can be esti-
mated from the measured spectrum with small uncertainties. Such features might be 
gamma rays, x-ray fluorescence line emission, or light emitted by a calibrated x-ray 
monochromator.

To create a calibration curve from a set of anchor points, one must make sev-
eral decisions. Should the curve interpolate or approximate the data? Should it be 
a polynomial, a spline, or another functional form? How should parameters such as 
the degree of the polynomial or the number and locations of the spline’s knots be 
chosen? Should the smoothing function relate energy to PH directly or indirectly?

We think the answer to the first question is clear: it is best to have a calibration 
curve approximate the data. Anchor points have uncertainty in both the PH and 
energy, and only an approximating curve can fully account for the uncertainties. 
With polynomial fits, approximation is accomplished by weighted least-squares fits 
to a polynomial of degree lower than the number of anchor points. Though splines 
normally interpolate their data, several methods to approximate with splines exist; 
we have previously found best results with a cubic smoothing spline [3].

Our most important result is the derivation of the uncertainty on the calibration 
function from the theory of Gaussian process regression (GPR). It quantifies our 
intuition that the energy scale is more uncertain at energies that are further from the 
anchor points, or near to anchor points that themselves have higher uncertainty. GPR 
also justifies the smoothing spline form.

The procedure described here has been tested only with data from TES micro-
calorimeters with Mo–Cu bilayers and designed with normal-metal banks and bars. 
Such sensors have nonlinear energy responses that are difficult or impossible to 
model a priori, and empirical calibrations are necessary. We expect that the GPR 
procedure should generalize to other TES designs or other sensors, but without test-
ing other cases, we cannot state when it will be needed.

2  Choosing a Calibration Space

The calibration curve is a function that estimates the photon energy from a PH value 
p. It can employ a spline directly or indirectly. Indirect use means the spline models 
some y(E, p) as a function of some x(p), so long as x(⋅) is a monotone function of 
its input and y(E, p) is a function for which y0 = y(E, p) can be easily solved for E 
given y0 and p. Many functions x and y, or calibration spaces are possible. Here we 
consider p and log p for x(p); and E, p/E, E/p, and logE for y(E, p).

The x and y functions can be picked by the principle that the spline function 
should “do the least work.” For example, in the case of TES calibration from 4 to 
10 keV for a study of rare-earth L lines [3], we found it best to spline y(E, p) = p∕E , 
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which we called the sensor gain, as a function of x(p) = p . Consider the K � lines 
of Mn, Co, and Cu at approximately 6 keV, 7 keV, and 8 keV. We asked how far 
in error the intermediate (Co K � ) energy estimate would be if the curve were the 
linear interpolation of the Mn and Cu K � peaks for each possible choice of y and 
x functions. Only p/E vs. p was correct to within 1.3 eV for the median detector; 
linear interpolations of other calibration spaces yielded errors up to 23 eV (Table 1). 
It is possible that other calibration spaces would be preferred for other measure-
ments, because the least-curvature space potentially depends on any of: the detec-
tor material and shape, its bias voltage, cryogenic bath temperature, and the energy 
range of interest. The three-point test of linear-interpolation error offers a simple 
way to choose. A second benefit of choosing x = p and y = p∕E (or y = E∕p or 
y = log(p∕E) ) is that any finite, positive value of y when x = p = 0 will guarantee 
that the calibration curve yields the expected energy E = 0 for pulses of size p = 0.

3  Smoothing Splines for Approximation

In previous work [3, 4], we argued that the smoothing spline is the best way to gen-
eralize the calibration x–y relationship. It does not interpolate the anchor points 
exactly but strikes a compromise between fidelity to the data and minimal curva-
ture. We assume that the more a spline has to curve, the poorer a model it is for 
calibration—particularly if the y and x functions are chosen to require minimal cur-
vature, as proposed in the previous section. Of all twice-differentiable functions, a 

Table 1  Median energy error 
across all TESs when the linear 
interpolation of two points is 
used at an intermediate point, 
for seven calibration spaces

The column “Ti/Cr/Fe” uses linear interpolation of the K � lines of 
Ti and Fe to estimate the Cr K � energy, and similarly for the last 
three columns. Each interpolation spans approximately 1  keV. The 
intermediate elements have K � energies of 5.4  keV (Cr), 5.9  keV 
(Mn), 6.4  keV (Fe), and 6.9  keV (Co). The simplest calibration 
space (row 1, E vs. p) introduces large errors. The smallest errors 
arise when gain p/E vs. p is taken to be linear (row 2). The use of 
x(p) =

√

p (not listed) gives results intermediate between p and 
log p . In any calibration space, the linear-interpolation error is larger 
at higher photon energy for these data (from a study of lanthanide 
metal emission [3])

Calibration space Median linear-interpolation error (eV)

x(p) y(E, p) Ti/Cr/Fe V/Mn/Co Cr/Fe/Ni Mn/Co/Cu

p E 16.8 18.8 20.2 22.5
p p/E 0.5 0.5 0.7 1.3
p E/p 2.1 2.6 3.0 4.0
p log(p∕E) 1.3 1.6 1.9 2.7
log p p/E 7.9 8.7 9.3 10.5
log p E/p 9.5 10.7 11.6 13.3
log p logE 8.7 9.7 10.5 11.9
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cubic smoothing spline is the one [5] that minimizes the penalty functional (“cost 
function”)

where x1 … xn and y1 … yn are the anchor points and �i is the uncertainty on 
yi . The first term in C is the usual �2 statistic for disagreement between data and 
model, as we expect h(xi) ≈ yi ± �i . The integral is the model’s curvature over the 
range a = min(xi) to b = max(xi) . A regularization parameter � controls the bal-
ance between data fidelity and minimization of curvature. For � = 0 , curvature is 
not penalized, and minimization of C produces an interpolating spline. In the limit 
� → ∞ , curvature is forbidden, and h will be a line: the line that minimizes the 
(uncertainty-weighted) sum of squared error between data and model.1 For finite � , 
a cubic2 smoothing spline results. It is a cubic spline function h(x) with n knots at xi 
and natural boundary conditions—that is, h��(x) = 0 at the lowest and highest values 
of xi.

This method raises two important questions. First, what curvature penalty � 
is appropriate? For Gaussian errors, the first term in Eq.  1 has expected value 
E[�2] = n . A � is reasonable if it yields �2 ≈ n when cost C is minimized, but we 
could use a more principled approach. Second, what is the calibration uncertainty on 
the minimum-cost curve? Gaussian process regression answers both questions.

4  Calibration Curves as a Gaussian Process

A Gaussian process (GP) model describes a distribution over functions. It posits that 
the distribution of function values at any finite set of points � in the domain is a 
multivariate Gaussian, characterized by its mean and covariance. It generalizes the 
mean from a vector to a function m(x) and the covariance from a matrix to a func-
tion of two variables k(x, x�) . The initial distribution is consistent with a broad class 
of models, not informed by the observed data � . After observations,3 the mean and 
covariance are made to be consistent with the data. The mean now estimates the cal-
ibration function h(x) we want to learn; the covariance characterizes its uncertainty. 
This formulation is a Bayesian framework, with the a priori distribution modified by 
the observed data to yield an a posteriori distribution. The posterior distribution ena-
bles computation of expected values and covariances for any set of points �

⋆
 . GPR 

means the refinement, or regression, of a GP model given the data [7, 8].
The GPR analysis of h would immediately solve the second difficulty we have 

with calibration splines, because GPR provides both a model function—the expected 

(1)C[h] ≡
n
∑

i=1

(

h(xi) − yi

�i

)2

+ ��
b

a

|h��(x)|2 dx

1 When the data can be exactly interpolated by a line, that line is found for any value of �.
2 Defining curvature as the integral of the kth derivative squared yields [6] splines of degree ( 2k − 1).
3 Estimates of the uncertainty on the measurements are also required, for which we use the simplest pos-
sible model: that the noise is independent and Gaussian-distributed with mean zero and variance �2

i
.
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value of h(x)—and an uncertainty measure—the expected covariance of h at any two 
points (x, x�) . Choosing the mean and covariance functions m and k to specify the 
model space might at first seem a more open-ended problem than the question that 
ended the previous section: how much to penalize curvature.

Remarkably, there is a perfectly plausible GP model space that yields smoothing 
splines as the expected GPR function values: those functions that are the integral of 
a continuous random walk (that is, a once-integrated Wiener process) over the inter-
val bounded by the xi values plus a line over the entire real domain [6]. Integrating a 
Wiener process once allows the expected slope to differ at the two ends of the meas-
ured interval. Such a GP model has expected value and covariance4

where v ≡ min(x, x�) . The two parameters (�0, �1) of the mean are assumed to have a 
“diffuse” or uninformative Bayesian prior, so that all possible lines are equally prob-
able. The parameter �2

f
 that scales the covariance function controls the expected 

amount of curvature; a larger �2
f
 corresponds to higher curvature.

This GP space is a reasonable way of modeling functions that are linear on either 
side of the measured interval (potentially with different slopes), and as little struc-
ture as possible inside it. Given that the space is reasonable and yields the same, 
convenient smoothing spline functions we have already shown to work quite well, it 
is the model space we use for calibration curves.

What curvature scale �2
f
 should be used for the Wiener process (random walk) 

component in Eq.  3? This is equivalent to the question, what curvature penalty � 
should be used in the smoothing spline optimization of Eq. 1? Rasmussen and Wil-
liams [8] (R &W) show that our regularization parameter � (Eq. 1) and the curvature 
scale �2

f
 (Eq. 3) are related by ��2

f
= 1 . They also give an expression for the mar-

ginal likelihood, i.e., the likelihood after integrating (marginalizing) over the values 
of the spline function at its knots. This marginal likelihood is a function of �2

f
 and 

appears below as Eq. 8 (or as R &W Equation 2.45). The value of �2
f
 that maximizes 

the marginal likelihood is the value most consistent with the data.
Equations 2 and 3 yield a GP model that R &W call GPR with a basis set. For 

measurement points � and sample points �
⋆
 , we have measurements � and sample 

point values �
⋆
 jointly distributed as the multivariate Gaussian

prior to marginalizing over the observed measurements � , where � is the GP covari-
ance matrix with Kij = k(xi, xj) ; �y = diag(�2) +� is the measurement noise plus 

(2)m(x) = �0 + �1x and

(3)k(x, x�) = �
2
f
[v3∕3 + v2|x − x�|∕2]

(4)
[

�

�
⋆

]

∼ N

(

𝛽0 + 𝛽1

[

�

�
⋆

]

,

[

�� �
⋆

�T
⋆
�

⋆⋆

])

,

4 Here the covariance is simplified by assuming the domain is transformed to [min x
i
,max x

i
] = [0, 1].
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GP covariance; �2 = [�2
1
,… , �2

n
]T ; (K

⋆
)ij = k(xi, x⋆j) ; and (K

⋆⋆
)ij = k(x

⋆i, x⋆j) . The 
marginalized, predictive distribution is �

⋆
|(�, �, �

⋆
) ∼ N

(

�
⋆
, cov(�

⋆
)
)

 where

with �(�) = �0 + �1�.
In Eqs. 2 and 3, the parameters � = ⟨�0, �1⟩

T and �2
f
 were given, but we want to 

choose them to maximize the likelihood of the measurements � . Equation 4 shows 
that the nonzero mean of the GP is linear in the parameters � . Suppose a regression 
will be done with n calibration anchor points and two basis functions: the pair 
h0(x) = 1 and h1(x) = x . Let � be the 2 × n matrix whose rows are the basis func-
tions at the n locations � . For � ∼ N (�,�) , minimization of the expected error with 
respect to � yields � =

(

��−1
y
�T + �−1

)−1(

��−1
y
� + �−1�

)

 . An uninformative 
Bayesian prior implies �−1

→ � , for which � becomes irrelevant, and

Wahba [6] has shown that the expected function values �
⋆
 (Eq.  5), with � = � , 

is a cubic spline of �
⋆
 with knots at the measurement locations � and with natu-

ral boundary conditions. Therefore, we can use a shortcut. Instead of evaluating the 
function for every value of x

⋆
 of interest, we can evaluate it only n times—by choos-

ing sample points �
⋆
 to coincide with the knots � . The approximating function we 

seek is the unique cubic spline with natural boundary conditions that interpolates 
these n predictions (which are near to but not exactly the values �).

To use the above equations, we need the factor �2
f
 that scales the covariance func-

tion k(x, x�) and thus every entry in � , �
⋆
 , and �

⋆⋆
 . We set �2

f
 to the value that 

maximizes the marginal likelihood (the Bayesian probability of measuring � ), 
obtained by a somewhat elaborate calculation described in R &W:

where � ≡ ��y
−1�T and � ≡ �y

−1�T�−1��y
−1.

5  Example Curves

Figure 1 shows the results of one such calibration procedure, with a cubic smoothing 
spline of gain g = p∕E vs. p. The calibration curve is shown both directly and with a 
linear trend subtracted to emphasize the difference between the trend and the com-
plete calibration curve. The figure also illustrates the varying GPR-estimated uncer-
tainty associated with anchor points not uniformly spaced and with unequal 

(5)�
⋆
≡ �[�

⋆
|�, �, �

⋆
] = �(�

⋆
) +�T

⋆
�−1

y
[� −�(�)]

(6)cov(�
⋆
) = �

⋆⋆
−�T

⋆
�−1

y
�

⋆

(7)� =
(

��−1
y
�T

)−1

��−1
y
�.

(8)2 logP
(

�|�, �2
f

)

= −�T�−1
y
� + �T�� − log |�y| − log |�| − (n − 2) log 2�
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uncertainties. Through most of the energy range populated by anchor points, 
5.4–9 keV, the calibration uncertainty is well below 0.5 eV, as are the small-scale 
features in the curve. As expected, the uncertainty is smallest at the well-measured 
anchor points and grows with distance from the nearest one. Changing the variance 
�
2
f
 by a factor of 2±1 relative to its maximum-likelihood value moves energy esti-

mates by no more than ±0.1 eV in most cases.

6  Conclusion

We have considered the construction of energy–calibration curves for nonlinear 
TES microcalorimeters in the framework of Gaussian processes. With the once-
integrated Wiener process as our specific GP model, the predictions follow a cubic 
smoothing spline with natural boundary conditions. We have previously shown that 
such an approximating spline is an excellent match to TES calibration [3], but the 
GPR framework also permits computation of the calibration uncertainties.

We can briefly summarize the calibration method: 

1. Using triples of calibration points, learn which calibration space has the least 
curvature for the current data (Sect. 2).

2. Find the maximum-likelihood GP variance, �2
f
 (maximize Eq. 8).

3. Compute the predictions h(�) for each anchor point (Eq. 5).
4. Calibration h(x) is the cubic smoothing spline that interpolates those predictions.

(a) (b) (c)

Fig. 1  a Example calibration curve (gain vs. PH) for one representative TES. b Same data as a, except 
here the linear trend of −2.07 × 10−5 eV−1 is subtracted from gain, to highlight departures from the trend. 
Labeled points ( ∙ ) with 1� error bars are the 15 anchor points used. The solid curve is the smoothing 
spline (Eq.  5), and the shaded band represents the ±1� calibration uncertainty (square root of Eq.  6). 
Six thin gray curves are placed at ±0.5 eV, ±1 eV, and ±2 eV about the best calibration to indicate the 
energy scale. c The calibration curves’ energy uncertainty as a function of energy for 16 representative 
TESs (the heavier line corresponds to the same TES featured in a and b). Anchor points range from 5.4 
to 10 keV. The calibration uncertainty is lower closest to the anchor points, particularly those measured 
with low uncertainties. The five sensors with smaller uncertainties below 4 keV are those that measured 
enough Si K � emission at 1.7 keV to have an additional anchor point at that energy. (Color figure online.)
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Item 1 should be done once for the given measurement and detector array; the other 
steps are repeated once for each calibration (say, once per sensor per day). We plan 
further investigation into whether it is better to use a separate �2

f
 for each sensor or a 

single, universal value. We intend to use the calibration method based on GPR, and 
the energy uncertainty it generates, for future TES calibrations.

Acknowledgements This work was supported by NIST’s Innovations in Measurement Science program. 
We thank Dan Becker, Michael Frey, and two anonymous reviewers for many helpful suggestions. The 
datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

References

 1. W. Doriese et  al., A practical superconducting-microcalorimeter X-ray spectrometer for beamline 
and laboratory science. Rev. Sci. Instrum. 88, 053108 (2017)

 2. J.W. Fowler, B.K. Alpert, W. Doriese, Y.-I. Joe, G. O’Neil, J. Ullom, D. Swetz, The practice of pulse 
processing. J. Low Temp. Phys. 184, 374 (2016)

 3. J.W. Fowler et al., Absolute energies and emission line shapes of the L x-ray transitions of lantha-
nide metals. Metrologia 58, 015016 (2021)

 4. J.W. Fowler et al., A reassessment of absolute energies of the x-ray L lines of lanthanide metals. 
Metrologia 54, 494–511 (2017)

 5. P.J. Green, B.W. Silverman, Nonparametric Regression and Generalized Linear Models (Chapman 
and Hall, London, 1994)

 6. G. Wahba, Improper priors, spline smoothing and the problem of guarding against model errors in 
regression. J. R. Stat. Soc.: B Methodol. 40, 364–372 (1978)

 7. K.D. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, 2012)
 8. C.E. Rasmussen, K.I. Williams, Gaussian Processes for Machine Learning (MIT Press, Cambridge, 

2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Energy Calibration of Nonlinear Microcalorimeters with Uncertainty Estimates from Gaussian Process Regression
	Abstract
	1 Introduction
	2 Choosing a Calibration Space
	3 Smoothing Splines for Approximation
	4 Calibration Curves as a Gaussian Process
	5 Example Curves
	6 Conclusion
	Acknowledgements 
	References




